1
|
Han L, Li Y, Yuan Z, Wang J, Tian B, Fang A, Yang Y, Bi C, Yu Y. RNA interference-mediated targeting of monooxygenase SsMNO1 for controlling Sclerotinia stem rot caused by Sclerotinia sclerotiorum. PEST MANAGEMENT SCIENCE 2025; 81:1457-1468. [PMID: 39555684 DOI: 10.1002/ps.8546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/26/2024] [Accepted: 11/06/2024] [Indexed: 11/19/2024]
Abstract
BACKGROUND Sclerotinia sclerotiorum is a devastating fungal pathogen that poses a threat to a variety of economically important crops. Owing to the lack of highly resistant cultivars and the prolonged survival of sclerotia, effective control of Sclerotinia diseases remains challenging. RNA interference (RNAi) agents targeting essential active transcripts of genes associated with the development and virulence of pathogens are a valuable and promising disease control method. RESULTS Our finding suggested that a flavin adenine dinucleotide (FAD)-dependent monooxygenase gene SsMNO1 plays pivotal roles in the hyphal growth, sclerotial development, and virulence of S. sclerotiorum, rendering it a potential target for RNAi-mediated management of S. sclerotiorum. The external application of double-stranded RNA (dsRNA) targeting SsMNO1 inhibited sclerotial development in artificial media and plant tissues. Furthermore, dsRNA significantly reduced the hyphal virulence of S. sclerotiorum in host plants by interfering with SsMNO1 expression. The inhibitory activity persisted for over 1 week on the surface of Brassica napus. Artificial small interfering RNA (siRNA) targeting SsMNO1 also exhibited inhibitory effects. Transgenic Arabidopsis thaliana plants expressing SsMNO1 hairpin RNAi constructs showed increased resistance to S. sclerotiorum infection. Notably, the total RNA extracts from SsMNO1-RNAi plants also reduced the hyphal virulence in Brassica napus. CONCLUSIONS Therefore, RNAi agents targeting SsMNO1 have dual effects on sclerotial development and hyphal virulence, rendering it an ideal target for controlling diseases caused by S. sclerotiorum. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lili Han
- College of Plant Protection, Southwest University, Chongqing City, China
| | - Yali Li
- College of Plant Protection, Southwest University, Chongqing City, China
| | - Zihong Yuan
- College of Plant Protection, Southwest University, Chongqing City, China
| | - Jing Wang
- College of Plant Protection, Southwest University, Chongqing City, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Southwest University, Chongqing City, China
| | - Binnian Tian
- College of Plant Protection, Southwest University, Chongqing City, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Southwest University, Chongqing City, China
| | - Anfei Fang
- College of Plant Protection, Southwest University, Chongqing City, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Southwest University, Chongqing City, China
| | - Yuheng Yang
- College of Plant Protection, Southwest University, Chongqing City, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Southwest University, Chongqing City, China
| | - Chaowei Bi
- College of Plant Protection, Southwest University, Chongqing City, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Southwest University, Chongqing City, China
| | - Yang Yu
- College of Plant Protection, Southwest University, Chongqing City, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Southwest University, Chongqing City, China
| |
Collapse
|
2
|
Zhang H, Sun B, Latif MZ, Liu Y, Lv L, Wu T, Li Y, Yin Z, Lu C, Zhao H, Kong L, Ding X. Control of H 2S synthesis by the monomer-oligomer transition of OsCBSX3 for modulating rice growth-immunity balance. MOLECULAR PLANT 2025; 18:350-365. [PMID: 39815620 DOI: 10.1016/j.molp.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/27/2024] [Accepted: 01/10/2025] [Indexed: 01/18/2025]
Abstract
Hydrogen sulfide (H2S) is recognized as an important gaseous signaling molecule, similar to nitric oxide and carbon monoxide. However, less is known about the biosynthetic mechanism of H2S in plants and its role in plant-pathogen interactions. Here, we show that H2S induces the bursts of reactive oxygen species and upregulates the expression of defense-related genes in rice. However, excessive H2S concentrations inhibit rice growth. We found that the cystathionine β-synthase OsCBSX3 regulates rice growth and resistance to bacteria pathogens, Xanthomonas oryzae pv. oryzicola (Xoc) and X. oryzae pv. oryzae (Xoo), by modulating H2S biosynthesis. OsCBSX3 exists in both oligomeric and monomeric forms in rice. Compared with wild-type OsCBSX3, an oligomerization-disrupted mutant exhibits the reduced capacity for H2S synthesis, diminished resistance to X. oryzae, and inability to localize to the chloroplast. Upon pathogen infection, rice triggers PsbO-dependent oligomerization of OsCBSX3, leading to increased H2S production and enhanced defense responses. However, excessive concentrations of H2S reduce the oligomerized form of OsCBSX3, facilitating its dissociation from PsbO, an important subunit of photosystem II, and its binding to OsTrxZ, a member of the thioredoxin family. We further demonstrated that OsTrxZ can directly convert OsCBSX3 into monomers, thereby mitigating the excessive H2S synthesis and its negative effects on rice growth and development. Overexpression of PsbO enhances rice resistance to both Xoc and Xoo, whereas overexpression of OsTrxZ exerts the opposite effect. Taken together, these findings suggest that PsbO and OsTrxZ antagonistically modulate the interconversion between oligomeric and monomeric forms of OsCBSX3, thereby balancing rice resistance and developmental processes.
Collapse
Affiliation(s)
- Haimiao Zhang
- State Key Laboratory of Wheat Improvement, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Baolong Sun
- State Key Laboratory of Wheat Improvement, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Muhammad Zunair Latif
- State Key Laboratory of Wheat Improvement, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Yang Liu
- State Key Laboratory of Wheat Improvement, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Lei Lv
- State Key Laboratory of Wheat Improvement, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Tao Wu
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Yang Li
- State Key Laboratory of Wheat Improvement, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Ziyi Yin
- State Key Laboratory of Wheat Improvement, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Chongchong Lu
- State Key Laboratory of Wheat Improvement, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Haipeng Zhao
- State Key Laboratory of Wheat Improvement, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Lingguang Kong
- State Key Laboratory of Wheat Improvement, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Xinhua Ding
- State Key Laboratory of Wheat Improvement, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
3
|
Li X, Su G, Pan C, Zhan J, Wang A, Han Z, Xiao D, He L. TRX h2-PP2AC2 module serves as a convergence node for aluminum stress and leaf senescence signals, regulating cell death via ABA-mediated ROS pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2602-2622. [PMID: 39527458 DOI: 10.1111/tpj.17131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/13/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
ROS/redox signaling plays an important role in the regulation of signal transduction and acclimation pathways activated by multiple abiotic stresses and leaf senescence. However, the regulatory events that produce ROS under different stimuli are far from clear. Here, we report the elucidation of the molecular mechanism of an h type thioredoxin, AhTRX h2, positively regulates Al sensitivity and leaf senescence by promoting ROS. AhTRX h2 transcript levels increased greatly during both natural senescence and Al stress condition in peanut. Ectopic expression of AhTRX h2 in Arabidopsis conferred Al sensitivity as well as premature leaf senescence, manifested by multiple indices, including inhibiting root elongation, severe cell death, and accelerated expression of MC1 and CEX17. AhTRX h2 exhibited similar functions to AtTRX h2, as AhTRX h2 was able to restore the phenotypes of the AtTRX h2 defective mutant (trxh2-4) which showed Al tolerant and late senescence phenotypes. The knock down of AhTRX h2 markedly suppressed Al- and senescence-induced cell death in peanut. AhTRX h2 could recruit catalytic subunit of protein phosphatase 2A (PP2AC2) to form a stable complex. The interaction between AhTRX h2 and AtPP2AC2, as well as AhPP2AC2 and AtTRX h2 was also proved. Overexpression of AhPP2AC2 significantly enhanced Al sensitivity and leaf senescence in Arabidopsis. Protein stability assay revealed that AhTRX h2 was more stable during aging or aluminum stress. Moreover, PP2AC2 could greatly enhance the stability of AhTRX h2 in vivo. Consistent with these observations, overexpression of AhPP2AC2 effectively enhanced AhTRX h2-induced Al sensitivity and precocious leaf senescence. AhTRX h2 and AhPP2AC2 required ABA and ROS in response to cell death under Al stress and senescence, and it was evidence to suggest that ABA acted upstream of ROS in this process. Together, AhTRX h2 and AhPP2AC2 constitute a stable complex that promotes the accumulation of ABA and ROS, effectively regulate cell death. These findings suggest that TRX h2-PP2AC2-mediated pathway may be a widespread mechanism in regulating Al stress and leaf senescence.
