1
|
Jibrin MO, Sharma A, Mavian CN, Timilsina S, Kaur A, Iruegas-Bocardo F, Potnis N, Minsavage GV, Coutinho TA, Creswell TC, Egel DS, Francis DM, Kebede M, Miller SA, Montelongo MJ, Nikolaeva E, Pianzzola MJ, Pruvost O, Quezado-Duval AM, Ruhl GE, Shutt VM, Maynard E, Maeso DC, Siri MI, Trueman CL, Salemi M, Vallad GE, Roberts PD, Jones JB, Goss EM. Phylodynamic Insights into Global Emergence and Diversification of the Tomato Pathogen Xanthomonas hortorum pv. gardneri. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:712-720. [PMID: 38949619 DOI: 10.1094/mpmi-04-24-0035-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The emergence of plant pathogens is often associated with waves of unique evolutionary and epidemiological events. Xanthomonas hortorum pv. gardneri is one of the major pathogens causing bacterial spot disease of tomatoes. After its first report in the 1950s, there were no formal reports on this pathogen until the 1990s, despite active global research on the pathogens that cause tomato and pepper bacterial spot disease. Given the recently documented global distribution of X. hortorum pv. gardneri, our objective was to examine genomic diversification associated with its emergence. We sequenced the genomes of X. hortorum pv. gardneri strains collected in eight countries to examine global population structure and pathways of emergence using phylodynamic analysis. We found that strains isolated post-1990 group by region of collection and show minimal impact of recombination on genetic variation. A period of rapid geographic expansion in X. hortorum pv. gardneri is associated with acquisition of a large plasmid conferring copper tolerance by horizontal transfer and coincides with the burgeoning hybrid tomato seed industry through the 1980s. The ancestry of X. hortorum pv. gardneri is consistent with introduction to hybrid tomato seed production and dissemination during the rapid increase in trade of hybrid seeds. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Mustafa O Jibrin
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, U.S.A
- Southwest Florida Research and Education Center, University of Florida, Immokalee, FL 34142, U.S.A
- Department of Crop Protection, Ahmadu Bello University, Zaria, Nigeria
| | - Anuj Sharma
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, U.S.A
- Gulf Coast Research and Education Center, University of Florida, Wimauma, FL 33598, U.S.A
| | - Carla N Mavian
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, U.S.A
- Emerging Pathogen Institute, University of Florida, Gainesville, FL 32610, U.S.A
| | - Sujan Timilsina
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, U.S.A
| | - Amandeep Kaur
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, U.S.A
| | | | - Neha Potnis
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, U.S.A
| | - Gerald V Minsavage
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, U.S.A
| | - Teresa A Coutinho
- Department of Microbiology and Plant Pathology, Centre for Microbial Ecology and Genomics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
| | - Tom C Creswell
- Botany and Plant Pathology Department, Purdue University, West Lafayette, IN 47907, U.S.A
| | - Daniel S Egel
- Botany and Plant Pathology Department, Purdue University, West Lafayette, IN 47907, U.S.A
| | - David M Francis
- Department of Horticulture and Crop Science, The Ohio State University, Wooster, OH 44691, U.S.A
| | - Misrak Kebede
- Plant Pathology Department, School of Plant Science, Haramaya University, Dire Dawa, Ethiopia
| | - Sally A Miller
- Department of Plant Pathology, The Ohio State University, Wooster, OH 44691, U.S.A
| | - María J Montelongo
- Molecular Microbiology Laboratory, Biosciences Department, School of Chemistry, Universidad de la República, Montevideo, CP1800, Uruguay
| | - Ekaterina Nikolaeva
- Bureau of Plant Industry, Pennsylvania Department of Agriculture, Harrisburg, PA 17110, U.S.A
| | - María J Pianzzola
- Molecular Microbiology Laboratory, Biosciences Department, School of Chemistry, Universidad de la República, Montevideo, CP1800, Uruguay
| | | | | | - Gail E Ruhl
- Botany and Plant Pathology Department, Purdue University, West Lafayette, IN 47907, U.S.A
| | - Vou M Shutt
- Department of Microbiology and Plant Pathology, Centre for Microbial Ecology and Genomics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
- Department of Plant Science and Biotechnology, University of Jos, Jos, 930105, Nigeria
| | - Elizabeth Maynard
- Department of Horticulture and Landscape Architecture, Purdue University, IN 46383, U.S.A
| | - Diego C Maeso
- Instituto Nacional de Investigacion Agropecuaria, INIA Las Brujas, Las Brujas, Canelones, Uruguay
| | - María I Siri
- Molecular Microbiology Laboratory, Biosciences Department, School of Chemistry, Universidad de la República, Montevideo, CP1800, Uruguay
| | - Cheryl L Trueman
- Department of Plant Agriculture, Ridgetown Campus, University of Guelph, Ridgetown, ON N0P 2C0, Canada
| | - Marco Salemi
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, U.S.A
- Emerging Pathogen Institute, University of Florida, Gainesville, FL 32610, U.S.A
| | - Gary E Vallad
- Gulf Coast Research and Education Center, University of Florida, Wimauma, FL 33598, U.S.A
| | - Pamela D Roberts
