1
|
Meresa BK, Ayimut KM, Weldemichael MY, Geberemedhin KH, Kassegn HH, Geberemikael BA, Egigu EM. Carbohydrate elicitor-induced plant immunity: Advances and prospects. Heliyon 2024; 10:e34871. [PMID: 39157329 PMCID: PMC11327524 DOI: 10.1016/j.heliyon.2024.e34871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 07/10/2024] [Accepted: 07/17/2024] [Indexed: 08/20/2024] Open
Abstract
The perceived negative impacts of synthetic agrochemicals gave way to alternative, biological plant protection strategies. The deployment of induced resistance, comprising boosting the natural defense responses of plants, is one of those. Plants developed multi-component defense mechanisms to defend themselves against biotic and abiotic stresses. These are activated upon recognition of stress signatures via membrane-localized receptors. The induced immune responses enable plants to tolerate and limit the impact of stresses. A systemic cascade of signals enables plants to prime un-damaged tissues, which is crucial during secondary encounters with stress. Comparable stress tolerance mechanisms can be induced in plants by the application of carbohydrate elicitors such as chitin/chitosan, β-1,3-glucans, oligogalacturonides, cellodextrins, xyloglucans, alginates, ulvans, and carrageenans. Treating plants with carbohydrate-derived elicitors enable the plants to develop resistance appliances against diverse stresses. Some carbohydrates are also known to have been involved in promoting symbiotic signaling. Here, we review recent progresses on plant resistance elicitation effect of various carbohydrate elicitors and the molecular mechanisms of plant cell perception, cascade signals, and responses to cascaded cues. Besides, the molecular mechanisms used by plants to distinguish carbohydrate-induced immunity signals from symbiotic signals are discussed. The structure-activity relationships of the carbohydrate elicitors are also described. Furthermore, we forwarded future research outlooks that might increase the utilization of carbohydrate elicitors in agriculture in order to improve the efficacy of plant protection strategies.
Collapse
Affiliation(s)
- Birhanu Kahsay Meresa
- Department of Biotechnology, College of Dryland Agriculture and Natural Resources, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Kiros-Meles Ayimut
- Department of Crop and Horticultural Sciences, College of Dryland Agriculture and Natural Resources, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Micheale Yifter Weldemichael
- Department of Biotechnology, College of Dryland Agriculture and Natural Resources, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Kalayou Hiluf Geberemedhin
- Department of Chemistry, College of Natural and Computational Sciences, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Hagos Hailu Kassegn
- Department of Food Science and Postharvest Technology, College of Dryland Agriculture and Natural Resources, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Bruh Asmelash Geberemikael
- Department of Biotechnology, College of Dryland Agriculture and Natural Resources, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Etsay Mesele Egigu
- Department of Biotechnology, College of Dryland Agriculture and Natural Resources, Mekelle University, Mekelle, Tigray, Ethiopia
| |
Collapse
|
2
|
Melotto M, Fochs B, Jaramillo Z, Rodrigues O. Fighting for Survival at the Stomatal Gate. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:551-577. [PMID: 39038249 DOI: 10.1146/annurev-arplant-070623-091552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Stomata serve as the battleground between plants and plant pathogens. Plants can perceive pathogens, inducing closure of the stomatal pore, while pathogens can overcome this immune response with their phytotoxins and elicitors. In this review, we summarize new discoveries in stomata-pathogen interactions. Recent studies have shown that stomatal movement continues to occur in a close-open-close-open pattern during bacterium infection, bringing a new understanding of stomatal immunity. Furthermore, the canonical pattern-triggered immunity pathway and ion channel activities seem to be common to plant-pathogen interactions outside of the well-studied Arabidopsis-Pseudomonas pathosystem. These developments can be useful to aid in the goal of crop improvement. New technologies to study intact leaves and advances in available omics data sets provide new methods for understanding the fight at the stomatal gate. Future studies should aim to further investigate the defense-growth trade-off in relation to stomatal immunity, as little is known at this time.