Collapse
Affiliation(s)
- Xia Li
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, 530004, People's Republic of China
- College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China
| | - Guijun Su
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, 530004, People's Republic of China
- College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China
| | - Chunliu Pan
- College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China
| | - Jie Zhan
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, 530004, People's Republic of China
- College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, People's Republic of China
| | - Aiqin Wang
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, 530004, People's Republic of China
- College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, People's Republic of China
| | - Zhuqiang Han
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530004, China
| | - Dong Xiao
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, 530004, People's Republic of China
- College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, People's Republic of China
| | - Longfei He
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, 530004, People's Republic of China
- College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, People's Republic of China
- Agricultural and Animal Husbandry Industry Development Research Institute, Guangxi University, Nanning, 530004, China
| |
Collapse
|
4
|
Kumar R, Chanda B, Adkins S, Kousik CS. Comparative transcriptome analysis of resistant and susceptible watermelon genotypes reveals the role of RNAi, callose, proteinase, and cell wall in squash vein yellowing virus resistance. FRONTIERS IN PLANT SCIENCE 2024; 15:1426647. [PMID: 39157511 PMCID: PMC11327015 DOI: 10.3389/fpls.2024.1426647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/11/2024] [Indexed: 08/20/2024]
Abstract
Watermelon (Citrullus lanatus) is the third largest fruit crop in the world in term of production. However, it is susceptible to several viruses. Watermelon vine decline (WVD), caused by whitefly-transmitted squash vein yellowing virus (SqVYV), is a disease that has caused over $60 million in losses in the US and continues to occur regularly in southeastern states. Understanding the molecular mechanisms underlying resistance to SqVYV is important for effective disease management. A time-course transcriptomic analysis was conducted on resistant (392291-VDR) and susceptible (Crimson Sweet) watermelon genotypes inoculated with SqVYV. Significantly higher levels of SqVYV were observed over time in the susceptible compared to the resistant genotype. The plasmodesmata callose binding protein (PDCB) gene, which is responsible for increased callose deposition in the plasmodesmata, was more highly expressed in the resistant genotype than in the susceptible genotype before and after inoculation, suggesting the inhibition of cell-to-cell movement of SqVYV. The potential role of the RNA interference (RNAi) pathway was observed in the resistant genotype based on differential expression of eukaryotic initiation factor (eIF), translin, DICER, ribosome inactivating proteins, RNA-dependent RNA polymerase (RDR), and Argonaute (AGO) genes after inoculation. The significant differential expression of hormone-related genes, including those involved in the ethylene, jasmonic acid, auxin, cytokinin, gibberellin, and salicylic acid signaling pathways, was observed, emphasizing their regulatory roles in the defense response. Genes regulating pectin metabolism, cellulose synthesis, cell growth and development, xenobiotic metabolism, and lignin biosynthesis were overexpressed in the susceptible genotype, suggesting that alterations in cell wall integrity and growth processes result in disease symptom development. These findings will be helpful for further functional studies and the development of SqVYV-resistant watermelon cultivars.
Collapse
Affiliation(s)
- Rahul Kumar
- Agricultural Research Service (USDA-ARS), U.S. Vegetable Laboratory (USVL), United States Department of Agriculture, Charleston, SC, United States
- ORISE participant, USVL, USDA-ARS, Charleston, SC, United States
| | - Bidisha Chanda
- Agricultural Research Service (USDA-ARS), U.S. Vegetable Laboratory (USVL), United States Department of Agriculture, Charleston, SC, United States
| | - Scott Adkins
- U.S. Horticultural Research Laboratory, USDA-ARS, Fort Pierce, FL, United States
| | - Chandrasekar S. Kousik
- Agricultural Research Service (USDA-ARS), U.S. Vegetable Laboratory (USVL), United States Department of Agriculture, Charleston, SC, United States
| |
Collapse
|
5
|
Chen S, Yang H, Chen M, Liu W, Tian S, Mu R, Jia F, Liu C, Ma G, Sun X, Chen G. Inhibition of Monilinia fructicola sporulation and pathogenicity through eucalyptol-mediated targeting of MfCat2 by Streptomyces lincolnensis strain JCP1-7. MOLECULAR PLANT PATHOLOGY 2024; 25:e13484. [PMID: 38973095 PMCID: PMC11227988 DOI: 10.1111/mpp.13484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/05/2024] [Accepted: 05/17/2024] [Indexed: 07/09/2024]
Abstract
Peach brown rot, attributed to Monilinia fructicola, presents a significant threat to postharvest peach cultivation, causing losses of up to 80%. With an increasing number of countries, spearheaded by the European Union, imposing bans on chemical agents in fruit production, there is a growing interest in mining highly active antibacterial compounds from biological control strains for postharvest disease management. In this study, we highlight the unique ability of Streptomyces lincolnensis strain JCP1-7 to inhibit M. fructicola sporulation, despite its limited antimicrobial efficacy. Through GC-MS analysis, eucalyptol was identified as the key compound. Fumigation of diseased fruits with eucalyptol at a concentration of 0.0335 μg cm-3 demonstrated an in vivo inhibition rate against M. fructicola of 93.13%, completely suppressing spore formation. Transcriptome analysis revealed the impact of eucalyptol on multiple pathogenesis-related pathways, particularly through the inhibition of catalase 2 (Cat2) expression. Experiments with a MfCat2 knockout strain (ΔMfCat2) showed reduced pathogenicity and sensitivity to JCP1-7 and eucalyptol, suggesting MfCat2 as a potential target of JCP1-7 and eucalyptol against M. fructicola. Our findings elucidate that eucalyptol produced by S. lincolnensis JCP1-7 inhibits M. fructicola sporulation by regulating MfCat2, thereby effectively reducing postharvest peach brown rot occurrence. The use of fumigation of eucalyptol offers insights into peach brown rot management on a large scale, thus making a significant contribution to agricultural research.