- Southwest Florida Research and Education Center, University of Florida, Immokalee, FL 34142, U.S.A
| | - Jeffrey B Jones
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, U.S.A
| | - Erica M Goss
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, U.S.A
- Emerging Pathogen Institute, University of Florida, Gainesville, FL 32610, U.S.A
| |
Collapse
|
2
|
Dixon MH, Nellore D, Zaacks SC, Barak JD. Time of arrival during plant disease progression and humidity additively influence Salmonella enterica colonization of lettuce. Appl Environ Microbiol 2024; 90:e0131124. [PMID: 39207142 PMCID: PMC11409676 DOI: 10.1128/aem.01311-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
The interplay between plant hosts, phytopathogenic bacteria, and enteric human pathogens in the phyllosphere has consequences for human health. Salmonella enterica has been known to take advantage of phytobacterial infection to increase its success on plants, but there is little knowledge of additional factors that may influence the relationship between enteric pathogens and plant disease. In this study, we investigated the role of humidity and the extent of plant disease progression on S. enterica colonization of plants. We found that high humidity was necessary for the replication of S. enterica on diseased lettuce, but not required for S. enterica ingress into the UV-protected apoplast. Additionally, the Xanthomonas hortorum pv. vitians (hereafter, X. vitians)-infected lettuce host was found to be a relatively hostile environment for S. enterica when it arrived prior to the development of watersoaking or following necrosis onset, supporting the existence of an ideal window during X. vitians infection progress that maximizes S. enterica survival. In vitro growth studies in sucrose media suggest that X. vitians may allow S. enterica to benefit from cross-feeding during plant infection. Overall, this study emphasizes the role of phytobacterial disease as a driver of S. enterica success in the phyllosphere, demonstrates how the time of arrival during disease progress can influence S. enterica's fate in the apoplast, and highlights the potential for humidity to transform an infected apoplast into a growth-promoting environment for bacterial colonizers. IMPORTANCE Bacterial leaf spot of lettuce caused by Xanthomonas hortorum pv. vitians is a common threat to leafy green production. The global impact caused by phytopathogens, including X. vitians, is likely to increase with climate change. We found that even under a scenario where increased humidity did not enhance plant disease, high humidity had a substantial effect on facilitating Salmonella enterica growth on Xanthomonas-infected plants. High humidity climates may directly contribute to the survival of human enteric pathogens in crop fields or indirectly affect bacterial survival via changes to the phyllosphere brought on by phytopathogen disease.
Collapse
Affiliation(s)
- Megan H. Dixon
- Department of Plant Pathology, University of Wisconsin, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin, Madison, Wisconsin, USA
| | - Dharshita Nellore
- Department of Plant Pathology, University of Wisconsin, Madison, Wisconsin, USA
| | - Sonia C. Zaacks
- Department of Plant Pathology, University of Wisconsin, Madison, Wisconsin, USA
| | - Jeri D. Barak
- Department of Plant Pathology, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
3
|
Haghshenas I, Taghavi SM, Zarei S, Osdaghi E. Molecular-Phylogenetic Characterization of Xanthomonas hortorum pv. pelargonii Strains Causing Leaf Spot of Geraniums in Iran. PLANT DISEASE 2024; 108:2701-2709. [PMID: 38595058 DOI: 10.1094/pdis-01-24-0262-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Bacterial blight and leaf spot of geraniums is a destructive disease of cultivated Pelargonium species around the world. During 2020 to 2021, surveys were conducted in seven geranium-growing provinces of Iran to monitor the status of bacterial blight and leaf spot disease. The disease was observed in six surveyed provinces varying in the extent of occurrence and severity. Twenty-two gram-negative pale-yellow bacterial strains resembling members of Xanthomonas were isolated from symptomatic leaves and stems. Pathogenicity and host range assays showed that the bacterial strains were pathogenic on Pelargonium grandiflorum, P. graveolens, P. peltatum, and P. zonale. All strains were positive for a PCR test using the primer pair XcpM1/XcpM2, which is specific for X. hortorum pv. pelargonii. Phylogenetic analysis using the sequences of gyrB and lepA genes showed that the 22 strains clustered in a clade among the sequences of X. hortorum pv. pelargonii strains retrieved from GenBank but were distinct from the other pathovars of X. hortorum. BOX-PCR-based fingerprinting using BOX-A1R primer revealed that the strains isolated in this study were grouped into two clusters, while no distinct correlation was observed between the host/area of isolation and BOX-PCR fingerprinting. None of the strains obtained in this study nor the reference strain of the pathogen produced bacteriocin against each other. Results obtained in this study shed light on the geographic distribution, taxonomic status, and host range of the bacterial blight and leaf spot pathogen of geraniums in Iran, paving the path for further research on disease management.
