1
|
Kan Y, Citovsky V. The roles of movement and coat proteins in the transport of tobamoviruses between plant cells. FRONTIERS IN PLANT SCIENCE 2025; 16:1580554. [PMID: 40336615 PMCID: PMC12057581 DOI: 10.3389/fpls.2025.1580554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 03/31/2025] [Indexed: 05/09/2025]
Abstract
Tobamovirus is a large group of positive-sense, single-stranded RNA viruses that cause diseases in a broad range of plant species, including many agronomically important crops. The number of known Tobamovirus species has been on the rise in recent years, and currently, this genus includes 47 viruses. Tobamoviruses are transmitted mainly by mechanical contact, such as physical touching by hands or agricultural tools; and some are also transmitted on seeds, or through pollinator insects. The tobamoviral genome encodes proteins that have evolved to fulfill the main conceptual task of the viral infection cycle - the spread of the invading virus throughout the host plant cells, tissues, and organs. Here, we discuss this aspect of the infection cycle of tobamoviruses, focusing on the advances in our understanding of the local, i.e., cell-to-cell, and systemic, i.e., organ-to-organ, virus movement, and the viral and host plant determinants of these processes. Specifically, we spotlight two viral proteins-the movement protein (MP) and the coat protein (CP), which are directly involved in the local and systemic spread of tobamoviruses-with respect to their phylogeny, activities during viral movement, and interactions with the host determinants of the movement process.
Collapse
Affiliation(s)
- Yumin Kan
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY, United States
| | | |
Collapse
|
2
|
Wei J, Li Y, Chen X, Tan P, Muhammad T, Liang Y. Advances in understanding the interaction between Solanaceae NLR resistance proteins and the viral effector Avr. PLANT SIGNALING & BEHAVIOR 2024; 19:2382497. [PMID: 39312190 PMCID: PMC11421380 DOI: 10.1080/15592324.2024.2382497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 09/26/2024]
Abstract
The rising prevalence of viral-induced diseases, particularly those caused by certain strains, poses a substantial risk to the genetic diversity of Solanaceae crops and the overall safety of horticultural produce. According to the "gene-for-gene" hypothesis, resistance proteins are capable of selectively identifying nontoxic effectors produced by pathogens, as they are under purview of the host's immune defenses. The sensitivity and responsiveness of Solanaceae plants to viral attacks play a crucial role in shaping the outcomes of their interactions with viruses. Pathogenic organisms, devise an array of infection tactics aimed at circumventing or neutralizing the host's immune defenses to facilitate effective invasion. The invasion often accomplishes by suppressing or disrupting the host's defensive mechanisms or immune signals, which are integral to the infection strategies of such invading pathogens. This comprehensive review delves into the myriad approaches that pathogenic viruses employ to infiltrate and overcome the sophisticated immune system of tomatoes. Furthermore, the review explores the possibility of utilizing these viral strategies to bolster the resilience of horticultural crops, presenting a hopeful direction for forthcoming progress in plant health and agricultural stability.
Collapse
Affiliation(s)
- Jianming Wei
- College of Agriculture, Guizhou University, Guiyang, China
| | - Yunzhou Li
- College of Agriculture, Guizhou University, Guiyang, China
| | - Xiangru Chen
- College of Agriculture, Guizhou University, Guiyang, China
| | - Ping Tan
- Field management station, Guiyang Agricultural Test Center, Guiyang, China
| | - Tayeb Muhammad
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Yan Liang
- College of Horticulture, Northwest A&F University, Yangling, China
| |
Collapse
|
3
|
Ghorbani A. Genetic analysis of tomato brown rugose fruit virus reveals evolutionary adaptation and codon usage bias patterns. Sci Rep 2024; 14:21281. [PMID: 39261582 PMCID: PMC11390899 DOI: 10.1038/s41598-024-72298-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024] Open
Abstract
Tomato brown rugose fruit virus (ToBRFV) poses a significant threat to tomato production worldwide, prompting extensive research into its genetic diversity, evolutionary dynamics, and adaptive strategies. In this study, we conducted a comprehensive analysis of ToBRFV at the codon level, focusing on codon usage bias, selection pressures, and evolutionary patterns across multiple genes. Our analysis revealed distinct patterns of codon usage bias and selection pressures within the ToBRFV genome, with varying levels of genetic diversity and evolutionary constraints among different genes. We observed a transition/transversion bias of 2.07 across the entire ToBRFV genome, with the movement protein (MP) gene exhibiting the highest transition/transversion bias and SNP density, suggesting potential evolutionary pressures or a higher mutation rate in this gene. Furthermore, our study identified episodic positive selection primarily in the MP gene, highlighting specific codons subject to adaptive changes in response to host immune pressures or environmental factors. Comparative analysis of codon usage bias in the coat protein (CP) and RNA-dependent RNA polymerase (RdRp) genes revealed gene-specific patterns reflecting functional constraints and adaptation to the host's translational machinery. Our findings provide valuable insights into the molecular mechanisms driving ToBRFV evolution and adaptation, with implications for understanding viral pathogenesis, host-virus interactions, and the development of control strategies. Future research directions include further elucidating the functional significance of codon usage biases, exploring the role of episodic positive selection in viral adaptation, and leveraging these insights to inform the development of effective antiviral strategies and crop protection measures.
