1
|
Cao L, Luo C, Liu Y, Lan L, Zhou T, Hu K, Wang S, Yu X, Qu S. miR827 increases susceptibility to Alternaria alternata by shearing the mRNAs of low-affinity phosphate transporters PHT5-2 and PHT5-3 in apple. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70222. [PMID: 40372275 DOI: 10.1111/tpj.70222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/23/2025] [Accepted: 05/06/2025] [Indexed: 05/16/2025]
Abstract
Apple leaf spot disease, caused by Alternaria alternata, significantly impacts apple production. Phosphorus plays a crucial role in maintaining the healthy growth of plants and enhancing their defense against pathogens. Both low-affinity and high-affinity phosphate transporters are important proteins involved in the response to phosphate starvation and increasing phosphate content. The difference is that the former does not easily cause excessive accumulation of phosphorus, leading to phosphorus toxicity in plants. Currently, the defense mechanisms mediated by low-affinity phosphate transporters in apples are not well understood. In this study, we identified two low-affinity phosphate transporters, PHT5-2 and PHT5-3. Compared to the control, although the overexpression of PHT5-2 and PHT5-3 increased phosphorus content in the plants, it did not result in growth defects. Furthermore, the overexpression of PHT5-2 and PHT5-3 led to increased callose deposition, enhancing resistance to A. alternata. We verified that the non-coding sRNA-miR827 binds to the mRNA of PHT5-2 and PHT5-3 via complementary base pairing and suppresses their expression by cleaving the 5' UTR regions using 5' RLM-RACE and N. benthamiana co-transformation assays. Apple plants overexpressing miR827 showed significantly reduced phosphorus content and severe growth defects, accompanied by decreased callose deposition and weakened disease resistance. In summary, our research results reveal the mechanism by which miR827 regulates phosphate transporters involved in the defense of apples against A. alternata.
Collapse
Affiliation(s)
- Lifang Cao
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Changguo Luo
- Fruit Science Institute, Guizhou Academy of Agricultural Science, Guiyang, Guizhou, 550006, China
| | - Yiting Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Liming Lan
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tingting Zhou
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kaixu Hu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sanhong Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinyi Yu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shenchun Qu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
2
|
Wang L, Cui J, Zhang N, Wang X, Su J, Vallés MP, Wu S, Yao W, Chen X, Chen D. OsIPK1 frameshift mutations disturb phosphorus homeostasis and impair starch synthesis during grain filling in rice. PLANT MOLECULAR BIOLOGY 2024; 114:91. [PMID: 39172289 DOI: 10.1007/s11103-024-01488-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/10/2024] [Indexed: 08/23/2024]
Abstract
Inositol 1,3,4,5,6-pentakisphosphate 2-kinase (IPK1) catalyzes the final step in phytic acid (InsP6) synthesis. In this study, the effects of OsIPK1 mutations on InsP6 synthesis, grain filling and their underlying mechanisms were investigated. Seven gRNAs were designed to disrupt the OsIPK1 gene via CRISPR/CAS9 system. Only 4 of them generated 29 individual insertion or deletion T0 plants, in which nine biallelic or heterozygous genotypes were identified. Segregation analysis revealed that OsIPK1 frameshift mutants are homozygous lethality. The biallelic and heterozygous frameshift mutants exhibited significant reduction in yield-related traits, particularly in the seed-setting rate and yield per plant. Despite a notable decline in pollen viability, the male and female gametes had comparable transmission rates to their progenies in the mutants. A significant number of the filling-aborted (FA) grains was observed in mature grains of these heterozygous frameshift mutants. These grains exhibited a nearly complete blockage of InsP6 synthesis, resulting in a pronounced increase in Pi content. In contrast, a slight decline in InsP6 content was observed in the plump grains. During the filling stage, owing to the excessive accumulation of Pi, starch synthesis was significantly impaired, and the endosperm development-specific gene expression was nearly abolished. Consistently, the activity of whereas AGPase, a key enzyme in starch synthesis, was significantly decreased and Pi transporter gene expression was upregulated in the FA grains. Taken together, these results demonstrate that OsIPK1 frameshift mutations result in excessive Pi accumulation, decreased starch synthesis, and ultimately leading to lower yields in rice.
Collapse
Affiliation(s)
- Lina Wang
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jing Cui
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ning Zhang
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xueqin Wang
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jingping Su
- Tianjin Key Laboratory of Crop Genetics and Breeding, Crop Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin, 300384, China
| | - María Pilar Vallés
- Department of Genetics and Plant Breeding, Aula Dei Experimental Station, Spanish National Research Council (EEAD-CSIC), Zaragoza, 50059, Spain
| | - Shian Wu
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Wei Yao
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xiwen Chen
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Defu Chen
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
- Southwest United Graduate School, Kunming, 650092, China.