Collapse
Affiliation(s)
- Maeli Melotto
- Department of Plant Sciences, University of California, Davis, California, USA;
| | - Brianna Fochs
- Department of Plant Sciences, University of California, Davis, California, USA;
- Plant Biology Graduate Group, University of California, Davis, California, USA
| | - Zachariah Jaramillo
- Department of Plant Sciences, University of California, Davis, California, USA;
- Plant Biology Graduate Group, University of California, Davis, California, USA
| | - Olivier Rodrigues
- Unité de Recherche Physiologie, Pathologie et Génétique Végétales, Université de Toulouse, INP-PURPAN, Toulouse, France
| |
Collapse
|
3
|
Ganotra J, Sharma B, Biswal B, Bhardwaj D, Tuteja N. Emerging role of small GTPases and their interactome in plants to combat abiotic and biotic stress. PROTOPLASMA 2023; 260:1007-1029. [PMID: 36525153 DOI: 10.1007/s00709-022-01830-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 12/05/2022] [Indexed: 06/07/2023]
Abstract
Plants are frequently subjected to abiotic and biotic stress which causes major impediments in their growth and development. It is emerging that small guanosine triphosphatases (small GTPases), also known as monomeric GTP-binding proteins, assist plants in managing environmental stress. Small GTPases function as tightly regulated molecular switches that get activated with the aid of guanosine triphosphate (GTP) and deactivated by the subsequent hydrolysis of GTP to guanosine diphosphate (GDP). All small GTPases except Rat sarcoma (Ras) are found in plants, including Ras-like in brain (Rab), Rho of plant (Rop), ADP-ribosylation factor (Arf) and Ras-like nuclear (Ran). The members of small GTPases in plants interact with several downstream effectors to counteract the negative effects of environmental stress and disease-causing pathogens. In this review, we describe processes of stress alleviation by developing pathways involving several small GTPases and their associated proteins which are important for neutralizing fungal infections, stomatal regulation, and activation of abiotic stress-tolerant genes in plants. Previous reviews on small GTPases in plants were primarily focused on Rab GTPases, abiotic stress, and membrane trafficking, whereas this review seeks to improve our understanding of the role of all small GTPases in plants as well as their interactome in regulating mechanisms to combat abiotic and biotic stress. This review brings to the attention of scientists recent research on small GTPases so that they can employ genome editing tools to precisely engineer economically important plants through the overexpression/knock-out/knock-in of stress-related small GTPase genes.
Collapse
Affiliation(s)
- Jahanvi Ganotra
- Department of Botany, Central University of Jammu, Jammu and Kashmir, Jammu, 181143, India
| | - Bhawana Sharma
- Department of Botany, Central University of Jammu, Jammu and Kashmir, Jammu, 181143, India
| | - Brijesh Biswal
- Department of Botany, Central University of Jammu, Jammu and Kashmir, Jammu, 181143, India
| | - Deepak Bhardwaj
- Department of Botany, Central University of Jammu, Jammu and Kashmir, Jammu, 181143, India.
| | - Narendra Tuteja
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
4
|
Pan R, Ding M, Feng Z, Zeng F, Medison MB, Hu H, Han Y, Xu L, Li C, Zhang W. HvGST4 enhances tolerance to multiple abiotic stresses in barley: Evidence from integrated meta-analysis to functional verification. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 188:47-59. [PMID: 35981439 DOI: 10.1016/j.plaphy.2022.07.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/18/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
Extreme weather events have become more frequent, increasing crop yield fluctuations in many regions and thus the risk to global food security. Breeding crop cultivars with improved tolerance to a combination of abiotic stresses is an effective solution to counter the adverse impact of climate change. The ever-increasing genomic data and analytical tools provide unprecedented opportunities to mine genes with tolerance to multiple abiotic stresses through bioinformatics analysis. We undertook an integrated meta-analysis using 260 transcriptome data of barley related to drought, salt, heat, cold, and waterlogging stresses. A total of 223 shared differentially expressed genes (DEGs) were identified in response to five abiotic stresses, and significantly enriched in 'glutathione metabolism' and 'monoterpenoid biosynthesis' pathways. Using weighted gene co-expression network analysis (WGCNA), we further identified 15 hub genes (e.g., MYB, WRKY, NADH, and GST4) and selected the GST4 gene for functional validation. HvGST4 overexpression in Arabidopsis thaliana enhanced the tolerance to multiple abiotic stresses, likely through increasing the content of glutathione to scavenge reactive oxygen species and alleviate cell membrane peroxidation. Furthermore, we showed that virus-induced gene silencing (VIGS) of HvGST4 in barley leaves exacerbated cell membrane peroxidation under five abiotic stresses, reducing tolerance to multiple abiotic stress. Our study provides a new solution for identifying genes with tolerance to multiple abiotic stresses based on meta-analysis, which could contribute to breeding new varieties adapted genetically to adverse environmental conditions.