Collapse
Affiliation(s)
- Abozar Ghorbani
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute (NSTRI), Karaj, Iran.
| |
Collapse
|
4
|
Zheng X, Li Y, Liu Y. Plant Immunity against Tobamoviruses. Viruses 2024; 16:530. [PMID: 38675873 PMCID: PMC11054417 DOI: 10.3390/v16040530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Tobamoviruses are a group of plant viruses that pose a significant threat to agricultural crops worldwide. In this review, we focus on plant immunity against tobamoviruses, including pattern-triggered immunity (PTI), effector-triggered immunity (ETI), the RNA-targeting pathway, phytohormones, reactive oxygen species (ROS), and autophagy. Further, we highlight the genetic resources for resistance against tobamoviruses in plant breeding and discuss future directions on plant protection against tobamoviruses.
Collapse
Affiliation(s)
- Xiyin Zheng
- MOE Key Laboratory of Bioinformatics and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Yiqing Li
- MOE Key Laboratory of Bioinformatics and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| |
Collapse
|
5
|
Wu J, Zhang Y, Li F, Zhang X, Ye J, Wei T, Li Z, Tao X, Cui F, Wang X, Zhang L, Yan F, Li S, Liu Y, Li D, Zhou X, Li Y. Plant virology in the 21st century in China: Recent advances and future directions. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:579-622. [PMID: 37924266 DOI: 10.1111/jipb.13580] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/02/2023] [Indexed: 11/06/2023]
Abstract
Plant viruses are a group of intracellular pathogens that persistently threaten global food security. Significant advances in plant virology have been achieved by Chinese scientists over the last 20 years, including basic research and technologies for preventing and controlling plant viral diseases. Here, we review these milestones and advances, including the identification of new crop-infecting viruses, dissection of pathogenic mechanisms of multiple viruses, examination of multilayered interactions among viruses, their host plants, and virus-transmitting arthropod vectors, and in-depth interrogation of plant-encoded resistance and susceptibility determinants. Notably, various plant virus-based vectors have also been successfully developed for gene function studies and target gene expression in plants. We also recommend future plant virology studies in China.
Collapse
Affiliation(s)
- Jianguo Wu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yongliang Zhang
- State Key Laboratory of Plant Environmental Resilience and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiaoming Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Ye
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Taiyun Wei
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhenghe Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xiaorong Tao
- Department of Plant Pathology, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Cui
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xianbing Wang
- State Key Laboratory of Plant Environmental Resilience and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Lili Zhang
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Shifang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Dawei Li
- State Key Laboratory of Plant Environmental Resilience and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yi Li
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
6
|
Zhao X, Wu J, Ma Z, Shi Y, Fang Z, Wu J, Yang X, Zhou X. Development and application of monoclonal antibody-based dot-ELISA and colloidal gold immunochromatographic strip for rapid, specific, and sensitive detection of tomato brown rugose fruit virus. J Virol Methods 2024; 323:114841. [PMID: 37939857 DOI: 10.1016/j.jviromet.2023.114841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/26/2023] [Accepted: 11/04/2023] [Indexed: 11/10/2023]
Abstract
Tomato brown rugose fruit virus (ToBRFV) is an emerging tobamovirus that has become a great concern to tomato production industry. Due to the lack of resistant cultivars, precise detection of ToBRFV is essential to prevent the spread of ToBRFV. In this study, we produced highly sensitive and specific monoclonal antibodies against ToBRFV and established dot-enzyme-linked immunosorbent assay (dot-ELISA) and colloidal gold immunochromatographic strip (CGICS)-based methods for ToBRFV detection. These two methods could specifically detect ToBRFV without cross-reaction with seven tested tobamoviruses and three frequently occurring tomato-infecting viruses. Sensitivity analysis showed that the limit of detection of the established dot-ELISA and CGICS methods reached up to 1:6400 and 1:10,000 (w/v, g/mL) dilution of ToBRFV-infected tomato tissue, respectively. Further analyses using field-collected tomato foliar and fruit samples showed that the results obtained by dot-ELISA and CGICS were consistent with those obtained by reverse transcription polymerase chain reaction. The established methods here allow for specific, sensitive, and robust detection of ToBRFV, and will be helpful for precise monitoring and early warning of ToBRFV.