Collapse
Affiliation(s)
- Iman Haghshenas
- Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran
- Department of Plant Protection, College of Agriculture, University of Tehran, Karaj 31587-77871, Iran
| | - S Mohsen Taghavi
- Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran
| | - Sadegh Zarei
- Department of Plant Protection, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Ebrahim Osdaghi
- Department of Plant Protection, College of Agriculture, University of Tehran, Karaj 31587-77871, Iran
| |
Collapse
|
4
|
Baldino KD, Scott JC, Dung JKS. The Alternative Host with the Most: Understanding the Ecology of Xanthomonas hortorum pv. carotae on Noncarrot Crops in Central Oregon. PLANT DISEASE 2024; 108:1755-1761. [PMID: 38213121 DOI: 10.1094/pdis-08-23-1631-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Bacterial blight of carrot, caused by Xanthomonas hortorum pv. carotae (Xhc), is an economically important disease in carrot (Daucus carota subsp. sativus) seed production. The objectives of this study were to determine if Xhc was present on noncarrot crops grown in central Oregon and, if detected, evaluate its ability to colonize alternative hosts. Surveys of three carrot seed fields and adjacent fields of rye (Secale cereale), alfalfa (Medicago sativa), parsley root (Petroselinum crispum var. tuberosum), and Kentucky bluegrass (Poa pratensis) demonstrated that Xhc was present on noncarrot crops. Greenhouse experiments were conducted to determine the ability of Xhc to colonize crops cultivated in the region. Carrot, alfalfa, curly parsley (Petroselinum crispum), Kentucky bluegrass, mint (Mentha × piperita), parsley root, roughstalk bluegrass (Poa trivialis), and wheat (Triticum aestivum) plants were spray-inoculated with Xhc and destructively sampled at 1, 7, 14, and 28 or 25 days post-inoculation. Xhc populations were quantified using viability quantitative PCR and dilution plating. A significant (P ≤ 0.03) effect of crop was observed at 1, 14, and 28 or 25 days in both experiments. While carrot hosted the most Xhc at the final timepoint, other crops supported epiphytic Xhc populations including wheat and both bluegrasses. Mint, parsley root, and alfalfa hosted the least Xhc. Bacterial blight symptoms were observed on carrots but not on noncarrot crops. This suggests that crops grown in central Oregon have the potential to be asymptomatically colonized by Xhc and may serve as reservoirs of the pathogen in carrot seed production systems.
Collapse
Affiliation(s)
- Katelyn D Baldino
- Oregon State University, Central Oregon Agriculture Research and Extension Center, Madras, OR 97741
| | - Jeness C Scott
- Oregon State University, Central Oregon Agriculture Research and Extension Center, Madras, OR 97741
| | - Jeremiah K S Dung
- Oregon State University, Central Oregon Agriculture Research and Extension Center, Madras, OR 97741
| |
Collapse
|
5
|
Tancos MA, Harney-Davila G, Cipollini D. Characterization of Emerging Xanthomonas campestris Isolates on the Nonnative Weed Garlic Mustard ( Alliaria petiolata). PLANT DISEASE 2024; 108:1418-1424. [PMID: 38199962 DOI: 10.1094/pdis-11-23-2391-sr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Nonnative plant infestations provide unique opportunities to investigate pathogen emergence with evolutionarily recent plant introduction events. The widespread distribution of invasive plants and their proximity to genetically related crops highlights the risks of nonnative plants acting as ancillary hosts and fostering microbial recombination and pathogen selection. Garlic mustard (Alliaria petiolata) is a widespread, nonnative cruciferous weed that grows throughout North America and along the forested edges of diverse agricultural fields. The recent identification of a novel Xanthomonas campestris pv. incanae strain isolated from a diseased A. petiolata population led to the current investigation of the distribution and diversity of X. campestris isolates from naturally infected A. petiolata. A total of 14 diseased A. petiolata sites were sampled across three states, leading to the identification of diverse X. campestris pathotypes and genotypes. Pathogenicity assays and multilocus sequence analyses identified pathogenic X. c. pv. incanae and X. c. pv. barbareae strains collected from disparate A. petiolata populations. Moreover, independently collected X. c. pv. incanae strains demonstrated a broad cruciferous host range by infecting cabbage (Brassica oleracea var. capitata), garden stock (Matthiola incana), and the cover crop yellow mustard (Guillenia flavescens). This study highlights the genetic variability and host potential of natural X. campestris populations and the potential risks to Brassica crops via widespread, dense garlic mustard reservoirs.
