1
|
Liang L, Liu X, Guo L, Wang L, Zhao Y, Wu Y, Chen Y, Liu W, Gao G. Beyond salt tolerance: SOS1-13's pivotal role in regulating the immune response to Fusarium oxysporum in Solanum phureja. FRONTIERS IN PLANT SCIENCE 2025; 16:1553348. [PMID: 40115954 PMCID: PMC11922900 DOI: 10.3389/fpls.2025.1553348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/10/2025] [Indexed: 03/23/2025]
Abstract
Introduction Fusarium oxysporum (FOX) causes severe Fusarium wilt in the potato (Solanum tuberosum group Phureja) annually around the world. As an Na+/H+ antiporter, SOS1, a member of the salt oversensitive (SOS) signaling pathway plays important role in salt tolerance, but its function in plant disease resistance has been less studied. Methods The function of the potato SOS1 gene (StSOS1-13) responding to the FOX infection was researched by gain- and loss-of-function assays. Results StSOS1-13-overexpressed Arabidopsis differed from WT plants in multiple aspects post-FOX infection. It exhibited less ROS accumulation and cell necrosis in leaves, higher SOD and CAT activities accompanied by reduced MDA content, enhanced root development, increased tolerance to FOX infection, and an accelerated leaf stomatal closure rate along with a reduced stomatal aperture area. Additionally, the ectopic overexpression of StSOS1-13 in Arabidopsis induced down-regulation of AtPR12. Conversely, silencing the ortholog gene NbSOS1-13 in Nicotiana benthamiana showed more accumulation of ROS, serious cell necrosis, reduced activities of SOD and CAT, significantly increased MDA level, obvious leaf wilting, decreased tolerance to infection, and reduced leaf stomatal closure rate and accelerated stomatal area. Furthermore, the expression of SA and JA response-related genes (NbPR5 and NbPR12) was up-regulated in NbSOS1-13-silenced plants. Discussion These findings suggest that StSOS1-13 may serve as a key hub in the immune response to FOX infection by enhancing the antioxidant defense system, promoting root development to improve water uptake, facilitating leaf stomatal closure to minimize water loss through evaporation, and associating with the SA and JA signaling pathways.
Collapse
Affiliation(s)
- Liqin Liang
- College of Life Science, Shanxi Normal University, Taiyuan, China
| | - Xiaona Liu
- College of Life Science, Shanxi Normal University, Taiyuan, China
| | - Liuyan Guo
- College of Life Science, Shanxi Normal University, Taiyuan, China
| | - Liyan Wang
- College of Life Science, Shanxi Normal University, Taiyuan, China
| | - Yuehua Zhao
- College of Life Science, Shanxi Normal University, Taiyuan, China
| | - Yue Wu
- College of Life Science, Shanxi Normal University, Taiyuan, China
| | - Yiqian Chen
- College of Life Science, Shanxi Normal University, Taiyuan, China
| | - Weizhong Liu
- College of Life Science, Shanxi Normal University, Taiyuan, China
| | - Gang Gao
- College of Life Science, Shanxi Normal University, Taiyuan, China
| |
Collapse
|
2
|
Maravilha RM, Fernandes T, Barros PM, Leitão ST, Rubiales D, Vaz Patto MC, Santos C. A dual transcriptome analysis reveals accession-specific resistance responses in Lathyrus sativus against Erysiphe pisi. FRONTIERS IN PLANT SCIENCE 2025; 16:1542926. [PMID: 40110352 PMCID: PMC11921622 DOI: 10.3389/fpls.2025.1542926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/12/2025] [Indexed: 03/22/2025]
Abstract
Lathyrus sativus (grass pea) is a valuable crop for sustainable agriculture, offering dietary benefits and desirable agronomic traits. However, its yield stability is limited by diseases such as powdery mildew caused by Erysiphe pisi. Increasing fungal resistance to pesticides and environmental concerns demand the development of resistant crop varieties. To identify key defense mechanisms and effector genes involved in the Lathyrus sativus-Erysiphe pisi interaction we analyzed four L. sativus accessions exhibiting varying resistance to E. pisi (resistant, partially resistant, partially susceptible, and susceptible) using a dual RNA-Seq experiment across