Collapse
Affiliation(s)
- Xinru Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiayu Wu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Ziyue Ma
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yujie Shi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhu Fang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jianxiang Wu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Xiuling Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
7
|
Spiegelman Z, Dinesh-Kumar SP. Breaking Boundaries: The Perpetual Interplay Between Tobamoviruses and Plant Immunity. Annu Rev Virol 2023; 10:455-476. [PMID: 37254097 DOI: 10.1146/annurev-virology-111821-122847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Plant viruses of the genus Tobamovirus cause significant economic losses in various crops. The emergence of new tobamoviruses such as the tomato brown rugose fruit virus (ToBRFV) poses a major threat to global agriculture. Upon infection, plants mount a complex immune response to restrict virus replication and spread, involving a multilayered defense system that includes defense hormones, RNA silencing, and immune receptors. To counter these defenses, tobamoviruses have evolved various strategies to evade or suppress the different immune pathways. Understanding the interactions between tobamoviruses and the plant immune pathways is crucial for the development of effective control measures and genetic resistance to these viruses. In this review, we discuss past and current knowledge of the intricate relationship between tobamoviruses and host immunity. We use this knowledge to understand the emergence of ToBRFV and discuss potential approaches for the development of new resistance strategies to cope with emerging tobamoviruses.
Collapse
Affiliation(s)
- Ziv Spiegelman
- Department of Plant Pathology and Weed Research, Agricultural Research Organization-The Volcani Institute, Rishon LeZion, Israel;
| | - Savithramma P Dinesh-Kumar
- Department of Plant Biology and Genome Center, College of Biological Sciences, University of California, Davis, California, USA
| |
Collapse
|
8
|
Salem NM, Jewehan A, Aranda MA, Fox A. Tomato Brown Rugose Fruit Virus Pandemic. ANNUAL REVIEW OF PHYTOPATHOLOGY 2023; 61:137-164. [PMID: 37268006 DOI: 10.1146/annurev-phyto-021622-120703] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Tomato brown rugose fruit virus (ToBRFV) is an emerging tobamovirus. It was first reported in 2015 in Jordan in greenhouse tomatoes and now threatens tomato and pepper crops around the world. ToBRFV is a stable and highly infectious virus that is easily transmitted by mechanical means and via seeds, which enables it to spread locally and over long distances. The ability of ToBRFV to infect tomato plants harboring the commonly deployed Tm resistance genes, as well as pepper plants harboring the L resistance alleles under certain conditions, limits the ability to prevent damage from the virus. The fruit production and quality of ToBRFV-infected tomato and pepper plants can be drastically affected, thus significantly impacting their market value. Herein, we review the current information and discuss the latest areas of research on this virus, which include its discovery and distribution, epidemiology, detection, and prevention and control measures, that could help mitigate the ToBRFV disease pandemic.
Collapse
Affiliation(s)
- Nida' M Salem
- Department of Plant Protection, School of Agriculture, The University of Jordan, Amman, Jordan;
| | - Ahmad Jewehan
- Applied Plant Genomics Group, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Miguel A Aranda
- Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas (CSIC), Murcia, Spain
| | - Adrian Fox
- Fera Science, Sand Hutton, York, United Kingdom
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
9
|
Scholthof KBG. The Past Is Present: Coevolution of Viruses and Host Resistance Within Geographic Centers of Plant Diversity. ANNUAL REVIEW OF PHYTOPATHOLOGY 2023; 61:119-136. [PMID: 37253696 DOI: 10.1146/annurev-phyto-021621-113819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Understanding the coevolutionary history of plants, pathogens, and disease resistance is vital for plant pathology. Here, I review Francis O. Holmes's work with tobacco mosaic virus (TMV) framed by the foundational work of Nikolai Vavilov on the geographic centers of origin of plants and crop wild relatives (CWRs) and T. Harper Goodspeed's taxonomy of the genus Nicotiana. Holmes developed a hypothesis that the origin of host resistance to viruses was due to coevolution of both at a geographic center. In the 1950s, Holmes proved that genetic resistance to TMV, especially dominant R-genes, was centered in South America for Nicotiana and other solanaceous plants, including Capsicum, potato, and tomato. One seeming exception was eggplant (Solanum melongena). Not until the acceptance of plate tectonics in the 1960s and recent advances in evolutionary taxonomy did it become evident that northeast Africa was the home of eggplant CWRs, far from Holmes's geographic center for TMV-R-gene coevolution. Unbeknownst to most plant pathologists, Holmes's ideas predated those of H.H. Flor, including experimental proof of the gene-for-gene interaction, identification of R-genes, and deployment of dominant host genes to protect crop plants from virus-associated yield losses.