Collapse
Affiliation(s)
- Shan Chen
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant ProtectionSouthwest UniversityChongqingChina
| | - Haorong Yang
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant ProtectionSouthwest UniversityChongqingChina
| | - Meijun Chen
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant ProtectionSouthwest UniversityChongqingChina
- Key Scientific Research Base of Pest and Mold Control of Heritage CollectionChongqing China Three Gorges Museum, State Administration of Cultural HeritageChongqingChina
| | - Weina Liu
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant ProtectionSouthwest UniversityChongqingChina
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze RiverMinistry of EducationChongqingChina
| | - Shaorui Tian
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant ProtectionSouthwest UniversityChongqingChina
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze RiverMinistry of EducationChongqingChina
| | - Rong Mu
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant ProtectionSouthwest UniversityChongqingChina
| | - Fan Jia
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant ProtectionSouthwest UniversityChongqingChina
| | - Changyun Liu
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant ProtectionSouthwest UniversityChongqingChina
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze RiverMinistry of EducationChongqingChina
| | - Guanhua Ma
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant ProtectionSouthwest UniversityChongqingChina
| | - Xianchao Sun
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant ProtectionSouthwest UniversityChongqingChina
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze RiverMinistry of EducationChongqingChina
| | - Guokang Chen
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant ProtectionSouthwest UniversityChongqingChina
| |
Collapse
|
6
|
Zhu Y, Wu C, Deng Y, Yuan W, Zhang T, Lu J. Recent advances in virulence of a broad host range plant pathogen Sclerotinia sclerotiorum: a mini-review. Front Microbiol 2024; 15:1424130. [PMID: 38962122 PMCID: PMC11220166 DOI: 10.3389/fmicb.2024.1424130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/10/2024] [Indexed: 07/05/2024] Open
Abstract
Sclerotinia sclerotiorum is a typical necrotrophic plant pathogenic fungus, which has a wide host range and can cause a variety of diseases, leading to serious loss of agricultural production around the world. It is difficult to control and completely eliminate the characteristics, chemical control methods is not ideal. Therefore, it is very important to know the pathogenic mechanism of S. sclerotiorum for improving host living environment, relieving agricultural pressure and promoting economic development. In this paper, the life cycle of S. sclerotiorum is introduced to understand the whole process of S. sclerotiorum infection. Through the analysis of the pathogenic mechanism, this paper summarized the reported content, mainly focused on the oxalic acid, cell wall degrading enzyme and effector protein in the process of infection and its mechanism. Besides, recent studies reported virulence-related genes in S. sclerotiorum have been summarized in the paper. According to analysis, those genes were related to the growth and development of the hypha and appressorium, the signaling and regulatory factors of S. sclerotiorum and so on, to further influence the ability to infect the host critically. The application of host-induced gene silencing (HIGS)is considered as a potential effective tool to control various fungi in crops, which provides an important reference for the study of pathogenesis and green control of S. sclerotiorum.
Collapse
Affiliation(s)
| | | | | | | | | | - Junxing Lu
- Chongqing Key Laboratory of Plant Environmental Adaptations, College of Life Science, Chongqing Normal University, Chongqing, China
| |
Collapse
|
7
|
Pant P, Kaur J. Control of Sclerotinia sclerotiorum via an RNA interference (RNAi)-mediated targeting of SsPac1 and SsSmk1. PLANTA 2024; 259:153. [PMID: 38744752 DOI: 10.1007/s00425-024-04430-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024]
Abstract
MAIN CONCLUSION The study evaluates the potential of Spray-Induced Gene Silencing and Host-Induced Gene Silencing for sustainable crop protection against the broad-spectrum necrotrophic fungus Sclerotinia sclerotiorum. Sclerotinia sclerotiorum (Lib.) de Bary, an aggressive ascomycete fungus causes white rot or cottony rot on a broad range of crops including Brassica juncea. The lack of sustainable control measures has necessitated biotechnological interventions such as RNA interference (RNAi) for effective pathogen control. Here we adopted two RNAi-based strategies-Spray-Induced Gene Silencing (SIGS) and Host-Induced Gene Silencing (HIGS) to control S. sclerotiorum. SIGS was successful in controlling white rot on Nicotiana benthamiana and B. juncea by targeting SsPac1, a pH-responsive transcription factor and SsSmk1, a MAP kinase involved in fungal development and pathogenesis. Topical application of dsRNA targeting SsPac1 and SsSmk1 delayed infection initiation and progression on B. juncea. Further, altered hyphal morphology and reduced radial growth were also observed following dsRNA application. We also explored the impact of stable dsRNA expression in A. thaliana against S. sclerotiorum. In this report, we highlight the utility of RNAi as a biofungicide and a tool for preliminary functional genomics.
Collapse
Affiliation(s)
- Pratibha Pant
- Department of Genetics, University of Delhi, South Campus, Benito Juarez Marg, New Delhi, 110021, India
| | - Jagreet Kaur
- Department of Genetics, University of Delhi, South Campus, Benito Juarez Marg, New Delhi, 110021, India.