Collapse
Affiliation(s)
- Rui Pan
- Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou, 434025, China
| | - Minqiang Ding
- Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou, 434025, China
| | - Zhenbao Feng
- Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou, 434025, China
| | - Fanrong Zeng
- Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou, 434025, China
| | - Milca Banda Medison
- Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou, 434025, China
| | - Haifei Hu
- Western Crop Genetics Alliance, Western Australian State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, 6105, Australia
| | - Yong Han
- Western Crop Genetics Alliance, Western Australian State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, 6105, Australia
| | - Le Xu
- Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou, 434025, China
| | - Chengdao Li
- Western Crop Genetics Alliance, Western Australian State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, 6105, Australia.
| | - Wenying Zhang
- Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou, 434025, China.
| |
Collapse
|
5
|
Qin Z, Wu YN, Sun TT, Ma T, Xu M, Pang C, Li SW, Li S. Arabidopsis RAN GTPases are critical for mitosis during male and female gametogenesis. FEBS Lett 2022; 596:1892-1903. [PMID: 35680649 DOI: 10.1002/1873-3468.14422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 11/09/2022]
Abstract
The development of male and female gametophytes is a prerequisite for successful propagation of angiosperms. The small GTPases RAN play fundamental roles in numerous cellular processes. Although RAN GTPases have been characterized in plants, their roles in cellular processes are far from understood. We report here that RAN GTPases in Arabidopsis are critical for gametophytic development. RAN1 loss-of-function showed no defects in gametophytic development likely due to redundancy. However, the expression of a dominant negative or constitutively active RAN1 resulted in gametophytic lethality. Genetic interference of RAN GTPases caused the arrest of pollen mitosis I and of mitosis of functional megaspores, implying a key role of properly regulated RAN activity in mitosis during gametophytic development.
Collapse
Affiliation(s)
- Zheng Qin
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tian'jin, China
| | - Ya-Nan Wu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Tian-Tian Sun
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Ting Ma
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Meng Xu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Chen Pang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Shan-Wei Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Sha Li
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tian'jin, China.,State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
6
|
Tang L, Liao X, Tembrock LR, Ge S, Wu Z. A chromosome-scale genome and transcriptomic analysis of the endangered tropical tree Vatica mangachapoi (Dipterocarpaceae). DNA Res 2022; 29:6529388. [PMID: 35171284 PMCID: PMC8882376 DOI: 10.1093/dnares/dsac005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/12/2022] [Indexed: 11/23/2022] Open
Abstract
Vatica mangachapoi is a tropical tree species native to Southeast Asia. It has long been valued as a timber species because the wood resists decay, but it is now considered vulnerable to extinction due to habitat loss and overexploitation. Here, we present the first chromosome-level genome assembly of V. mangachapoi that we created by combining data from PacBio long read sequencing with Hi-C proximity ligation and Illumina short-read sequencing. The assembled genome was 456.21 Mb, containing 11 chromosome and a BUSCO score of 93.4%. From the newly assembled genome, 46,811 protein-coding genes were predicted. Repetitive DNA accounted for 53% of the genome. Phylogenomic and gene family analyses showed that V. mangachapoi diverged from a common ancestor of Gossypium raimondii 70 million years ago. Transcriptome analyses found 227 genes that were differentially expressed in the leaves of plants grown in normal soil relative to plants grown in dry, coastal, sandy soil. For these genes, we identified three significantly enriched with GO terms: responses to organonitrogen compounds, chitin-triggered immunity, and wound response. This genome provides an important comparative benchmark not only for future conservation work on V. mangachapoi but also for phylogenomics work on Dipterocarpaceae.