Collapse
Affiliation(s)
- Karen-Beth G Scholthof
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, USA;
| |
Collapse
|
10
|
Ivanov PA, Gasanova TV, Repina MN, Zamyatnin AA. Signaling and Resistosome Formation in Plant Innate Immunity to Viruses: Is There a Common Mechanism of Antiviral Resistance Conserved across Kingdoms? Int J Mol Sci 2023; 24:13625. [PMID: 37686431 PMCID: PMC10487714 DOI: 10.3390/ijms241713625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/16/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
Virus-specific proteins, including coat proteins, movement proteins, replication proteins, and suppressors of RNA interference are capable of triggering the hypersensitive response (HR), which is a type of cell death in plants. The main cell death signaling pathway involves direct interaction of HR-inducing proteins with nucleotide-binding leucine-rich repeats (NLR) proteins encoded by plant resistance genes. Singleton NLR proteins act as both sensor and helper. In other cases, NLR proteins form an activation network leading to their oligomerization and formation of membrane-associated resistosomes, similar to metazoan inflammasomes and apoptosomes. In resistosomes, coiled-coil domains of NLR proteins form Ca2+ channels, while toll-like/interleukin-1 receptor-type (TIR) domains form oligomers that display NAD+ glycohydrolase (NADase) activity. This review is intended to highlight the current knowledge on plant innate antiviral defense signaling pathways in an attempt to define common features of antiviral resistance across the kingdoms of life.
Collapse
Affiliation(s)
- Peter A. Ivanov
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (P.A.I.); (T.V.G.); (M.N.R.)
| | - Tatiana V. Gasanova
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (P.A.I.); (T.V.G.); (M.N.R.)
| | - Maria N. Repina
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (P.A.I.); (T.V.G.); (M.N.R.)
| | - Andrey A. Zamyatnin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119234, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
- Research Center for Translational Medicine, Sirius University of Science and Technology, Sirius 354340, Krasnodar Region, Russia
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| |
Collapse
|
11
|
Hak H, Raanan H, Schwarz S, Sherman Y, Dinesh‐Kumar SP, Spiegelman Z. Activation of Tm-2 2 resistance is mediated by a conserved cysteine essential for tobacco mosaic virus movement. MOLECULAR PLANT PATHOLOGY 2023; 24:838-848. [PMID: 37086003 PMCID: PMC10346382 DOI: 10.1111/mpp.13318] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/08/2023] [Accepted: 02/12/2023] [Indexed: 05/03/2023]
Abstract
The tomato Tm-22 gene was considered to be one of the most durable resistance genes in agriculture, protecting against viruses of the Tobamovirus genus, such as tomato mosaic virus (ToMV) and tobacco mosaic virus (TMV). However, an emerging tobamovirus, tomato brown rugose fruit virus (ToBRFV), has overcome Tm-22 , damaging tomato production worldwide. Tm-22 encodes a nucleotide-binding leucine-rich repeat (NLR) class immune receptor that recognizes its effector, the tobamovirus movement protein (MP). Previously, we found that ToBRFV MP (MPToBRFV ) enabled the virus to overcome Tm-22 -mediated resistance. Yet, it was unknown how Tm-22 remained durable against other tobamoviruses, such as TMV and ToMV, for over 60 years. Here, we show that a conserved cysteine (C68) in the MP of TMV (MPTMV ) plays a dual role in Tm-22 activation and viral movement. Substitution of MPToBRFV amino acid H67 with the corresponding amino acid in MPTMV (C68) activated Tm-22 -mediated resistance. However, replacement of C68 in TMV and ToMV disabled the infectivity of both viruses. Phylogenetic and structural prediction analysis revealed that C68 is conserved among all Solanaceae-infecting tobamoviruses except ToBRFV and localizes to a predicted jelly-roll fold common to various MPs. Cell-to-cell and subcellular movement analysis showed that C68 is required for the movement of TMV by regulating the MP interaction with the endoplasmic reticulum and targeting it to plasmodesmata. The dual role of C68 in viral movement and Tm-22 immune activation could explain how TMV was unable to overcome this resistance for such a long period.