Collapse
Affiliation(s)
- Matthew A Tancos
- Foreign Disease-Weed Science Research Unit, United States Department of Agriculture-Agricultural Research Service, Frederick, MD 21702
| | | | - Don Cipollini
- Department of Biological Sciences, Wright State University, Dayton, OH 45435
| |
Collapse
|
6
|
Hakalová E, Tekielska DA, Wohlmuth J, Čechová J. Management of bacterial blight of carrots by phenolic compounds treatment. PLoS One 2024; 19:e0299105. [PMID: 38557606 PMCID: PMC10984397 DOI: 10.1371/journal.pone.0299105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 02/05/2024] [Indexed: 04/04/2024] Open
Abstract
Bacterial blight is a serious disease of carrot production worldwide. Under favorable conditions, the causal organism Xanthomonas hortorum pv. carotae causes serious loss especially in seed production because of its seed-borne character. Unlike fungal diseases, the treatment of bacterial diseases is limited and methods such as hot water or sodium hypochlorite (bleach) treatment are mainly used by seed companies. Here, we compared the efficacy of hot water treatment, sodium hypochlorite treatment and treatment with three phenolic compounds-carvacrol, thymol and eugenol, to eliminate Xanthomonas growth in vitro and subsequently in vivo on seeds of Xhc low, medium and highly infested carrot seed lots. The complete elimination of Xhc from germinated plants was obtained only for Xhc low infested seed lot with 1% sodium hypochlorite and carvacrol solutions in concentrations of 0.0196%- 0.313%. The significant reduction of Xhc presence in germinated plants of Xhc medium infested seed lot was achieved with 1% sodium hypochlorite treatment and hot water treatment. However, hot water treatment resulted in a significant reduction of seed germination percentage as well. Considering the elimination of Xhc infection from germinated plants and the effect on seed germination and plant vigor, 0.0196% carvacrol solution was suggested as an alternative to 1% sodium hypochlorite treatment regarding additional costs related to the liquidation of used treated water and to hot water treatment that has been proved to be insufficient to obtain disease-free plants.
Collapse
Affiliation(s)
- Eliška Hakalová
- Mendeleum–Department of Genetics, Faculty of Horticulture, Mendel University in Brno, Lednice, Czech Republic
| | - Dorota A. Tekielska
- Mendeleum–Department of Genetics, Faculty of Horticulture, Mendel University in Brno, Lednice, Czech Republic
| | - Jan Wohlmuth
- Mendeleum–Department of Genetics, Faculty of Horticulture, Mendel University in Brno, Lednice, Czech Republic
| | - Jana Čechová
- Mendeleum–Department of Genetics, Faculty of Horticulture, Mendel University in Brno, Lednice, Czech Republic
| |
Collapse
|
7
|
González-Tobón J, Helmann TC, Daughtrey M, Stodghill PV, Filiatrault MJ. Complete Genome Sequence Resource for Xanthomonas hortorum Isolated from Greek Oregano. PLANT DISEASE 2023; 107:3259-3263. [PMID: 37833832 DOI: 10.1094/pdis-10-22-2399-a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
In spring 2019, necrotic leaf spots were detected on Greek oregano (Origanum vulgare var. hirtum) plants in a commercial greenhouse operation. An isolate was recovered from the diseased plants. Partial 16S ribosomal RNA sequencing and multilocus sequence analysis revealed that the isolate was a Xanthomonas sp. but proved insufficient to identify the species with certainty. Therefore, whole-genome sequencing using both Nanopore and Illumina technologies was performed. Here, we report the complete and annotated genome sequence of Xanthomonas hortorum strain 108, which was originally isolated from Greek oregano in Long Island, NY, U.S.A.
Collapse
Affiliation(s)
- Juliana González-Tobón
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853
| | - Tyler C Helmann
- United States Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY 14853
| | - Margery Daughtrey
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853
| | - Paul V Stodghill
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853
- United States Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY 14853
| | - Melanie J Filiatrault
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853
- United States Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY 14853
| |
Collapse
|
8
|
Harrison J, Hussain RMF, Greer SF, Ntoukakis V, Aspin A, Vicente JG, Grant M, Studholme DJ. Draft genome sequences for ten strains of Xanthomonas species that have phylogenomic importance. Access Microbiol 2023; 5:acmi000532.v3. [PMID: 37601434 PMCID: PMC10436009 DOI: 10.1099/acmi.0.000532.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 06/25/2023] [Indexed: 08/22/2023] Open
Abstract
Here we report draft-quality genome sequences for pathotype strains of eight plant-pathogenic bacterial pathovars: Xanthomonas campestris pv. asclepiadis, X. campestris pv. cannae, X. campestris pv. esculenti, X. campestris pv. nigromaculans, X. campestris pv. parthenii, X. campestris pv. phormiicola, X. campestris pv. zinniae and X. dyei pv. eucalypti (= X. campestris pv. eucalypti). We also sequenced the type strain of species X. melonis and the unclassified Xanthomonas strain NCPPB 1067. These data will be useful for phylogenomic and taxonomic studies, filling some important gaps in sequence coverage of Xanthomonas phylogenetic diversity. We include representatives of previously under-sequenced pathovars and species-level clades. Furthermore, these genome sequences may be useful in elucidating the molecular basis for important phenotypes, such as biosynthesis of coronatine-related toxins and degradation of fungal toxin cercosporin.