different time points. We observed a host biphasic response, characterized by an initial burst of gene expression, followed by a quiescent phase, and a subsequent wave of intense gene expression. Common L. sativus defense mechanisms included antifungal protein expression, cell wall reinforcement, and reactive oxygen species-mediated defense. These defenses involved respectively Bowman-Birk type proteinase inhibitors, peptidyl-prolyl cis-trans isomerases and mannitol dehydrogenases. The resistant accession specifically activated early reinforcement of structural barriers associated with lignin biosynthesis and the phenylpropanoid pathway, along with sustained chemical defenses (e.g. eugenol synthase 1), epigenetic regulation, and oxidative stress responses thorough peroxidases and heat shock proteins. The partial resistant accession exhibited a front-loaded defense response at early infection stages. Contrastingly, the partially susceptible accession exhibited a weaker baseline defense, with a slower and less robust response targeting pathogen infection. We identified potential E. pisi effectors, including genes involved in cell wall hydrolysis (e.g. mannosidase DCW1), nutrient acquisition (e.g. secreted alpha-glucosidase), and virulence (e.g. SnodProt1), with a higher diversity of effectors identified in the susceptible accession. In conclusion, this study identifies novel targets such as NLRs and effectors, antifungal proteins and genes related to cell wall reinforcement, within the complex Lathyrus sativus-Erysiphe pisi interaction to support future breeding programs aimed at enhancing resistance to E. pisi in L. sativus and related species.
Collapse
Affiliation(s)
- Rita M Maravilha
- Genetics and Genomics of Plant Complex Traits, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Telma Fernandes
- Genetics and Genomics of Plant Complex Traits, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Pedro M Barros
- Genetics and Genomics of Plant Complex Traits, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Susana T Leitão
- Genetics and Genomics of Plant Complex Traits, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Diego Rubiales
- Resistlab, Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas, Córdoba, Spain
| | - Maria Carlota Vaz Patto
- Genetics and Genomics of Plant Complex Traits, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Carmen Santos
- Genetics and Genomics of Plant Complex Traits, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
3
|
Ai G, Peng H, Pan W, Li Y, Wan Z, Yin Z, Shen D, Dong S, Wang Y, Dou D. A catalogue of virulence strategies mediated by phytopathogenic effectors. FUNDAMENTAL RESEARCH 2025; 5:663-673. [PMID: 40242527 PMCID: PMC11997596 DOI: 10.1016/j.fmre.2023.10.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/22/2023] [Accepted: 10/17/2023] [Indexed: 04/18/2025] Open
Abstract
Plant diseases cause dramatic economic loss, posing a major challenge to modern agriculture. Plant pathogenic organisms secret effectors that utilize fascinating and intricate stratagems to facilitate infection. The consequences of plant-pathogen interactions are largely determined by effectors. The effector research has made great strides since its inception in the 1990s and the importance of effectors is increasingly noticed. Molecular investigation of effectors has provided critical insights into how plant pathogens manipulate their hosts to cause diseases. Thus far, numerous excellent reviews concerning effectors have focused on their targeting host pathways, recognition by host receptors, and evasion mechanisms, but few have ever summarized all known effector action modes. Here, we distinguish ten different stratagems of effector function from all types of pathogens, including damage, inhibition, hijacking, promotion, subversion, mimicry, reprogramming, evasion, decoying, and adaption. Furthermore, we discuss examples of these ten stratagems, refine the effector definition, and propose future directions of phytopathogenic effector research.