Collapse
Affiliation(s)
- Hagit Hak
- Department of Plant Pathology and Weed Research, Agricultural Research OrganizationThe Volcani InstituteRishon LeZionIsrael
| | - Hagai Raanan
- Department of Plant Pathology and Weed Research, Agricultural Research OrganizationThe Volcani InstituteRishon LeZionIsrael
- Gilat Research CenterAgricultural Research OrganizationNegevIsrael
| | - Shahar Schwarz
- Department of Plant Pathology and Weed Research, Agricultural Research OrganizationThe Volcani InstituteRishon LeZionIsrael
| | - Yifat Sherman
- Department of Plant Pathology and Weed Research, Agricultural Research OrganizationThe Volcani InstituteRishon LeZionIsrael
- The Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
| | - Savithramma P. Dinesh‐Kumar
- Department of Plant Biology and Genome CenterCollege of Biological Sciences, University of CaliforniaDavisCaliforniaUSA
| | - Ziv Spiegelman
- Department of Plant Pathology and Weed Research, Agricultural Research OrganizationThe Volcani InstituteRishon LeZionIsrael
| |
Collapse
|
12
|
Vaisman M, Hak H, Arazi T, Spiegelman Z. The Impact of Tobamovirus Infection on Root Development Involves Induction of Auxin Response Factor 10a in Tomato. PLANT & CELL PHYSIOLOGY 2023; 63:1980-1993. [PMID: 34977939 DOI: 10.1093/pcp/pcab179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/16/2021] [Accepted: 01/02/2022] [Indexed: 06/14/2023]
Abstract
Plant viruses cause systemic diseases that severely impair plant growth and development. While the accumulation of viruses in the root system has long been established, little is known as to how viruses affect root architecture. Here, we examined how the emerging tobamovirus, tomato brown rugose fruit virus (ToBRFV), alters root development in tomato. We found that ToBRFV and tobacco mosaic virus both invaded root systems during the first week of infection. ToBRFV infection of tomato plants resulted in a significant decrease in root biomass and elongation and root-to-shoot ratio and a marked suppression of root branching. Mutation in RNA-dependent RNA polymerase 6 increased the susceptibility of tomato plants to ToBRFV, resulting in severe reduction of various root growth parameters including root branching. Viral root symptoms were associated with the accumulation of auxin response factor 10a (SlARF10a) transcript, a homolog of Arabidopsis ARF10, a known suppressor of lateral root development. Interestingly, loss-of-function mutation in SlARF10a moderated the effect of ToBRFV on root branching. In contrast, downregulation of sly-miR160a, which targets SlARF10a, was associated with constitutive suppression root branching independent of viral infection. In addition, overexpression of a microRNA-insensitive mutant of SlARF10a mimicked the effect of ToBRFV on root development, suggesting a specific role for SlARF10a in ToBRFV-mediated suppression of root branching. Taken together, our results provide new insights into the impact of tobamoviruses on root development and the role of ARF10a in the suppression of root branching in tomato.
Collapse
Affiliation(s)
- Michael Vaisman
- Department of Plant Pathology and Weed Research, Agricultural Research Organization-The Volcani Institute, 68 HaMaccabim Road, P.O.B 15159, Rishon LeZion 7505101, Israel
- The Robert H. Smith Faculty of Agriculture, Food and Environment, the Hebrew University of Jerusalem, PO Box 12, Rehovot 761001, Israel
| | - Hagit Hak
- Department of Plant Pathology and Weed Research, Agricultural Research Organization-The Volcani Institute, 68 HaMaccabim Road, P.O.B 15159, Rishon LeZion 7505101, Israel
| | - Tzahi Arazi
- Plant Sciences Institute, Agricultural Research Organization, The Volcani Institute, 68 HaMaccabim Road, P.O.B 15159, Rishon LeZion 7505101, Israel
| | - Ziv Spiegelman
- Department of Plant Pathology and Weed Research, Agricultural Research Organization-The Volcani Institute, 68 HaMaccabim Road, P.O.B 15159, Rishon LeZion 7505101, Israel
| |
Collapse
|
13
|
Sánchez-Sánchez M, Carrillo-Tripp J, Aispuro-Hernández E, Quintana-Obregón EA, Martínez-Téllez MÁ. Understanding tobamovirus-plant interactions: implications for breeding resistance to tomato brown rugose fruit virus. JOURNAL OF PLANT PATHOLOGY 2023; 105:83-94. [PMCID: PMC9734318 DOI: 10.1007/s42161-022-01287-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/21/2022] [Indexed: 11/07/2024]
Abstract
The genus Tobamovirus comprises a group of single-stranded RNA viruses that affect a wide variety of vegetables of economic importance. Tobamoviruses express a series of proteins that interact with the plant’s cellular machinery, allowing viral infection; during incompatible interactions, active defense is mediated by host proteins encoded by resistance genes. The genes conferring viral resistance and tolerance in non-susceptible hosts have been studied for their ability to transfer desired resistance traits to different crops. The N gene from Nicotiana spp., the repertoire of Tm genes in Solanum spp., the L locus from Capsicum spp., and TOM genes are the most studied genetic sequences for understanding resistance to tobamoviruses. Through classical plant breeding and genetic engineering techniques, it has been possible to introgress these resistance genes (R ) into new species. However, new reports highlight the ability of tobamoviruses to overcome R -mediated defense. One of the most notorious recent cases is the tomato brown rugose fruit virus (ToBRFV). The main characteristic of ToBRFV is its capacity to overcome the resistance mediated by the Tm-2 2 gene, resulting in a limited repertoire of options to combat the virus. To defeat emerging viruses, it is necessary to apply the knowledge from other tobamoviruses-host relationships and use new technologies such as genome-wide association studies (GWAS) to understand and associate the architecture of resistance genes present in the Solanaceae family for the benefit of plant breeding. Although new genomic tools such as CRISPR systems open the possibility of coping with viral diseases, there are no commercial ToBRFV-resistant tomato varieties. Hence, the world’s leading seed suppliers compete to develop and bring these varieties to market.