Collapse
Affiliation(s)
| | - Rana Muhammad Fraz Hussain
- Gibbet Hill Campus, School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
- Wellesbourne Campus, School of Life Sciences, University of Warwick, Coventry, CV35 9EF, UK
| | - Shannon F. Greer
- Gibbet Hill Campus, School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
- Wellesbourne Campus, School of Life Sciences, University of Warwick, Coventry, CV35 9EF, UK
| | - Vardis Ntoukakis
- Gibbet Hill Campus, School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Andrew Aspin
- Fera Science Ltd., York Biotech Campus, Sand Hutton, York, YO41 1LZ, UK
| | - Joana G. Vicente
- Wellesbourne Campus, School of Life Sciences, University of Warwick, Coventry, CV35 9EF, UK
- Fera Science Ltd., York Biotech Campus, Sand Hutton, York, YO41 1LZ, UK
| | - Murray Grant
- Gibbet Hill Campus, School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | | |
Collapse
|
9
|
Iruegas-Bocardo F, Weisberg AJ, Riutta ER, Kilday K, Bonkowski JC, Creswell T, Daughtrey ML, Rane K, Grünwald NJ, Chang JH, Putnam ML. Whole Genome Sequencing-Based Tracing of a 2022 Introduction and Outbreak of Xanthomonas hortorum pv. pelargonii. PHYTOPATHOLOGY 2023; 113:975-984. [PMID: 36515656 DOI: 10.1094/phyto-09-22-0321-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Globalization has made agricultural commodities more accessible, available, and affordable. However, their global movement increases the potential for invasion by pathogens and necessitates development and implementation of sensitive, rapid, and scalable surveillance methods. Here, we used 35 strains, isolated by multiple diagnostic laboratories, as a case study for using whole genome sequence data in a plant disease diagnostic setting. Twenty-seven of the strains were isolated in 2022 and identified as Xanthomonas hortorum pv. pelargonii. Eighteen of these strains originated from material sold by a plant breeding company that had notified clients following a release of infected geranium cuttings. Analyses of whole genome sequences revealed epidemiological links among the 27 strains from different growers that confirmed a common source of the outbreak and uncovered likely secondary spread events within facilities that housed plants originating from different plant breeding companies. Whole genome sequencing data were also analyzed to reveal how preparatory and analytical methods can impact conclusions on outbreaks of clonal pathogenic strains. The results demonstrate the potential power of using whole genome sequencing among a network of diagnostic labs and highlight how sharing such data can help shorten response times to mitigate outbreaks more expediently and precisely than standard methods.
Collapse
Affiliation(s)
| | - Alexandra J Weisberg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331
| | - Elizabeth R Riutta
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331
| | - Kameron Kilday
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331
| | - John C Bonkowski
- Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907
| | - Tom Creswell
- Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907
| | - Margery L Daughtrey
- Long Island Horticultural Research and Extension Center, Cornell University, Riverhead, NY 11901
| | - Karen Rane
- Department of Entomology, University of Maryland, College Park, MD 20742
| | - Niklaus J Grünwald
- Horticultural Crops Research Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Corvallis, OR 97331
| | - Jeff H Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331
| | - Melodie L Putnam
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331
| |
Collapse
|
10
|
Zboralski A, Biessy A, Ciotola M, Cadieux M, Albert D, Blom J, Filion M. Harnessing the genomic diversity of Pseudomonas strains against lettuce bacterial pathogens. Front Microbiol 2022; 13:1038888. [PMID: 36620043 PMCID: PMC9814014 DOI: 10.3389/fmicb.2022.1038888] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Lettuce is a major vegetable crop worldwide that is affected by numerous bacterial pathogens, including Xanthomonas hortorum pv. vitians, Pseudomonas cichorii, and Pectobacterium carotovorum. Control methods are scarce and not always effective. To develop new and sustainable approaches to contain these pathogens, we screened more than 1,200 plant-associated Pseudomonas strains retrieved from agricultural soils for their in vitro antagonistic capabilities against the three bacterial pathogens under study. Thirty-five Pseudomonas strains significantly inhibited some or all three pathogens. Their genomes were fully sequenced and annotated. These strains belong to the P. fluorescens and P. putida phylogenomic groups and are distributed in at least 27 species, including 15 validly described species. They harbor numerous genes and clusters of genes known to be involved in plant-bacteria interactions, microbial competition, and biocontrol. Strains in the P. putida group displayed on average better inhibition abilities than strains in the P. fluorescens group. They carry genes and biosynthetic clusters mostly absent in the latter strains that are involved in the production of secondary metabolites such as 7-hydroxytropolone, putisolvins, pyochelin, and xantholysin-like and pseudomonine-like compounds. The presence of genes involved in the biosynthesis of type VI secretion systems, tailocins, and hydrogen cyanide also positively correlated with the strains' overall inhibition abilities observed against the three pathogens. These results show promise for the development of biocontrol products against lettuce bacterial pathogens, provide insights on some of the potential biocontrol mechanisms involved, and contribute to public Pseudomonas genome databases, including quality genome sequences on some poorly represented species.