Collapse
Affiliation(s)
- Gan Ai
- College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Hao Peng
- USDA-ARS, Crop Diseases, Pests and Genetics Research Unit, Parlier, CA 93648, USA
| | - Weiye Pan
- College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuke Li
- College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhirui Wan
- College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhiyuan Yin
- College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Danyu Shen
- College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Suomeng Dong
- College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuanchao Wang
- College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Daolong Dou
- College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
4
|
Zhang Y, Hao Z, Nian J, Zhang Y, Tian S, Xu Y, Duan W, Kang Z, Zhao J. A Conserved Endonuclease From Rust Fungi Suppresses Plant Extracellular DNA-Triggered Immunity. PLANT, CELL & ENVIRONMENT 2025. [PMID: 39980328 DOI: 10.1111/pce.15440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 02/08/2025] [Indexed: 02/22/2025]
Abstract
Nuclease 1 (NUC1) is a highly conserved nonspecific endonuclease present in vertebrates, fungi, and a few plant species. While the involvement of yeast NUC1p in apoptotic cell death independent of metacaspase or apoptosis-inducing factors is documented, its function in other fungi, particularly pathogenic ones, remains elusive. In this study, we identified and characterised the homologue of yeast NUC1p, termed PstNUC1, in Puccinia striiformis f. sp. tritici (Pst), the causal agent of wheat stripe rust. PstNUC1 was induced during infection and was secreted to the extracellular space of the host. Silencing of PstNUC1 significantly attenuated the virulence of Pst, suggesting its critical role in pathogenicity. Exogenous treatment of PstNUC1 diminished the extracellular DNA (exDNA)-triggered plant immune response, including cell death, oxygen peroxide production, and upregulation of Pathogenesis-related genes. Notably, overexpression of wild-type PstNUC1, but not a signal peptide-deficient mutant (PstNUC1ΔSP), in wheat compromised exDNA-triggered immunity, resulting in enhanced susceptibility to Pst infection. These finding collectively highlight the contribution of PstNUC1 to virulence through degradation of exDNA, thereby dampening the exDNA-induced plant immune response.
Collapse
Affiliation(s)
- Ying Zhang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Zhenkai Hao
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Jiting Nian
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Yanfei Zhang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Song Tian
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Yiqian Xu
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Wanlu Duan
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Zhensheng Kang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Jing Zhao
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, China
| |
Collapse
|
5
|
Sun L, Li X, Zhong J, Wang Y, Li B, Ye Z, Zhang J. Recognition of a Fungal Effector Potentiates Pathogen-Associated Molecular Pattern-Triggered Immunity in Cotton. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407787. [PMID: 39488762 PMCID: PMC11714242 DOI: 10.1002/advs.202407787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/25/2024] [Indexed: 11/04/2024]
Abstract
Plants are equipped with multi-layered immune systems that recognize pathogen-derived elicitors to activate immunity. Verticillium dahliae is a soil-borne fungus that infects a broad range of plants and causes devastating wilt disease. The mechanisms underlying immune recognition between plants and V. dahliae remain elusive. Here, a V. dahliae secretory protein, elicitor of plant defense gene (VdEPD1), acts as an elicitor that triggers defense responses in both Nicotiana benthamiana and cotton plants is identified. Targeted gene deletion of VdEPD1 enhances V. dahliae virulence in plants. Expression of VdEPD1 triggers the accumulation of reactive oxygen species (ROS) and the activation of cell death in cotton plants. Gossypium barbadense EPD1-interacting receptor-like cytoplasmic kinase (GbEIR5A) and GbEIR5D interact with VdEPD1. Silencing of GbEIR5A/D significantly impairs VdEPD1-triggered cell death in cotton plants, indicating the contribution of GbEIR5A/D to VdEPD1-activated effector-triggered immunity (ETI). VdEPD1 stimulates the expression of GbEIR5A and GbEIR5D in cotton plants. Interestingly, cotton plants with silenced GbEIR5A/D genes exhibit compromised pathogen-associated molecular patterns (PAMPs)-triggered ROS accumulation, whereas overexpression of GbEIR5A or GbEIR5D enhances PAMP-induced ROS. These findings indicate that recognition of VdEPD1 potentiates GbEIRs to enhance cotton PAMP-triggered immunity (PTI), uncovering a cooperative interplay of PTI and ETI in cotton.