Collapse
Affiliation(s)
- Mario Sánchez-Sánchez
- Laboratorio de Fisiología Vegetal, Centro de Investigación en Alimentación y Desarrollo A.C., Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Col. La Victoria, 83304 Hermosillo, Sonora México
| | - Jimena Carrillo-Tripp
- Departamento de Microbiología, Centro de Investigación Científica y de Educación Superior de Ensenada, Carretera Ensenada-Tijuana No. 3918, Zona Playitas, 22860 Ensenada, Baja California México
| | - Emmanuel Aispuro-Hernández
- Laboratorio de Fisiología Vegetal, Centro de Investigación en Alimentación y Desarrollo A.C., Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Col. La Victoria, 83304 Hermosillo, Sonora México
| | - Eber Addí Quintana-Obregón
- CONACYT-Centro de Investigación en Alimentación y Desarrollo A.C., Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Col. La Victoria, 83304 Hermosillo, Sonora México
| | - Miguel Ángel Martínez-Téllez
- Laboratorio de Fisiología Vegetal, Centro de Investigación en Alimentación y Desarrollo A.C., Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Col. La Victoria, 83304 Hermosillo, Sonora México
| |
Collapse
|
14
|
Comparative Analysis of Tomato Brown Rugose Fruit Virus Isolates Shows Limited Genetic Diversity. Viruses 2022; 14:v14122816. [PMID: 36560820 PMCID: PMC9784425 DOI: 10.3390/v14122816] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Tomato is an important vegetable in the United States and around the world. Recently, tomato brown rugose fruit virus (ToBRFV), an emerging tobamovirus, has impacted tomato crops worldwide and can result in fruit loss. ToBRFV causes severe symptoms, such as mosaic, puckering, and necrotic lesions on leaves; other symptoms include brown rugose and marbling on fruits. More importantly, ToBRFV can overcome resistance in tomato cultivars carrying the Tm-22 locus. In this study, we recovered ToBRFV sequences from tomato seeds, leaves, and fruits from the U.S., Mexico, and Peru. Samples were pre-screened using a real-time RT-PCR assay prior to high-throughput sequencing. Virus draft genomes from 22 samples were assembled and analyzed against more than 120 publicly available genomes. Overall, most sequenced isolates were similar to each other and did not form a distinct population. Phylogenetic analysis revealed three clades within the ToBRFV population. Most of the isolates (95%) clustered in clade 3. Genetic analysis revealed differentiation between the three clades indicating minor divergence occurring. Overall, pairwise identity showed limited genetic diversity among the isolates in this study with worldwide isolates, with a pairwise identity ranging from 99.36% and 99.97%. The overall population is undergoing high gene flow and population expansion with strong negative selection pressure at all ToBRFV genes. Based on the results of this study, it is likely that the limited ToBRFV diversity is associated with the rapid movement and eradication of ToBRFV-infected material between countries.
Collapse
|
15
|
Pelletier A, Moffett P. N and N'-mediated recognition confers resistance to tomato brown rugose fruit virus. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000660. [PMID: 36389119 PMCID: PMC9653555 DOI: 10.17912/micropub.biology.000660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/07/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Tomato brown rugose fruit virus (ToBRFV) is an emerging tobamovirus that overcomes the Tm-2 2 resistance gene used in commercial tomato plants to protect against tobamoviruses. In this article, we show that ToBRFV is recognised through its P50 replicase fragment by the resistance gene N in N. tabacum , which triggers a hypersensitive response (HR). We also demonstrate that the N' gene provides protection against ToBRFV through recognition of the viral coat protein without triggering a typical HR in N. tabacum .