| |
Collapse
|
8
|
Cao Y, Zhang X, Song X, Li W, Ren Z, Feng J, Ma Z, Liu X, Wang Y. Efficacy and toxic action of the natural product natamycin against Sclerotinia sclerotiorum. PEST MANAGEMENT SCIENCE 2024; 80:1981-1990. [PMID: 38087429 DOI: 10.1002/ps.7930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/16/2023] [Accepted: 12/10/2023] [Indexed: 12/31/2023]
Abstract
BACKGROUND Sclerotinia stem rot caused by Sclerotinia sclerotiorum seriously endangers oilseed rape production worldwide, and the occurrence of fungicide-resistant mutants of S. sclerotiorum leads to control decline. Thus, it is critical to explore new green substitutes with different action mechanisms and high antifungal activity. Herein, the activity and the action mechanism of natamycin against S. sclerotiorum were evaluated. RESULTS Natamycin showed potent inhibition on the mycelial growth of S. sclerotiorum, and half-maximal effective concentration (EC50 ) values against 103 S. sclerotiorum strains ranged from 0.53 to 4.04 μg/mL (mean 1.44 μg/mL). Natamycin also exhibited high efficacy against both carbendazim- and dimethachlone-resistant strains of S. sclerotiorum on detached oilseed rape leaves. No cross-resistance was detected between natamycin and carbendazim. Natamycin markedly disrupted hyphal form, sclerotia formation, integrity of the cell membrane, and reduced the content of oxalic acid and ergosterol, whereas it increased the reactive oxygen species (ROS) and malondialdehyde content. Interestingly, exogenous addition of ergosterol could reduce the inhibition of natamycin against S. sclerotiorum. Importantly, natamycin significantly inhibited expression of the Cyp51 gene, which is contrary to results for the triazole fungicide flusilazole, indicating a different action mechanism from triazole fungicides. CONCLUSION Natamycin is a promising effective candidate for the resistance management of S. sclerotiorum. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuxuan Cao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Xianyang, China
| | - Xu Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Xianyang, China
| | - Xiaoning Song
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Xianyang, China
| | - Wenkui Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Xianyang, China
- Provincial Center for Bio-Pesticide Engineering, Xianyang, China
| | - Zheng Ren
- College of Language and Culture, Northwest A&F University, Xianyang, China
| | - Juntao Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Xianyang, China
- Provincial Center for Bio-Pesticide Engineering, Xianyang, China
| | - Zhiqing Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Xianyang, China
- Provincial Center for Bio-Pesticide Engineering, Xianyang, China
| | - Xili Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Xianyang, China
| | - Yong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Xianyang, China
- Provincial Center for Bio-Pesticide Engineering, Xianyang, China
| |
Collapse
|
9
|
Tian L, Li J, Xu Y, Qiu Y, Zhang Y, Li X. A MAP kinase cascade broadly regulates the lifestyle of Sclerotinia sclerotiorum and can be targeted by HIGS for disease control. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:324-344. [PMID: 38149487 DOI: 10.1111/tpj.16606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/15/2023] [Accepted: 12/06/2023] [Indexed: 12/28/2023]
Abstract
Sclerotinia sclerotiorum causes white mold or stem rot in a wide range of economically important plants, bringing significant yield losses worldwide. Control of this pathogen is difficult as its resting structure sclerotia can survive in soil for years, and no Resistance genes have been identified in S. sclerotiorum hosts. Host-induced gene silencing (HIGS) has shown promising effects in controlling many fungal pathogens, including S. sclerotiorum. However, better molecular genetic understanding of signaling pathways involved in its development and pathogenicity is needed to provide effective HIGS gene targets. Here, by employing a forward genetic screen, we characterized an evolutionarily conserved mitogen-activated protein kinase (MAPK) cascade in S. sclerotiorum, consisting of SsSte50-SsSte11-SsSte7-Smk1, which controls mycelial growth, sclerotia development, compound appressoria formation, virulence, and hyphal fusion. Moreover, disruption of the putative downstream transcription factor SsSte12 led to normal sclerotia but deformed appressoria and attenuated host penetration, as well as impaired apothecia formation, suggestive of diverged regulation downstream of the MAPK cascade. Most importantly, targeting SsSte50 using host-expressed double-stranded RNA resulted in largely reduced virulence of S. sclerotiorum on both Nicotiana benthamiana leaves and transgenic Arabidopsis thaliana plants. Therefore, this MAPK signaling cascade is generally needed for its growth, development, and pathogenesis and can serve as ideal HIGS targets for mitigating economic damages caused by S. sclerotiorum infection.
Collapse
Affiliation(s)
- Lei Tian
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Josh Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Yan Xu
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Yilan Qiu
- Department of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yuelin Zhang
- College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| |
Collapse
|
10
|
Jiao W, Li M, Lei T, Liu X, Zhang J, Hu J, Zhang X, Liu J, Shi S, Pan H, Zhang Y. The APSES Transcription Factor SsStuA Regulating Cell Wall Integrity Is Essential for Sclerotia Formation and Pathogenicity in Sclerotinia sclerotiorum. J Fungi (Basel) 2024; 10:238. [PMID: 38667909 PMCID: PMC11051248 DOI: 10.3390/jof10040238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
APSES (Asm1p, Phd1p, Sok2p, Efg1p, and StuAp) family transcription factors play crucial roles in various biological processes of fungi, however, their functional characterization in phytopathogenic fungi is limited. In this study, we explored the role of SsStuA, a typical APSES transcription factor, in the regulation of cell wall integrity (CWI), sclerotia formation and pathogenicity of Sclerotinia sclerotiorum, which is a globally important plant pathogenic fungus. A deficiency of SsStuA led to abnormal phosphorylation level of SsSmk3, the key gene SsAGM1 for UDP-GlcNAc synthesis was unable to respond to cell wall stress, and decreased tolerance to tebuconazole. In addition, ΔSsStuA was unable to form sclerotia but produced more compound appressoria. Nevertheless, the virulence of ΔSsStuA was significantly reduced due to the deficiency of the invasive hyphal growth and increased susceptibility to hydrogen peroxide. We also revealed that SsStuA could bind to the promoter of catalase family genes which regulate the expression of catalase genes. Furthermore, the level of reactive oxygen species (ROS) accumulation was found to be increased in ΔSsStuA. In summary, SsStuA, as a core transcription factor involved in the CWI pathway and ROS response, is required for vegetative growth, sclerotia formation, fungicide tolerance and the full virulence of S. sclerotiorum.
Collapse
Affiliation(s)
- Wenli Jiao
- College of Plant Sciences, Jilin University, Changchun 130062, China
| | - Maoxiang Li
- College of Plant Sciences, Jilin University, Changchun 130062, China
| | - Tianyi Lei
- College of Plant Sciences, Jilin University, Changchun 130062, China
| | - Xiaoli Liu
- Shandong Yellow River Delta National Nature Reserve Management Committee, Scientific Research Center, Dongying 257091, China
| | - Junting Zhang
- College of Plant Sciences, Jilin University, Changchun 130062, China
| | - Jun Hu
- College of Plant Sciences, Jilin University, Changchun 130062, China
| | - Xianghui Zhang
- College of Plant Sciences, Jilin University, Changchun 130062, China
| | - Jinliang Liu
- College of Plant Sciences, Jilin University, Changchun 130062, China
| | - Shusen Shi
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Hongyu Pan
- College of Plant Sciences, Jilin University, Changchun 130062, China
| | - Yanhua Zhang
- College of Plant Sciences, Jilin University, Changchun 130062, China
| |
Collapse
|
11
|
Xiao K, Liu L, He R, Rollins JA, Li A, Zhang G, He X, Wang R, Liu J, Zhang X, Zhang Y, Pan H. The Snf5-Hsf1 transcription module synergistically regulates stress responses and pathogenicity by maintaining ROS homeostasis in Sclerotinia sclerotiorum. THE NEW PHYTOLOGIST 2024; 241:1794-1812. [PMID: 38135652 DOI: 10.1111/nph.19484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/12/2023] [Indexed: 12/24/2023]
Abstract
The SWI/SNF complex is guided to the promoters of designated genes by its co-operator to activate transcription in a timely and appropriate manner to govern development, pathogenesis, and stress responses in fungi. Nevertheless, knowledge of the complexes and their co-operator in phytopathogenic fungi is still fragmented. We demonstrate that the heat shock transcription factor SsHsf1 guides the SWI/SNF complex to promoters of heat shock protein (hsp) genes and antioxidant enzyme genes using biochemistry and pharmacology. This is accomplished through direct interaction with the complex subunit SsSnf5 under heat shock and oxidative stress. This results in the activation of their transcription and mediates histone displacement to maintain reactive oxygen species (ROS) homeostasis. Genetic results demonstrate that the transcription module formed by SsSnf5 and SsHsf1 is responsible for regulating morphogenesis, stress tolerance, and pathogenicity in Sclerotinia sclerotiorum, especially by directly activating the transcription of hsp genes and antioxidant enzyme genes counteracting plant-derived ROS. Furthermore, we show that stress-induced phosphorylation of SsSnf5 is necessary for the formation of the transcription module. This study establishes that the SWI/SNF complex and its co-operator cooperatively regulate the transcription of hsp genes and antioxidant enzyme genes to respond to host and environmental stress in the devastating phytopathogenic fungi.