Collapse
Affiliation(s)
- Lifan Sun
- Institute of MicrobiologyChinese Academy of SciencesBeijing100101China
| | - Xiangguo Li
- Institute of MicrobiologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Jiajie Zhong
- Institute of MicrobiologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yu Wang
- Institute of MicrobiologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Baiyang Li
- Institute of MicrobiologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Ziqin Ye
- Institute of MicrobiologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Jie Zhang
- Institute of MicrobiologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
6
|
Wang Y, Qin J, Wei M, Liao X, Shang W, Chen J, Subbarao KV, Hu X. Verticillium dahliae Elicitor VdSP8 Enhances Disease Resistance Through Increasing Lignin Biosynthesis in Cotton. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39327679 DOI: 10.1111/pce.15170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/22/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024]
Abstract
Verticillium wilt caused by the soil-borne fungus Verticillium dahliae Kleb., is a destructive plant disease that instigates severe losses in many crops. Improving plant resistance to Verticillium wilt has been a challenge in most crops. In this study, a V. dahliae secreted protein VdSP8 was identified and shown to activate hyper-sensitive response (HR) and systemic acquired resistance (SAR) to Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) and Botrytis cinerea in tobacco plants. We identified a β-glucosidase named GhBGLU46 as a cotton plant target of VdSP8. VdSP8 interacts with GhBGLU46 both in vivo and in vitro and promotes the β-glucosidase activity of GhBGLU46. Silencing of GhBGLU46 reduced the expression of genes involved in lignin biosynthesis, such as GhCCR4, GhCCoAOMT2, GhCAD3 and GhCAD6, thus decreasing lignin deposition and increasing Verticillium wilt susceptibility. We have shown that GhBGLU46 is indispensable for the function of VdSP8 in plant resistance. These results suggest that plants have also evolved a strategy to exploit the invading effector protein VdSP8 to enhance plant resistance.
Collapse
Affiliation(s)
- Yajuan Wang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Integrated Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Jun Qin
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Integrated Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Mengmeng Wei
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Integrated Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xiwen Liao
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Integrated Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Wenjing Shang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Integrated Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Jieyin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Krishna V Subbarao
- Department of Plant Pathology, University of California, Davis, c/o Sam Farr United States Crop Improvement and Protection Research Center, Salinas, California, USA
| | - Xiaoping Hu
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Integrated Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, and College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
7
|
Wang C, Han M, Min Y, Hu J, Pan Y, Huang L, Nie J. Colletotrichum fructicola co-opts cytotoxic ribonucleases that antagonize host competitive microorganisms to promote infection. mBio 2024; 15:e0105324. [PMID: 38953357 PMCID: PMC11323725 DOI: 10.1128/mbio.01053-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/13/2024] [Indexed: 07/04/2024] Open
Abstract
Phytopathogens secrete numerous molecules into the environment to establish a microbial niche and facilitate host infection. The phytopathogenic fungus Colletotrichum fructicola, which causes pear anthracnose, can colonize different plant tissues like leaves and fruits, which are occupied by a diversity of microbes. We speculate that this fungus produces antimicrobial effectors to outcompete host-associated competitive microorganisms. Herein, we identified two secreted ribonucleases, CfRibo1 and CfRibo2, from the C. fructicola secretome. The two ribonucleases both possess ribonuclease activity and showed cytotoxicity in Nicotianan benthamiana without triggering immunity in an enzymatic activity-dependent manner. CfRibo1 and CfRibo2 recombinant proteins exhibited toxicity against Escherichia coli, Saccharomyces cerevisiae, and, importantly, the phyllosphere microorganisms isolated from the pear host. Among these isolated microbial strains, Bacillus altitudinis is a pathogenic bacterium causing pear soft rot. Strikingly, CfRibo1 and CfRibo2 were found to directly antagonize B. altitudinis to facilitate C. fructicola infection. More importantly, CfRibo1 and CfRibo2 functioned as essential virulence factors of C. fructicola in the presence of host-associated microorganisms. Further analysis revealed these two ribonucleases are widely distributed in fungi and are undergoing purifying selection. Our results provide the first evidence of antimicrobial effectors in Colletotrichum fungi and extend the functional diversity of fungal ribonucleases in plant-pest-environment interactions. IMPORTANCE Colletotrichum fructicola is emerging as a devastating pathogenic fungus causing anthracnose in various crops in agriculture, and understanding how this fungus establishes successful infection is of great significance for anthracnose disease management. Fungi are known to produce secreted effectors as weapons to promote virulence. Considerable progress has been made in elucidating how effectors manipulate plant immunity; however, their importance in modulating environmental microbes is frequently neglected. The present study identified two secreted ribonucleases, CfRibo1 and CfRibo2, as antimicrobial effectors of C. fructicola. These two proteins both possess toxicity to pear phyllosphere microorganisms, and they efficiently antagonize competitive microbes to facilitate the infection of pear hosts. This study represents the first evidence of antimicrobial effectors in Colletotrichum fungi, and we consider that CfRibo1 and CfRibo2 could be targeted for anthracnose disease management in diverse crops in the future.