Collapse
Affiliation(s)
- Antoine Pelletier
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Peter Moffett
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
16
|
Rivera-Márquez K, Núñez-Muñoz LA, Calderón-Pérez B, De La Torre-Almaraz R, Vargas-Hernández BY, Ruiz-Medrano R, Xoconostle-Cázares B. Bioinformatic-based approach for mutagenesis of plant immune Tm-2 2 receptor to confer resistance against tomato brown rugose fruit virus (ToBRFV). FRONTIERS IN PLANT SCIENCE 2022; 13:984846. [PMID: 36247646 PMCID: PMC9562835 DOI: 10.3389/fpls.2022.984846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Nucleotide-binding leucine-rich repeat (NLR) plant immune receptors mediate the recognition and activation of defense signaling pathways in response to intra- and extracellular pathogens. Several NLR such as Tm-2 and Tm-22 have been introgressed into commercial solanaceous varieties to confer protection against different tobamoviruses. Particularly, Tm-22 was used during recent decades to confer resistance against tobacco mosaic virus, tomato mottle mosaic virus and tomato mosaic virus, which recognizes the viral movement protein (MP). However, tomato brown rugose fruit virus(ToBRFV), a novel tobamovirus, can avoid the protection conferred by Tm-22 due to the presence of key substitutions in the MP. The aim of this work was to identify the key amino acid residues involved in the interaction between Tm-22 and ToBRFV MP through bioinformatic analyses, and to identify potential Tm-22 mutations that could generate greater binding affinity. In silico 3D structure prediction, molecular docking, and computational affinity methods were performed. We predicted that R350, H384 and K385 Tm-22 residues are relevant for the interaction with MP, and two mutations (H384W and K385L) were identified as putative sites to increase the affinity of Tm-22 to the MP with the potential elicitation of resistance against ToBRFV.
Collapse
Affiliation(s)
- Karla Rivera-Márquez
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados, Mexico City, Mexico
| | - Leandro Alberto Núñez-Muñoz
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados, Mexico City, Mexico
- Unidad de Biotecnología y Prototipos, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico, Mexico
| | - Berenice Calderón-Pérez
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados, Mexico City, Mexico
| | - Rodolfo De La Torre-Almaraz
- Unidad de Biotecnología y Prototipos, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico, Mexico
| | | | - Roberto Ruiz-Medrano
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados, Mexico City, Mexico
| | - Beatriz Xoconostle-Cázares
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados, Mexico City, Mexico
| |
Collapse
|
17
|
Determinants of Virus Variation, Evolution, and Host Adaptation. Pathogens 2022; 11:pathogens11091039. [PMID: 36145471 PMCID: PMC9501407 DOI: 10.3390/pathogens11091039] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Virus evolution is the change in the genetic structure of a viral population over time and results in the emergence of new viral variants, strains, and species with novel biological properties, including adaptation to new hosts. There are host, vector, environmental, and viral factors that contribute to virus evolution. To achieve or fine tune compatibility and successfully establish infection, viruses adapt to a particular host species or to a group of species. However, some viruses are better able to adapt to diverse hosts, vectors, and environments. Viruses generate genetic diversity through mutation, reassortment, and recombination. Plant viruses are exposed to genetic drift and selection pressures by host and vector factors, and random variants or those with a competitive advantage are fixed in the population and mediate the emergence of new viral strains or species with novel biological properties. This process creates a footprint in the virus genome evident as the preferential accumulation of substitutions, insertions, or deletions in areas of the genome that function as determinants of host adaptation. Here, with respect to plant viruses, we review the current understanding of the sources of variation, the effect of selection, and its role in virus evolution and host adaptation.