Collapse
Affiliation(s)
- Kunqin Xiao
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| | - Ling Liu
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| | - Ruonan He
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| | - Jeffrey A Rollins
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, USA
| | - Anmo Li
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| | - Guiping Zhang
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| | - Xiaoyue He
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| | - Rui Wang
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| | - Jinliang Liu
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| | - Xianghui Zhang
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| | - Yanhua Zhang
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| | - Hongyu Pan
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| |
Collapse
|
12
|
Xu Y, Tan J, Lu J, Zhang Y, Li X. RAS signalling genes can be used as host-induced gene silencing targets to control fungal diseases caused by Sclerotinia sclerotiorum and Botrytis cinerea. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:262-277. [PMID: 37845842 PMCID: PMC10754012 DOI: 10.1111/pbi.14184] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 08/27/2023] [Accepted: 09/02/2023] [Indexed: 10/18/2023]
Abstract
Sclerotinia sclerotiorum causes white mold (also called stem rot, Sclerotinia blight, etc.) in many economically important plants. It is a notorious soilborne fungal pathogen due to its wide host range and ability to survive in soil for long periods of time as sclerotia. Although host-induced gene silencing (HIGS) was recently demonstrated to be an effective method for controlling white mold, limited gene targets are available. Here, using a forward genetics approach, we identified a RAS-GTPase activating protein, SsGAP1, which plays essential roles in sclerotia formation, compound appressoria production and virulence. In parallel, as revealed by our knockout analysis, the SsGAP1 ortholog in Botrytis cinerea, BcGAP1, plays similar roles in fungal development and virulence. By knocking down SsRAS1 and SsRAS2, we also revealed that both SsRAS1 and SsRAS2 are required for vegetative growth, sclerotia development, compound appressoria production and virulence in S. sclerotiorum. Due to the major roles these RAS signalling components play in Sclerotiniaceae biology, they can be used as HIGS targets to control diseases caused by both S. sclerotiorum and B. cinerea. Indeed, when we introduced HIGS constructs targeting SsGAP1, SsRAS1 and SsRAS2 in Nicotiana benthamiana and Arabidopsis thaliana, we observed reduced virulence. Taken together, our forward genetics gene discovery pipeline in S. sclerotiorum is highly effective in identifying novel HIGS targets to control S. sclerotiorum and B. cinerea.
Collapse
Affiliation(s)
- Yan Xu
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of BotanyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Jinyi Tan
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of BotanyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Junxing Lu
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- College of Life ScienceChongqing Normal UniversityChongqingChina
| | - Yuelin Zhang
- Department of BotanyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Xin Li
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of BotanyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
13
|
McLaughlin MS, Roy M, Abbasi PA, Carisse O, Yurgel SN, Ali S. Why Do We Need Alternative Methods for Fungal Disease Management in Plants? PLANTS (BASEL, SWITZERLAND) 2023; 12:3822. [PMID: 38005718 PMCID: PMC10675458 DOI: 10.3390/plants12223822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023]
Abstract
Fungal pathogens pose a major threat to food production worldwide. Traditionally, chemical fungicides have been the primary means of controlling these pathogens, but many of these fungicides have recently come under increased scrutiny due to their negative effects on the health of humans, animals, and the environment. Furthermore, the use of chemical fungicides can result in the development of resistance in populations of phytopathogenic fungi. Therefore, new environmentally friendly alternatives that provide adequate levels of disease control are needed to replace chemical fungicides-if not completely, then at least partially. A number of alternatives to conventional chemical fungicides have been developed, including plant defence elicitors (PDEs); biological control agents (fungi, bacteria, and mycoviruses), either alone or as consortia; biochemical fungicides; natural products; RNA interference (RNAi) methods; and resistance breeding. This article reviews the conventional and alternative methods available to manage fungal pathogens, discusses their strengths and weaknesses, and identifies potential areas for future research.
Collapse
Affiliation(s)
- Michael S. McLaughlin
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, Kentville, NS B4N 1J5, Canada; (M.S.M.); (M.R.); (P.A.A.)
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 4H5, Canada
| | - Maria Roy
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, Kentville, NS B4N 1J5, Canada; (M.S.M.); (M.R.); (P.A.A.)
- Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada
| | - Pervaiz A. Abbasi
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, Kentville, NS B4N 1J5, Canada; (M.S.M.); (M.R.); (P.A.A.)
| | - Odile Carisse
- Saint-Jean-sur-Richelieu Research Development Centre, Science and Technology Branch, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC J3B 7B5, Canada;
| | - Svetlana N. Yurgel
- United States Department of Agriculture (USDA), Agricultural Research Service, Grain Legume Genetics and Physiology Research Unit, Prosser, WA 99350, USA;
| | - Shawkat Ali
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, Kentville, NS B4N 1J5, Canada; (M.S.M.); (M.R.); (P.A.A.)
| |
Collapse
|
14
|
Qin L, Nong J, Cui K, Tang X, Gong X, Xia Y, Xu Y, Qiu Y, Li X, Xia S. SsCak1 Regulates Growth and Pathogenicity in Sclerotinia sclerotiorum. Int J Mol Sci 2023; 24:12610. [PMID: 37628791 PMCID: PMC10454577 DOI: 10.3390/ijms241612610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/07/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Sclerotinia sclerotiorum is a devastating fungal pathogen that causes severe crop losses worldwide. It is of vital importance to understand its pathogenic mechanism for disease control. Through a forward genetic screen combined with next-generation sequencing, a putative protein kinase, SsCak1, was found to be involved in the growth and pathogenicity of S. sclerotiorum. Knockout and complementation experiments confirmed that deletions in SsCak1 caused defects in mycelium and sclerotia development, as well as appressoria formation and host penetration, leading to complete loss of virulence. These findings suggest that SsCak1 is essential for the growth, development, and pathogenicity of S. sclerotiorum. Therefore, SsCak1 could serve as a potential target for the control of S. sclerotiorum infection through host-induced gene silencing (HIGS), which could increase crop resistance to the pathogen.