Collapse
Affiliation(s)
- Chunhao Wang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, China
| | - Mengqing Han
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, China
| | - Yanyan Min
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, China
| | - Jiayi Hu
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, China
| | - Yuemin Pan
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, China
| | - Lili Huang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiajun Nie
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, China
| |
Collapse
|
8
|
Song Q, Han S, Hu S, Xu Y, Zuo K. The Verticillium dahliae Effector VdPHB1 Promotes Pathogenicity in Cotton and Interacts with the Immune Protein GhMC4. PLANT & CELL PHYSIOLOGY 2024; 65:1173-1183. [PMID: 38619117 DOI: 10.1093/pcp/pcae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/09/2024] [Accepted: 04/14/2024] [Indexed: 04/16/2024]
Abstract
Verticillium dahliae is a kind of pathogenic fungus that brings about wilt disease and great losses in cotton. The molecular mechanism of the effectors in V. dahliae regulating cotton immunity remains largely unknown. Here, we identified an effector of V. dahliae, VdPHB1, whose gene expression is highly induced by infection. The VdPHB1 protein is localized to the intercellular space of cotton plants. Knock-out of the VdPHB1 gene in V. dahliae had no effect on pathogen growth, but decreased the virulence in cotton. VdPHB1 ectopically expressed Arabidopsis plants were growth-inhibited and significantly susceptible to V. dahliae. Further, VdPHB1 interacted with the type II metacaspase GhMC4. GhMC4 gene-silenced cotton plants were more sensitive to V. dahliae with reduced expression of pathogen defense-related and programmed cell death genes. The accumulation of GhMC4 protein was concurrently repressed when VdPHB1 protein was expressed during infection. In summary, these results have revealed a novel molecular mechanism of virulence regulation that the secreted effector VdPHB1 represses the activity of cysteine protease for helping V. dahliae infection in cotton.
Collapse
Affiliation(s)
- Qingwei Song
- Single Cell Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Song Han
- Single Cell Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shi Hu
- Single Cell Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yiyang Xu
- Single Cell Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kaijing Zuo
- Single Cell Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
9
|
Huang Z, Wang C, Li H, Zhou Y, Duan Z, Bao Y, Hu Q, Powell CA, Chen B, Zhang J, Zhang M, Yao W. Small secreted effector protein from Fusarium sacchari suppresses host immune response by inhibiting ScPi21-induced cell death. MOLECULAR PLANT PATHOLOGY 2024; 25:e13414. [PMID: 38279852 PMCID: PMC10782473 DOI: 10.1111/mpp.13414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 01/29/2024]
Abstract
Fusarium sacchari is one of the primary pathogens causing pokkah boeng disease, which impairs the yield and quality of sugarcane around the world. Understanding the molecular mechanisms of the F. sacchari effectors that regulate plant immunity is of great importance for the development of novel strategies for the persistent control of pokkah boeng disease. In a previous study, Fs00367 was identified to inhibit BAX-induced cell death. In this study, Fs00367nsp (without signal peptide) was found to suppress BAX-induced cell death, reactive oxygen species bursts and callose accumulation. The amino acid region 113-142 of Fs00367nsp is the functional region. Gene mutagenesis indicated that Fs00367 is important for the full virulence of F. sacchari. A yeast two-hybrid assay revealed an interaction between Fs00367nsp and sugarcane ScPi21 in yeast that was further confirmed using bimolecular fluorescence complementation, pull-down assay and co-immunoprecipitation. ScPi21 can induce plant immunity, but this effect could be blunted by Fs00367nsp. These results suggest that Fs00367 is a core pathogenicity factor that suppresses plant immunity through inhibiting ScPi21-induced cell death. The findings of this study provide new insights into the molecular mechanisms of effectors in regulating plant immunity.