Collapse
|
18
|
Zhang S, Griffiths JS, Marchand G, Bernards MA, Wang A. Tomato brown rugose fruit virus: An emerging and rapidly spreading plant RNA virus that threatens tomato production worldwide. MOLECULAR PLANT PATHOLOGY 2022; 23:1262-1277. [PMID: 35598295 PMCID: PMC9366064 DOI: 10.1111/mpp.13229] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 05/03/2023]
Abstract
UNLABELLED Tomato brown rugose fruit virus (ToBRFV) is an emerging and rapidly spreading RNA virus that infects tomato and pepper, with tomato as the primary host. The virus causes severe crop losses and threatens tomato production worldwide. ToBRFV was discovered in greenhouse tomato plants grown in Jordan in spring 2015 and its first outbreak was traced back to 2014 in Israel. To date, the virus has been reported in at least 35 countries across four continents in the world. ToBRFV is transmitted mainly via contaminated seeds and mechanical contact (such as through standard horticultural practices). Given the global nature of the seed production and distribution chain, and ToBRFV's seed transmissibility, the extent of its spread is probably more severe than has been disclosed. ToBRFV can break down genetic resistance to tobamoviruses conferred by R genes Tm-1, Tm-2, and Tm-22 in tomato and L1 and L2 alleles in pepper. Currently, no commercial ToBRFV-resistant tomato cultivars are available. Integrated pest management-based measures such as rotation, eradication of infected plants, disinfection of seeds, and chemical treatment of contaminated greenhouses have achieved very limited success. The generation and application of attenuated variants may be a fast and effective approach to protect greenhouse tomato against ToBRFV. Long-term sustainable control will rely on the development of novel genetic resistance and resistant cultivars, which represents the most effective and environment-friendly strategy for pathogen control. TAXONOMY Tomato brown rugose fruit virus belongs to the genus Tobamovirus, in the family Virgaviridae. The genus also includes several economically important viruses such as Tobacco mosaic virus and Tomato mosaic virus. GENOME AND VIRION The ToBRFV genome is a single-stranded, positive-sense RNA of approximately 6.4 kb, encoding four open reading frames. The viral genomic RNA is encapsidated into virions that are rod-shaped and about 300 nm long and 18 nm in diameter. Tobamovirus virions are considered extremely stable and can survive in plant debris or on seed surfaces for long periods of time. DISEASE SYMPTOMS Leaves, particularly young leaves, of tomato plants infected by ToBRFV exhibit mild to severe mosaic symptoms with dark green bulges, narrowness, and deformation. The peduncles and calyces often become necrotic and fail to produce fruit. Yellow blotches, brown or black spots, and rugose wrinkles appear on tomato fruits. In pepper plants, ToBRFV infection results in puckering and yellow mottling on leaves with stunted growth of young seedlings and small yellow to brown rugose dots and necrotic blotches on fruits.
Collapse
Affiliation(s)
- Shaokang Zhang
- London Research and Development CentreAgriculture and Agri‐Food CanadaLondonOntarioCanada
- Department of BiologyThe University of Western OntarioLondonOntarioCanada
| | - Jonathan S. Griffiths
- London Research and Development CentreAgriculture and Agri‐Food CanadaVinelandOntarioCanada
| | - Geneviève Marchand
- Harrow Research and Development CentreAgriculture and Agri‐Food CanadaHarrowOntarioCanada
| | - Mark A. Bernards
- Department of BiologyThe University of Western OntarioLondonOntarioCanada
| | - Aiming Wang
- London Research and Development CentreAgriculture and Agri‐Food CanadaLondonOntarioCanada
- Department of BiologyThe University of Western OntarioLondonOntarioCanada
| |
Collapse
|
19
|
Isolation and molecular characterization of a tomato brown rugose fruit virus mutant breaking the tobamovirus resistance found in wild Solanum species. Arch Virol 2022; 167:1559-1563. [PMID: 35507202 PMCID: PMC9160144 DOI: 10.1007/s00705-022-05438-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 03/04/2022] [Indexed: 11/02/2022]
Abstract
A new tobamovirus named tomato brown rugose fruit virus (ToBRFV) overcomes the effect of the Tm-1, Tm-2, and Tm-22 resistance genes introgressed from wild Solanum species into cultivated tomato (Solanum lycopersicum). Here, we report the isolation and molecular characterization of a spontaneous mutant of ToBRFV that breaks resistance in an unknown genetic background, demonstrated recently in Solanum habrochaites and Solanum peruvianum. The wild isolate ToBRFV-Tom2-Jo and the mutant ToBRFV-Tom2M-Jo were fully sequenced and compared to each other and to other ToBRFV sequences available in the NCBI GenBank database. Sequence analysis revealed five nucleotide substitutions in the ToBRFV-Tom2M-Jo genome compared to ToBRFV-Tom2-Jo. Two substitutions were located in the movement protein (MP) gene and resulted in amino acid changes in the 30-kDa MP (Phe22 → Asn and Tyr82 → Lys). These substitutions were not present in any of the previously described ToBRFV isolates. No amino acid changes were found in the 126-kDa and 183-kDa replicase proteins or the 17.5-kDa coat protein. Our data strongly suggest that breaking the newly discovered resistance in wild tomatoes is associated with one or two mutations on the MP gene of ToBRFV.
Collapse
|