Collapse
Affiliation(s)
- Antoine Zboralski
- Centre de Recherche et de Développement de Saint-Jean-sur-Richelieu, Agriculture et Agroalimentaire Canada, Saint-Jean-sur-Richelieu, QC, Canada
| | - Adrien Biessy
- Centre de Recherche et de Développement de Saint-Jean-sur-Richelieu, Agriculture et Agroalimentaire Canada, Saint-Jean-sur-Richelieu, QC, Canada
| | - Marie Ciotola
- Centre de Recherche et de Développement de Saint-Jean-sur-Richelieu, Agriculture et Agroalimentaire Canada, Saint-Jean-sur-Richelieu, QC, Canada
| | - Mélanie Cadieux
- Centre de Recherche et de Développement de Saint-Jean-sur-Richelieu, Agriculture et Agroalimentaire Canada, Saint-Jean-sur-Richelieu, QC, Canada
| | - Daphné Albert
- Centre de Recherche et de Développement de Saint-Jean-sur-Richelieu, Agriculture et Agroalimentaire Canada, Saint-Jean-sur-Richelieu, QC, Canada
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Martin Filion
- Centre de Recherche et de Développement de Saint-Jean-sur-Richelieu, Agriculture et Agroalimentaire Canada, Saint-Jean-sur-Richelieu, QC, Canada,*Correspondence: Martin Filion,
| |
Collapse
|
11
|
Coutinho TA, Jacques MA, Jones J. Editorial: Emergence and re-emergence of plant diseases caused by Xanthomonas species. Front Microbiol 2022; 13:1081601. [PMID: 36578575 PMCID: PMC9791255 DOI: 10.3389/fmicb.2022.1081601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/15/2022] [Indexed: 12/14/2022] Open
Affiliation(s)
- Teresa A. Coutinho
- Department of Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomics/Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa,*Correspondence: Teresa A. Coutinho
| | - Marie-Agnes Jacques
- Institut Agro, INRAE, IRHS, SFR QUASAV, University of Angers, Angers, France
| | - Jeffrey Jones
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
12
|
Xanthomonas
Infection Transforms the Apoplast into an Accessible and Habitable Niche for Salmonella enterica. Appl Environ Microbiol 2022; 88:e0133022. [PMID: 36314834 PMCID: PMC9680631 DOI: 10.1128/aem.01330-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial spot disease caused by
Xanthomonas
species devastates tomato production worldwide. Salmonellosis outbreaks from consumption of raw produce have been linked to the arrival of
Salmonella enterica
on crop plants in the field via contaminated irrigation water.
Collapse
|
13
|
Zarei S, Taghavi SM, Rahimi T, Mafakheri H, Potnis N, Koebnik R, Fischer-Le Saux M, Pothier JF, Palacio Bielsa A, Cubero J, Portier P, Jacques MA, Osdaghi E. Taxonomic Refinement of Xanthomonas arboricola. PHYTOPATHOLOGY 2022; 112:1630-1639. [PMID: 35196068 DOI: 10.1094/phyto-12-21-0519-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Xanthomonas arboricola comprises a number of economically important fruit tree pathogens classified within different pathovars. Dozens of nonpathogenic and taxonomically unvalidated strains are also designated as X. arboricola, leading to a complicated taxonomic status in the species. In this study, we have evaluated the whole-genome resources of all available Xanthomonas spp. strains designated as X. arboricola in the public databases to refine the members of the species based on DNA similarity indexes and core genome-based phylogeny. Our results show that, of the nine validly described pathovars within X. arboricola, pathotype strains of seven pathovars are taxonomically genuine, belonging to the core clade of the species regardless of their pathogenicity on the host of isolation (thus the validity of pathovar status). However, strains of X. arboricola pv. guizotiae and X. arboricola pv. populi do not belong to X. arboricola because of the low DNA similarities between the type strain of the species and the pathotype strains of these two pathovars. Thus, we propose to elevate the two pathovars to the rank of a species as X. guizotiae sp. nov. with the type strain CFBP 7408T and X. populina sp. nov. with the type strain CFBP 3123T. In addition, other mislabeled strains of X. arboricola were scattered within Xanthomonas spp. that belong to previously described species or represent novel species that await formal description.