Collapse
Affiliation(s)
- Lei Qin
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (L.Q.); (J.N.); (X.T.); (X.G.); (Y.X.)
| | - Jieying Nong
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (L.Q.); (J.N.); (X.T.); (X.G.); (Y.X.)
| | - Kan Cui
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China;
| | - Xianyu Tang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (L.Q.); (J.N.); (X.T.); (X.G.); (Y.X.)
| | - Xin Gong
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (L.Q.); (J.N.); (X.T.); (X.G.); (Y.X.)
| | - Yunong Xia
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (L.Q.); (J.N.); (X.T.); (X.G.); (Y.X.)
| | - Yan Xu
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Yilan Qiu
- Department of Life Science, Hunan Normal University, Changsha 410081, China;
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Shitou Xia
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (L.Q.); (J.N.); (X.T.); (X.G.); (Y.X.)
| |
Collapse
|
15
|
Wei J, Yao C, Zhu Z, Gao Z, Yang G, Pan Y. Nitrate reductase is required for sclerotial development and virulence of Sclerotinia sclerotiorum. FRONTIERS IN PLANT SCIENCE 2023; 14:1096831. [PMID: 37342142 PMCID: PMC10277653 DOI: 10.3389/fpls.2023.1096831] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 05/02/2023] [Indexed: 06/22/2023]
Abstract
Sclerotinia sclerotiorum, the causal agent of Sclerotinia stem rot (SSR) on more than 450 plant species, is a notorious fungal pathogen. Nitrate reductase (NR) is required for nitrate assimilation that mediates the reduction of nitrate to nitrite and is the major enzymatic source for NO production in fungi. To explore the possible effects of nitrate reductase SsNR on the development, stress response, and virulence of S. sclerotiorum, RNA interference (RNAi) of SsNR was performed. The results showed that SsNR-silenced mutants showed abnormity in mycelia growth, sclerotia formation, infection cushion formation, reduced virulence on rapeseed and soybean with decreased oxalic acid production. Furthermore SsNR-silenced mutants are more sensitive to abiotic stresses such as Congo Red, SDS, H2O2, and NaCl. Importantly, the expression levels of pathogenicity-related genes SsGgt1, SsSac1, and SsSmk3 are down-regulated in SsNR-silenced mutants, while SsCyp is up-regulated. In summary, phenotypic changes in the gene silenced mutants indicate that SsNR plays important roles in the mycelia growth, sclerotia development, stress response and fungal virulence of S. sclerotiorum.
Collapse
Affiliation(s)
- Junjun Wei
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Chuanchun Yao
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Zonghe Zhu
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Zhimou Gao
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Guogen Yang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Yuemin Pan
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| |
Collapse
|
16
|
Ya Ma L, Lu Y, Cheng J, Wan Q, Ge J, Wang Y, Li Y, Feng F, Li M, Yu X. Functional characterization of rice (Oryza sativa) thioredoxins for detoxification and degradation of atrazine. Gene 2023:147540. [PMID: 37279861 DOI: 10.1016/j.gene.2023.147540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/22/2023] [Accepted: 06/02/2023] [Indexed: 06/08/2023]
Abstract
Thioredoxins (TRXs) are a group of antioxidant enzymes that play a critical role in plant growth and resistance to stress. However, the functional role and mechanism of rice TRXs in response to pesticides (e.g. atrazine, ATZ) stress remain largely unexplored. Here, 24 differentially expressed TRX genes (14 up and 10 down) of ATZ-exposed rice were identified through high-throughput RNA-sequencing analysis. Twenty-four TRX genes were unevenly mapped to 11 chromosomes and some of the genes were validated by quantitative RT-PCR. Bioinformatics analysis revealed that ATZ-responsive TRX genes contain multiple functional cis-elements and conserved domains. To demonstrate the functional role of the genes in ATZ degradation, one representative TRX gene LOC_Os07g08840 was transformed into yeast cells and observed significantly lower ATZ content compared to the control. Using LC-Q-TOF-MS/MS, five metabolites were characterized. One hydroxylation (HA) and two N-dealkylation products (DIA and DEA) were significantly increased in the medium with positive transformants. Our work indicated that TRX-coding genes here were responsible for ATZ degradation, suggesting that thioredoxins could be one of the vital strategies for pesticide degradation and detoxification in crops.
Collapse
Affiliation(s)
- Li Ya Ma
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Zhongling Street 50, 210014, Nanjing, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Zhongling Street 50, 210014, Nanjing, China
| | - Yingfei Lu
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Zhongling Street 50, 210014, Nanjing, China; College of Resources and Environment, Anhui Agricultural University, 230036, Hefei, China
| | - Jinjin Cheng
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Zhongling Street 50, 210014, Nanjing, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Zhongling Street 50, 210014, Nanjing, China
| | - Qun Wan
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Zhongling Street 50, 210014, Nanjing, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Zhongling Street 50, 210014, Nanjing, China
| | - Jing Ge
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Zhongling Street 50, 210014, Nanjing, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Zhongling Street 50, 210014, Nanjing, China
| | - Ya Wang
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Zhongling Street 50, 210014, Nanjing, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Zhongling Street 50, 210014, Nanjing, China
| | - Yong Li
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Zhongling Street 50, 210014, Nanjing, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Zhongling Street 50, 210014, Nanjing, China
| | - Fayun Feng
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Zhongling Street 50, 210014, Nanjing, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Zhongling Street 50, 210014, Nanjing, China
| | - Mei Li
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Zhongling Street 50, 210014, Nanjing, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Zhongling Street 50, 210014, Nanjing, China
| | - Xiangyang Yu
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Zhongling Street 50, 210014, Nanjing, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Zhongling Street 50, 210014, Nanjing, China.
| |
Collapse
|
17
|
Walker PL, Ziegler DJ, Giesbrecht S, McLoughlin A, Wan J, Khan D, Hoi V, Whyard S, Belmonte MF. Control of white mold (Sclerotinia sclerotiorum) through plant-mediated RNA interference. Sci Rep 2023; 13:6477. [PMID: 37081036 PMCID: PMC10119085 DOI: 10.1038/s41598-023-33335-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/11/2023] [Indexed: 04/22/2023] Open
Abstract
The causative agent of white mold, Sclerotinia sclerotiorum, is capable of infecting over 600 plant species and is responsible for significant crop losses across the globe. Control is currently dependent on broad-spectrum chemical agents that can negatively impact the agroecological environment, presenting a need to develop alternative control measures. In this study, we developed transgenic Arabidopsis thaliana (AT1703) expressing hairpin (hp)RNA to silence S. sclerotiorum ABHYDROLASE-3 and slow infection through host induced gene silencing (HIGS). Leaf infection assays show reduced S. sclerotiorum lesion size, fungal load, and ABHYDROLASE-3 transcript abundance in AT1703 compared to wild-type Col-0. To better understand how HIGS influences host-pathogen interactions, we performed global RNA sequencing on AT1703 and wild-type Col-0 directly at the site of S. sclerotiorum infection. RNA sequencing data reveals enrichment of the salicylic acid (SA)-mediated systemic acquired resistance (SAR) pathway, as well as transcription factors predicted to regulate plant immunity. Using RT-qPCR, we identified predicted interacting partners of ABHYDROLASE-3 in the polyamine synthesis pathway of S. sclerotiorum that demonstrate co-reduction with ABHYDROLASE-3 transcript levels during infection. Together, these results demonstrate the utility of HIGS technology in slowing S. sclerotiorum infection and provide insight into the role of ABHYDROLASE-3 in the A. thaliana-S. sclerotiorum pathosystem.