| |
Collapse
|
3
|
Nussaume L, Kanno S. Reviewing impacts of biotic and abiotic stresses on the regulation of phosphate homeostasis in plants. JOURNAL OF PLANT RESEARCH 2024; 137:297-306. [PMID: 38517656 DOI: 10.1007/s10265-024-01533-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 02/07/2024] [Indexed: 03/24/2024]
Abstract
Adapting to varying phosphate levels in the environment is vital for plant growth. The PHR1 phosphate starvation response transcription factor family, along with SPX inhibitors, plays a pivotal role in plant phosphate responses. However, this regulatory hub intricately links with diverse biotic and abiotic signaling pathways, as outlined in this review. Understanding these intricate networks is crucial, not only on a fundamental level but also for practical applications, such as enhancing sustainable agriculture and optimizing fertilizer efficiency. This comprehensive review explores the multifaceted connections between phosphate homeostasis and environmental stressors, including various biotic factors, such as symbiotic mycorrhizal associations and beneficial root-colonizing fungi. The complex coordination between phosphate starvation responses and the immune system are explored, and the relationship between phosphate and nitrate regulation in agriculture are discussed. Overall, this review highlights the complex interactions governing phosphate homeostasis in plants, emphasizing its importance for sustainable agriculture and nutrient management to contribute to environmental conservation.
Collapse
Affiliation(s)
- Laurent Nussaume
- Aix Marseille Univ, CEA, CNRS, BIAM, UMR7265, EBMP, 13115, Saint‑Paul Lez Durance, France.
| | - Satomi Kanno
- Institute for Advanced Research, Nagoya University, 1-1-1, Furocho, Chikusaku, Nagoya, Aichi, 464-8601, Japan
| |
Collapse
|
4
|
Seth T, Asija S, Umar S, Gupta R. The intricate role of lipids in orchestrating plant defense responses. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 338:111904. [PMID: 37925973 DOI: 10.1016/j.plantsci.2023.111904] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/08/2023] [Accepted: 10/20/2023] [Indexed: 11/07/2023]
Abstract
Plants are exposed to a variety of pests and pathogens that reduce crop productivity. Plants respond to such attacks by activating a sophisticated signaling cascade that initiates with the recognition of pests/pathogens and may culminate into a resistance response. Lipids, being the structural components of cellular membranes, function as mediators of these signaling cascades and thus are instrumental in the regulation of plant defense responses. Accumulating evidence indicates that various lipids such as oxylipins, phospholipids, glycolipids, glycerolipids, sterols, and sphingolipids, among others, are involved in mediating cell signaling during plant-pathogen interaction with each lipid exhibiting a specific biological relevance, follows a distinct biosynthetic mechanism, and contributes to specific signaling cascade(s). Omics studies have further confirmed the involvement of lipid biosynthetic enzymes including the family of phospholipases in the production of defense signaling molecules subsequent to pathogen attack. Lipids participate in stress signaling by (1) mediating the signal transduction, (2) acting as precursors for bioactive molecules, (3) regulating ROS formation, and (4) interacting with various phytohormones to orchestrate the defense response in plants. In this review, we present the biosynthetic pathways of different lipids, their specific functions, and their intricate roles upstream and downstream of phytohormones under pathogen attack to get a deeper insight into the molecular mechanism of lipids-mediated regulation of defense responses in plants.
Collapse
Affiliation(s)
- Tanashvi Seth
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Sejal Asija
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Shahid Umar
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Ravi Gupta
- College of General Education, Kookmin University, Seoul 02707, South Korea.
| |
Collapse
|
5
|
MAPKKKs in Plants: Multidimensional Regulators of Plant Growth and Stress Responses. Int J Mol Sci 2023; 24:ijms24044117. [PMID: 36835531 PMCID: PMC9963060 DOI: 10.3390/ijms24044117] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/22/2023] Open
Abstract
Mitogen-activated protein kinase kinase kinase (MAPKKK, MAP3K) is located upstream of the mitogen-activated protein kinase (MAPK) cascade pathway and is responsible for receiving and transmitting external signals to the downstream MAPKKs. Although a large number of MAP3K genes play important roles in plant growth and development, and response to abiotic and biotic stresses, only a few members' functions and cascade signaling pathways have been clarified, and the downstream MAPKKs and MAPKs of most MAP3Ks are still unknown. As more and more signaling pathways are discovered, the function and regulatory mechanism of MAP3K genes will become clearer. In this paper, the MAP3K genes in plants were classified and the members and basic characteristics of each subfamily of MAP3K were briefly described. Moreover, the roles of plant MAP3Ks in regulating plant growth and development and stress (abiotic and biotic) responses are described in detail. In addition, the roles of MAP3Ks involved in plant hormones signal transduction pathway were briefly introduced, and the future research focus was prospected.