Collapse
Affiliation(s)
- Liang Tang
- Center for Terrestrial Biodiversity of the South China Sea, Hainan University , Haikou, Hainan 570228, China
| | - Xuezhu Liao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen , Shenzhen 518120, China
| | - Luke R Tembrock
- Department of Agricultural Biology, Colorado State University , Fort Collins, CO 80523, USA
| | - Song Ge
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences , Beijing 100093, China
| | - Zhiqiang Wu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen , Shenzhen 518120, China
| |
Collapse
|
7
|
Zhang Y, Song R, Yuan H, Li T, Wang L, Lu K, Guo J, Liu W. Overexpressing the N-terminus of CATALASE2 enhances plant jasmonic acid biosynthesis and resistance to necrotrophic pathogen Botrytis cinerea B05.10. MOLECULAR PLANT PATHOLOGY 2021; 22:1226-1238. [PMID: 34247446 PMCID: PMC8435237 DOI: 10.1111/mpp.13106] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 05/31/2023]
Abstract
Salicylic acid (SA) acts antagonistically to jasmonic acid (JA) in plant immunity. We previously reported that CATALASE2 (CAT2) promotes JA-biosynthetic acyl-CoA oxidase (ACX) activity to enhance plant resistance to necrotrophic Botrytis cinerea, and SA represses JA biosynthesis through inhibiting CAT2 activity, while the underlying mechanism remains to be further elucidated. Here, we report that the truncated CAT2 N-terminus (CAT2-N) interacts with and promotes ACX2/3, and CAT2-N-overexpressing plants have increased JA accumulation and enhanced resistance to B. cinerea B05.10, but compromised antagonism of SA on JA. Catalase inhibitor treatment or mutating CAT2 active amino acids abolished CAT2 H2 O2 -decomposing activity but did not affect its promotion of ACX2/3 activity via interaction. CAT2-N, a truncated protein with no catalase activity, interacted with and promoted ACX2/3. Overexpressing CAT2-N in Arabidopsis plants resulted in increased ACX activity, higher JA accumulation, and stronger resistance to B. cinerea B05.10 infection. Additionally, SA dramatically repressed JA biosynthesis and resistance to B. cinerea in the wild type but not in the CAT2-N-overexpressing plants. Together, our study reveals that CAT2-N can be utilized as an accelerator for JA biosynthesis during plant resistance to B. cinerea B05.10, and this truncated protein partly relieves SA repression of JA biosynthesis in plant defence responses.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Crop Stress Adaptation and ImprovementSchool of Life SciencesHenan UniversityKaifengChina
| | - Ru‐Feng Song
- State Key Laboratory of Crop Stress Adaptation and ImprovementSchool of Life SciencesHenan UniversityKaifengChina
| | - Hong‐Mei Yuan
- Hainan Key Laboratory for Sustainable Utilization of Tropical BioresourcesCollege of Tropical CropsHainan UniversityHaikouChina
| | - Ting‐Ting Li
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound ScreeningJiangsu Ocean UniversityLianyungangChina
| | - Lin‐Feng Wang
- State Key Laboratory of Crop Stress Adaptation and ImprovementSchool of Life SciencesHenan UniversityKaifengChina
| | - Kai‐Kai Lu
- State Key Laboratory of Crop Stress Adaptation and ImprovementSchool of Life SciencesHenan UniversityKaifengChina
| | - Jia‐Xing Guo
- State Key Laboratory of Crop Stress Adaptation and ImprovementSchool of Life SciencesHenan UniversityKaifengChina
| | - Wen‐Cheng Liu
- State Key Laboratory of Crop Stress Adaptation and ImprovementSchool of Life SciencesHenan UniversityKaifengChina
| |
Collapse
|