Collapse
Affiliation(s)
- Sadegh Zarei
- Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz, Iran
- Department of Plant Protection, College of Agriculture, University of Tehran, Karaj, Iran
| | - S Mohsen Taghavi
- Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Touraj Rahimi
- Department of Agronomy and Plant Breeding, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Hamzeh Mafakheri
- Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz, Iran
- Department of Plant Protection, College of Agriculture, University of Tehran, Karaj, Iran
| | - Neha Potnis
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, U.S.A
| | - Ralf Koebnik
- Plant Health Institute of Montpellier, University of Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | | | - Joël F Pothier
- Environmental Genomics and Systems Biology Research Group, Institute for Natural Resource Sciences, Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
| | - Ana Palacio Bielsa
- Departamento de Protección Vegetal, Centro de Investigación y Tecnología Agroalimentaria de Aragón, Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), Zaragoza, Spain
| | - Jaime Cubero
- Departamento de Protección Vegetal, Centro Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Madrid, Spain
| | - Perrine Portier
- Institut Agro, Université de Angers, INRAE, IRHS, SFR QUASAV, CIRM-CFBP, Angers, France
| | - Marie-Agnes Jacques
- Institut Agro, Université de Angers, INRAE, IRHS, SFR QUASAV, CIRM-CFBP, Angers, France
| | - Ebrahim Osdaghi
- Department of Plant Protection, College of Agriculture, University of Tehran, Karaj, Iran
| |
Collapse
|
14
|
Mafakheri H, Taghavi SM, Zarei S, Portier P, Dimkić I, Koebnik R, Kuzmanović N, Osdaghi E. Xanthomonas bonasiae sp. nov. and Xanthomonas youngii sp. nov., isolated from crown gall tissues. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005418] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The genus
Xanthomonas
contains a set of diverse bacterial strains, most of which are known for their pathogenicity on annual crops and fruit trees causing economically important plant diseases. Recently, five
Xanthomonas
strains were isolated from
Agrobacterium
-induced crown gall tissues of amaranth (Amaranthus sp.) and weeping fig (Ficus benjamina) plants in Iran. Phenotypic characteristics (i.e. biochemical tests and pathogenicity features) and whole genome sequence-based core-genome phylogeny followed by average nucleotide identity and digital DNA–DNA hybridization calculations suggested that these gall-associated strains belong to two new species within the genus
Xanthomonas
. In this study, we provide a formal species description for these new species where Xanthomonas bonasiae sp. nov. is proposed for the strains isolated from weeping fig with FX4T (=CFBP 8703T=DSM 112530T) as type strain. The name Xanthomonas youngii sp. nov. is proposed for the strains isolated from amaranth with AmX2T (=CFBP 8902T=DSM 112529T) as type strain.
Collapse
Affiliation(s)
- Hamzeh Mafakheri
- Department of Plant Protection, College of Agriculture, University of Tehran, Karaj, Iran
- Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz, Iran
| | - S. Mohsen Taghavi
- Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Sadegh Zarei
- Department of Plant Protection, College of Agriculture, University of Tehran, Karaj, Iran
- Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Perrine Portier
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, CIRM-CFBP, F-49000 Angers, France
| | - Ivica Dimkić
- University of Belgrade - Faculty of Biology, Chair of Biochemistry and Molecular Biology, Studentski trg 16, 11158 Belgrade, Serbia
| | - Ralf Koebnik
- Plant Health Institute of Montpellier, University of Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Nemanja Kuzmanović
- Julius Kühn Institute, Federal Research Centre for Cultivated Plants (JKI), Institute for Plant Protection in Horticulture and Forests, Messeweg 11-12, 38104, Braunschweig, Germany
| | - Ebrahim Osdaghi
- Department of Plant Protection, College of Agriculture, University of Tehran, Karaj, Iran
| |
Collapse
|
15
|
Morinière L, Mirabel L, Gueguen E, Bertolla F. A Comprehensive Overview of the Genes and Functions Required for Lettuce Infection by the Hemibiotrophic Phytopathogen Xanthomonas hortorum pv. vitians. mSystems 2022; 7:e0129021. [PMID: 35311560 PMCID: PMC9040725 DOI: 10.1128/msystems.01290-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/07/2022] [Indexed: 12/25/2022] Open
Abstract
The successful infection of a host plant by a phytopathogenic bacterium depends on a finely tuned molecular cross talk between the two partners. Thanks to transposon insertion sequencing techniques (Tn-seq), whole genomes can now be assessed to determine which genes are important for the fitness of several plant-associated bacteria in planta. Despite its agricultural relevance, the dynamic molecular interaction established between the foliar hemibiotrophic phytopathogen Xanthomonas hortorum pv. vitians and its host, lettuce (Lactuca sativa), remains completely unknown. To decipher the genes and functions mobilized by the pathogen throughout the infection process, we conducted a Tn-seq experiment in lettuce leaves to mimic the selective pressure occurring during natural infection. This genome-wide screening identified 170 genes whose disruption caused serious fitness defects in lettuce. A thorough examination of these genes using comparative genomics and gene set enrichment analyses highlighted that several functions and pathways were highly critical for the pathogen's survival. Numerous genes involved in amino acid, nucleic acid, and exopolysaccharide biosynthesis were critical. The xps type II secretion system operon, a few TonB-dependent transporters involved in carbohydrate or siderophore scavenging, and multiple genes of the carbohydrate catabolism pathways were also critical, emphasizing the importance of nutrition systems in a nutrient-limited environment. Finally, several genes implied in camouflage from the plant immune system and resistance to immunity-induced oxidative stress were strongly involved in host colonization. As a whole, these results highlight some of the central metabolic pathways and cellular functions critical for Xanthomonas host adaptation and pathogenesis. IMPORTANCE Xanthomonas hortorum was recently the subject of renewed interest, as several studies highlighted that its members were responsible for diseases in a wide range of plant species, including crops of agricultural relevance (e.g., tomato and carrot). Among X. hortorum variants, X. hortorum pv. vitians is a reemerging foliar hemibiotrophic phytopathogen responsible for severe outbreaks of bacterial leaf spot of lettuce all around the world. Despite recent findings, sustainable and practical means of disease control remain to be developed. Understanding the host-pathogen interaction from a molecular perspective is crucial to support these efforts. The genes and functions mobilized by X. hortorum pv. vitians during its interaction with lettuce had never been investigated. Our study sheds light on these processes by screening the whole pathogen genome for genes critical for its fitness during the infection process, using transposon insertion sequencing and comparative genomics.