Collapse
|
6
|
Gulabani H, Goswami K, Walia Y, Roy A, Noor JJ, Ingole KD, Kasera M, Laha D, Giehl RFH, Schaaf G, Bhattacharjee S. Arabidopsis inositol polyphosphate kinases IPK1 and ITPK1 modulate crosstalk between SA-dependent immunity and phosphate-starvation responses. PLANT CELL REPORTS 2022; 41:347-363. [PMID: 34797387 DOI: 10.1007/s00299-021-02812-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/04/2021] [Indexed: 05/27/2023]
Abstract
KEY MESSAGE Selective Arabidopsis thaliana inositol phosphate kinase functions modulate response amplitudes in innate immunity by balancing signalling adjustments with phosphate homeostasis networks. Pyrophosphorylation of InsP6 generates InsP7 and/or InsP8 containing high-energy phosphoanhydride bonds that are harnessed during energy requirements of a cell. As bona fide co-factors for several phytohormone networks, InsP7/InsP8 modulate key developmental processes. With requirements in transducing jasmonic acid (JA) and phosphate-starvation responses (PSR), InsP8 exemplifies a versatile metabolite for crosstalks between different cellular pathways during diverse stress exposures. Here we show that Arabidopsis thaliana INOSITOL PENTAKISPHOSPHATE 2-KINASE 1 (IPK1), INOSITOL 1,3,4-TRISPHOSPHATE 5/6-KINASE 1 (ITPK1), and DIPHOSPHOINOSITOL PENTAKISPHOSPHATE KINASE 2 (VIH2) implicated in InsP8 biosynthesis, suppress salicylic acid (SA)-dependent immunity. In ipk1, itpk1 or vih2 mutants, constitutive activation of defenses lead to enhanced resistance against the Pseudomonas syringae pv tomato DC3000 (PstDC3000) strain. Our data reveal that upregulated SA-signaling sectors potentiate increased expression of several phosphate-starvation inducible (PSI)-genes, previously known in these mutants. In reciprocation, upregulated PSI-genes moderate expression amplitudes of defense-associated markers. We demonstrate that SA is induced in phosphate-deprived plants, however its defense-promoting functions are likely diverted to PSR-supportive roles. Overall, our investigations reveal selective InsPs as crosstalk mediators in defense-phosphate homeostasis and in reprogramming stress-appropriate response intensities.
Collapse
Affiliation(s)
- Hitika Gulabani
- Laboratory of Signal Transduction and Plant Resistance, UNESCO-Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
- Manipal Academy of Higher Education (MAHE), Manipal University, Manipal, Karnataka, 576104, India
| | - Krishnendu Goswami
- Laboratory of Signal Transduction and Plant Resistance, UNESCO-Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
| | - Yashika Walia
- Laboratory of Signal Transduction and Plant Resistance, UNESCO-Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
| | - Abhisha Roy
- Laboratory of Signal Transduction and Plant Resistance, UNESCO-Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
| | - Jewel Jameeta Noor
- Laboratory of Signal Transduction and Plant Resistance, UNESCO-Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
| | - Kishor D Ingole
- Laboratory of Signal Transduction and Plant Resistance, UNESCO-Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
- Kalinga Institute of Industrial Technology (KIIT) University, Bhubaneswar, Odisha, 751024, India
| | - Mritunjay Kasera
- Laboratory of Signal Transduction and Plant Resistance, UNESCO-Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
| | - Debabrata Laha
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, 560 012, India
| | - Ricardo F H Giehl
- Department of Physiology and Cell Biology, Leibniz-Institute of Plant Genetics and Crop Plant Research, 06466, Gatersleben, Germany
| | - Gabriel Schaaf
- Department of Plant Nutrition, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115, Bonn, Germany
| | - Saikat Bhattacharjee
- Laboratory of Signal Transduction and Plant Resistance, UNESCO-Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India.
| |
Collapse
|
7
|
Riemer E, Pullagurla NJ, Yadav R, Rana P, Jessen HJ, Kamleitner M, Schaaf G, Laha D. Regulation of plant biotic interactions and abiotic stress responses by inositol polyphosphates. FRONTIERS IN PLANT SCIENCE 2022; 13:944515. [PMID: 36035672 PMCID: PMC9403785 DOI: 10.3389/fpls.2022.944515] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/20/2022] [Indexed: 05/14/2023]
Abstract
Inositol pyrophosphates (PP-InsPs), derivatives of inositol hexakisphosphate (phytic acid, InsP6) or lower inositol polyphosphates, are energy-rich signaling molecules that have critical regulatory functions in eukaryotes. In plants, the biosynthesis and the cellular targets of these messengers are not fully understood. This is because, in part, plants do not possess canonical InsP6 kinases and are able to synthesize PP-InsP isomers that appear to be absent in yeast or mammalian cells. This review will shed light on recent discoveries in the biosynthesis of these enigmatic messengers and on how they regulate important physiological processes in response to abiotic and biotic stresses in plants.
Collapse
Affiliation(s)
- Esther Riemer
- Departmentof Plant Nutrition, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
- *Correspondence: Esther Riemer,
| | | | - Ranjana Yadav
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Priyanshi Rana
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Henning J. Jessen
- Department of Chemistry and Pharmacy & CIBSS – The Center of Biological Signaling Studies, Albert-Ludwigs University Freiburg, Freiburg, Germany
| | - Marília Kamleitner
- Departmentof Plant Nutrition, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Gabriel Schaaf
- Departmentof Plant Nutrition, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Debabrata Laha
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
- Debabrata Laha,
| |
Collapse
|