Collapse
Affiliation(s)
- Philip L Walker
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Dylan J Ziegler
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Shayna Giesbrecht
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Austein McLoughlin
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Joey Wan
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Deirdre Khan
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Vanessa Hoi
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Steve Whyard
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Mark F Belmonte
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
18
|
Tian L, Zhuang J, Li JJ, Zhu H, Klosterman SJ, Dai XF, Chen JY, Subbarao KV, Zhang DD. Thioredoxin VdTrx1, an unconventional secreted protein, is a virulence factor in Verticillium dahliae. Front Microbiol 2023; 14:1130468. [PMID: 37065139 PMCID: PMC10102666 DOI: 10.3389/fmicb.2023.1130468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/01/2023] [Indexed: 04/03/2023] Open
Abstract
Understanding how plant pathogenic fungi adapt to their hosts is of critical importance to securing optimal crop productivity. In response to pathogenic attack, plants produce reactive oxygen species (ROS) as part of a multipronged defense response. Pathogens, in turn, have evolved ROS scavenging mechanisms to undermine host defense. Thioredoxins (Trx) are highly conserved oxidoreductase enzymes with a dithiol-disulfide active site, and function as antioxidants to protect cells against free radicals, such as ROS. However, the roles of thioredoxins in Verticillium dahliae, an important vascular pathogen, are not clear. Through proteomics analyses, we identified a putative thioredoxin (VdTrx1) lacking a signal peptide. VdTrx1 was present in the exoproteome of V. dahliae cultured in the presence of host tissues, a finding that suggested that it plays a role in host-pathogen interactions. We constructed a VdTrx1 deletion mutant ΔVdTrx1 that exhibited significantly higher sensitivity to ROS stress, H2O2, and tert-butyl hydroperoxide (t-BOOH). In vivo assays by live-cell imaging and in vitro assays by western blotting revealed that while VdTrx1 lacking the signal peptide can be localized within V. dahliae cells, VdTrx1 can also be secreted unconventionally depending on VdVps36, a member of the ESCRT-II protein complex. The ΔVdTrx1 strain was unable to scavenge host-generated extracellular ROS fully during host invasion. Deletion of VdTrx1 resulted in higher intracellular ROS levels of V. dahliae mycelium, displayed impaired conidial production, and showed significantly reduced virulence on Gossypium hirsutum, and model plants, Arabidopsis thaliana and Nicotiana benthamiana. Thus, we conclude that VdTrx1 acts as a virulence factor in V. dahliae.
Collapse
Affiliation(s)
- Li Tian
- School of Life Science, Qufu Normal University, Qufu, China
| | - Jing Zhuang
- School of Life Science, Qufu Normal University, Qufu, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun-Jiao Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - He Zhu
- National Cotton Industry Technology System Liaohe Comprehensive Experimental Station, The Cotton Research Center of Liaoning Academy of Agricultural Sciences, Liaoning Provincial Institute of Economic Crops, Liaoyang, China
| | - Steven J. Klosterman
- United States Department of Agriculture, Agricultural Research Service, Salinas, CA, United States
| | - Xiao-Feng Dai
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Jie-Yin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Krishna V. Subbarao
- Department of Plant Pathology, University of California, Davis, c/o United States Agricultural Research Station, Salinas, CA, United States
- Krishna V. Subbarao,
| | - Dan-Dan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
- *Correspondence: Dan-Dan Zhang,
| |
Collapse
|
19
|
The SsAtg1 Activating Autophagy Is Required for Sclerotia Formation and Pathogenicity in Sclerotinia sclerotiorum. J Fungi (Basel) 2022; 8:jof8121314. [PMID: 36547647 PMCID: PMC9787769 DOI: 10.3390/jof8121314] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/24/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Sclerotinia sclerotiorum is a necrotrophic phytopathogenic fungus that produces sclerotia. Sclerotia are essential components of the survival and disease cycle of this devastating pathogen. In this study, we analyzed comparative transcriptomics of hyphae and sclerotia. A total of 1959 differentially expressed genes, 919 down-regulated and 1040 up-regulated, were identified. Transcriptomes data provide the possibility to precisely comprehend the sclerotia development. We further analyzed the differentially expressed genes (DEGs) in sclerotia to explore the molecular mechanism of sclerotia development, which include ribosome biogenesis and translation, melanin biosynthesis, autophagy and reactivate oxygen metabolism. Among these, the autophagy-related gene SsAtg1 was up-regulated in sclerotia. Atg1 homologs play critical roles in autophagy, a ubiquitous and evolutionarily highly conserved cellular mechanism for turnover of intracellular materials in eukaryotes. Therefore, we investigated the function of SsAtg1 to explore the function of the autophagy pathway in S. sclerotiorum. Deficiency of SsAtg1 inhibited autophagosome accumulation in the vacuoles of nitrogen-starved cells. Notably, ΔSsAtg1 was unable to form sclerotia and displayed defects in vegetative growth under conditions of nutrient restriction. Furthermore, the development and penetration of the compound appressoria in ΔSsAtg1 was abnormal. Pathogenicity analysis showed that SsAtg1 was required for full virulence of S. sclerotiorum. Taken together, these results indicate that SsAtg1 is a core autophagy-related gene that has vital functions in nutrient utilization, sclerotia development and pathogenicity in S. sclerotiorum.
Collapse
|
20
|
Jiang S, Zheng W, Li Z, Tan J, Wu M, Li X, Hong SB, Deng J, Zhu Z, Zang Y. Enhanced Resistance to Sclerotinia sclerotiorum in Brassica rapa by Activating Host Immunity through Exogenous Verticillium dahliae Aspf2-like Protein (VDAL) Treatment. Int J Mol Sci 2022; 23:13958. [PMID: 36430439 PMCID: PMC9694685 DOI: 10.3390/ijms232213958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Sclerotinia stem rot caused by Sclerotinia sclerotiorum is one of the most destructive diseases in Brassica rapa. Verticillium dahliae Aspf2-like protein (VDAL) is a secretory protein of V. dahliae which has been shown to enhance the resistance against fungal infections in several plants. Nonetheless, the molecular mechanisms of VDAL-primed disease resistance are still poorly understood. In this study, we performed physiological, biochemical, and transcriptomic analyses of Brassica rapa in order to understand how VDAL confers resistance to S. sclerotiorumn infections in plants. The results showed that foliar application of VDAL significantly reduced the plaque area on leaves inoculated with S. sclerotiorum. It also enhanced antioxidant capacity by increasing activities of superoxide dismutase (SOD), peroxidase (POD), peroxidase (APX), glutathione reductase (GR), protoporphyrinogen oxidase (PPO), and defense-related enzymes β-1,3-glucanase and chitinase during the infection periods. This occurred in parallel with significantly reduced relative conductivity at different periods and lower malondialdehyde (MDA) content as compared to sole S. sclerotiorum inoculation. Transcriptomic analysis showed a total of 146 (81 up-regulated and 65 down-regulated) differentially expressed genes (DEGs) in VDAL-treated leaves compared to the control. The most enriched three Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were the mitogen-activated protein kinase (MAPK) signaling pathway, plant hormone signal transduction, and plant-pathogen interaction, all of which were associated with plant immunity. DEGs associated with MAPK and hormone signal transduction pathways were ethylene response sensor ERS2, EIN3 (Ethylene Insensitive3)-binding F-box protein 2 (EBF2), ethylene-responsive transcription factor ERF94, MAPK 9 (MKK9), protein phosphatase 2C (PP2C37), auxin-responsive proteins (AUX/IAA1 and 19), serine/threonine-protein kinase CTR1, and abscisic acid receptors (PLY 4 and 5). Among the DEGs linked with the plant-pathogen interaction pathway were calmodulin-like proteins (CML5, 24, 27), PTI1-like tyrosine protein kinase 3 (Pti13) and transcription factor MYB30, all of which are known to play key roles in pathogen-associated molecular pattern (PAMP)-triggered immunity and effector-triggered immunity (ETI) for hypersensitive response (HR), cell wall reinforcement, and stomatal closure in plants. Overall, VDLA treatment triggered repression of the auxin and ABA signaling pathways and de-repression of the ethylene signaling pathways in young B. rapa seedlings to increase plant innate immunity. Our results showed that VDAL holds great potential to enhance fungal disease resistance in B. rapa crop.