Collapse
Affiliation(s)
- Lucas Morinière
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, Villeurbanne, France
| | - Laurène Mirabel
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, Villeurbanne, France
| | - Erwan Gueguen
- Université Lyon, Université Claude Bernard Lyon 1, INSA, CNRS, UMR Microbiologie, Adaptation, Pathogénie, Villeurbanne, France
| | - Franck Bertolla
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, Villeurbanne, France
| |
Collapse
|
16
|
Phenotypic and Molecular-Phylogenetic Analyses Reveal Distinct Features of Crown Gall-Associated Xanthomonas Strains. Microbiol Spectr 2022; 10:e0057721. [PMID: 35107322 PMCID: PMC8809331 DOI: 10.1128/spectrum.00577-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In summer 2019, widespread occurrence of crown gall disease caused by Agrobacterium spp. was observed on commercially grown ornamental plants in southern Iran. Beside agrobacteria, pale yellow-pigmented Gram-negative strains resembling the members of Xanthomonas were also associated with crown gall tissues on weeping fig (Ficus benjamina) and Amaranthus sp. plants. The purpose of the present study was to characterize the crown gall-associated Xanthomonas strains using plant inoculation assays, molecular-phylogenetic analyses, and comparative genomics approaches. Pathogenicity tests showed that the Xanthomonas strains did not induce disease symptoms on their host of isolation. However, the strains induced hypersensitive reaction on tobacco, geranium, melon, squash, and tomato leaves via leaf infiltration. Multilocus sequence analysis suggested that the strains belong to clade IA of Xanthomonas, phylogenetically close to Xanthomonas translucens, X. theicola, and X. hyacinthi. Average nucleotide identity and digital DNA-DNA hybridization values between the whole-genome sequences of the strains isolated in this study and reference Xanthomonas strains are far below the accepted thresholds for the definition of prokaryotic species, signifying that these strains could be defined as two new species within clade IA of Xanthomonas. Comparative genomics showed that the strains isolated from crown gall tissues are genetically distinct from X. translucens, as almost all the type III secretion system genes and type III effectors are lacking in the former group. The data obtained in this study provide novel insight into the breadth of genetic diversity of crown gall-associated bacteria and pave the way for research on gall-associated Xanthomonas-plant interactions. IMPORTANCE Tumorigenic agrobacteria—members of the bacterial family Rhizobiaceae—cause crown gall and hairy root diseases on a broad range of plant species. These bacteria are responsible for economic losses in nurseries of important fruit trees and ornamental plants. The microclimate of crown gall and their accompanying microorganisms has rarely been studied for the microbial diversity and population dynamics of gall-associated bacteria. Here, we employed a series of biochemical tests, pathogenicity assays, and molecular-phylogenetic analyses, supplemented with comparative genomics, to elucidate the biological features, taxonomic position, and genomic repertories of five crown gall-associated Xanthomonas strains isolated from weeping fig and Amaranthus sp. plants in Iran. The strains investigated in this study induced hypersensitive reactions (HR) on geranium, melon, squash, tobacco, and tomato leaves, while they were nonpathogenic on their host of isolation. Phylogenetic analyses and whole-genome-sequence-based average nucleotide identity (ANI)/digital DNA-DNA hybridization (dDDH) calculations suggested that the Xanthomonas strains isolated from crown gall tissues belong to two taxonomically unique clades closely related to the clade IA species of the genus, i.e., X. translucens, X. hyacinthi, and X. theicola.
Collapse
|