Collapse
Affiliation(s)
- Shufang Jiang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Weiwei Zheng
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Zewei Li
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Jingru Tan
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Meifang Wu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Xinyuan Li
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Seung-Beom Hong
- Department of Biotechnology, University of Houston Clear Lake, Houston, TX 77058-1098, USA
| | - Jianyu Deng
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhujun Zhu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Yunxiang Zang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
21
|
Pedersen CJ, Marzano SYL. Characterization of Transcriptional Responses to Genomovirus Infection of the White Mold Fungus, Sclerotinia sclerotiorum. Viruses 2022; 14:v14091892. [PMID: 36146699 PMCID: PMC9506476 DOI: 10.3390/v14091892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/18/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Soybean leaf-associated gemygorvirus-1 (SlaGemV−1) is a CRESS-DNA virus classified in the family Genomoviridae, which causes hypovirulence and abolishes sclerotia formation in infected fungal pathogens under the family Sclerotiniaceae. To investigate the mechanisms involved in the induction of hypovirulence, RNA-Seq was compared between virus-free and SlaGemV−1-infected Sclerotinia sclerotiorum strain DK3. Overall, 4639 genes were differentially expressed, with 50.5% up regulated and 49.5% down regulated genes. GO enrichments suggest changes in integral membrane components and transmission electron microscopy images reveal virus-like particles localized near the inner cell membrane. Differential gene expression analysis focused on genes responsible for cell cycle and DNA replication and repair pathways, ubiquitin proteolysis, gene silencing, methylation, pathogenesis-related, sclerotial development, carbohydrate metabolism, and oxalic acid biosynthesis. Carbohydrate metabolism showed the most changes, with two glycoside hydrolase genes being the most down regulated by −2396.1- and −648.6-fold. Genes relating to pathogenesis showed consistent down regulation with the greatest being SsNep1, SsSSVP1, and Endo2 showing, −4555-, −14.7-, and −12.3-fold changes. The cell cycle and DNA replication/repair pathways were almost entirely up regulated including a putative cyclin and separase being up regulated 8.3- and 5.2-fold. The oxalate decarboxylase genes necessary for oxalic acid catabolism and oxalic acid precursor biosynthesis genes and its metabolism show down regulations of −17.2- and −12.1-fold changes. Sclerotial formation genes also appear differentially regulated including a melanin biosynthesis gene Pks1 and a sclerotia formation gene Sl2 with fold changes of 3.8 and −2.9.
Collapse
Affiliation(s)
- Connor J. Pedersen
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA
- United States Department of Agriculture/Agricultural Research Service, Toledo, OH 43606, USA
| | - Shin-Yi Lee Marzano
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA
- United States Department of Agriculture/Agricultural Research Service, Toledo, OH 43606, USA
- Department of Horticulture, and Plant Science, South Dakota State University, Brookings, SD 57007, USA
- Correspondence:
| |
Collapse
|
22
|
Superoxide Initiates the Hyphal Differentiation to Microsclerotia Formation of Macrophomina phaseolina. Microbiol Spectr 2022; 10:e0208421. [PMID: 35080446 PMCID: PMC8791194 DOI: 10.1128/spectrum.02084-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The infection of Macrophomina phaseolina often results in a grayish appearance with numerous survival structures, microsclerotia, on the plant surface. Past works have studied the development of fungal survival structures, sclerotia and microsclerotia, in the Leotiomycetes and Sordariomycetes. However, M. phaseolina belongs to the Dothideomycetes, and it remains unclear whether the mechanism of microsclerotia formation remains conserved among these phylogenetic clades. This study applied RNA-sequencing (RNA-Seq) to profile gene expressions at four stages of microsclerotia formation, and the results suggested that reactive oxygen species (ROS)-related functions were significantly different between the microsclerotia stages and the hyphal stage. Microsclerotia formation was reduced in the plates amended with antioxidants such as ascorbic acid, dithiothreitol (DTT), and glutathione. Surprisingly, DTT drastically scavenged H2O2, but the microsclerotia amount remained similar to the treatment of ascorbic acid and glutathione that both did not completely eliminate H2O2. This observation suggested the importance of O2− over H2O2 in initiating microsclerotia formation. To further validate this hypothesis, the superoxide dismutase 1 (SOD1) inhibitor diethyldithiocarbamate trihydrate (DETC) and H2O2 were tested. The addition of DETC resulted in the accumulation of endogenous O2− and more microsclerotia formation, but the treatment of H2O2 did not. The expression of SOD1 genes were also found to be upregulated in the hyphae to the microsclerotia stage, which suggested a higher endogenous O2− stress presented in these stages. In summary, this study not only showed that the ROS stimulation remained conserved for initiating microsclerotia formation of M. phaseolina but also highlighted the importance of O2− in initiating the hyphal differentiation to microsclerotia formation. IMPORTANCE Reactive oxygen species (ROS) have been proposed as the key stimulus for sclerotia development by studying fungal systems such as Sclerotinia sclerotiorum, and the theory has been adapted for microsclerotia development in Verticillium dahliae and Nomuraea rileyi. While many studies agreed on the association between (micro)sclerotia development and the ROS pathway, which ROS type, superoxide (O2−) or hydrogen peroxide (H2O2), plays a major role in initiating hyphal differentiation to the (micro)sclerotia formation remains controversial, and literature supporting either O2− or H2O2 can be found. This study confirmed the association between ROS and microsclerotia formation for the charcoal rot fungus Macrophomina phaseolina. Moreover, the accumulation of O2− but not H2O2 was found to induce higher density of microsclerotia. By integrating transcriptomic and phenotypic assays, this study presented the first conclusive case for M. phaseolina that O2− is the main ROS stimulus in determining the amount of microsclerotia formation.
Collapse
|