Collapse
Affiliation(s)
- Zhen Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agri‐Biological Resources, Guangxi Key Laboratory of Sugarcane BiologyGuangxi UniversityNanningChina
| | - Caixia Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agri‐Biological Resources, Guangxi Key Laboratory of Sugarcane BiologyGuangxi UniversityNanningChina
| | - Huixue Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agri‐Biological Resources, Guangxi Key Laboratory of Sugarcane BiologyGuangxi UniversityNanningChina
| | - Yuming Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agri‐Biological Resources, Guangxi Key Laboratory of Sugarcane BiologyGuangxi UniversityNanningChina
| | - Zhenzhen Duan
- State Key Laboratory for Conservation and Utilization of Subtropical Agri‐Biological Resources, Guangxi Key Laboratory of Sugarcane BiologyGuangxi UniversityNanningChina
| | - Yixue Bao
- State Key Laboratory for Conservation and Utilization of Subtropical Agri‐Biological Resources, Guangxi Key Laboratory of Sugarcane BiologyGuangxi UniversityNanningChina
| | - Qin Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agri‐Biological Resources, Guangxi Key Laboratory of Sugarcane BiologyGuangxi UniversityNanningChina
| | | | - Baoshan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agri‐Biological Resources, Guangxi Key Laboratory of Sugarcane BiologyGuangxi UniversityNanningChina
| | - Jisen Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agri‐Biological Resources, Guangxi Key Laboratory of Sugarcane BiologyGuangxi UniversityNanningChina
| | - Muqing Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agri‐Biological Resources, Guangxi Key Laboratory of Sugarcane BiologyGuangxi UniversityNanningChina
- IRREC‐IFASUniversity of FloridaFort PierceFloridaUSA
| | - Wei Yao
- State Key Laboratory for Conservation and Utilization of Subtropical Agri‐Biological Resources, Guangxi Key Laboratory of Sugarcane BiologyGuangxi UniversityNanningChina
- IRREC‐IFASUniversity of FloridaFort PierceFloridaUSA
| |
Collapse
|
10
|
Xie Y, Shi L, Cheng K, Li Y, Yu S. Host Recognition and Specific Infection of Endomelanconiopsis endophytica during Early Infection. J Fungi (Basel) 2023; 9:1040. [PMID: 37888296 PMCID: PMC10607883 DOI: 10.3390/jof9101040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023] Open
Abstract
Coevolution between the pathogen and host plant drives pathogenic effector diversity. However, the molecular mechanism behind host-specific pathogenesis remains to be explored. Here, we present a 43 Mb whole-genome sequence of Endomelanconiopsis endophytica strain LS29, a host-specific pathogen of the common subtropical tree Castanopsis fissa. We described its genome annotations and identified its effector candidates. By performing temporal transcriptome sequencing of E. endophytica on C. fissa during early infection, we found that E. endophytica repressed other microbes in order to attack the tissue of the host by producing antibiotics earlier than 24 h post-inoculation (hpi). Simultaneously, a variety of effectors were secreted to recognize the host plant, but most of them showed a significantly opposing expression regulation trend after 24 hpi, indicating that 24 hpi represents a key time point between host recognition and specific infection. Furthermore, a comparison of isoenzymes showed that only a few effectors were identified as specific effectors, which were involved in hydrolyzing the compounds of the plant cell wall and releasing fatty acids during the early infection of C. fissa. Our results determined host recognition timing and identified a specific catalog of effectors, which are crucial for revealing the molecular mechanism of host-specific pathogenesis.
Collapse
Affiliation(s)
- Yan Xie
- Department of Ecology, School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, China
| | - Liuqing Shi
- Department of Ecology, School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, China
| | - Keke Cheng
- Department of Ecology, School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, China
| | - Yang Li
- Department of Ecology, School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, China
| | - Shixiao Yu
- Department of Ecology, School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
11
|
Newman TE, Kim H, Khentry Y, Sohn KH, Derbyshire MC, Kamphuis LG. The broad host range pathogen Sclerotinia sclerotiorum produces multiple effector proteins that induce host cell death intracellularly. MOLECULAR PLANT PATHOLOGY 2023; 24:866-881. [PMID: 37038612 PMCID: PMC10346375 DOI: 10.1111/mpp.13333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
Sclerotinia sclerotiorum is a broad host range necrotrophic fungal pathogen, which causes disease on many economically important crop species. S. sclerotiorum has been shown to secrete small effector proteins to kill host cells and acquire nutrients. We set out to discover novel necrosis-inducing effectors and characterize their activity using transient expression in Nicotiana benthamiana leaves. Five intracellular necrosis-inducing effectors were identified with differing host subcellular localization patterns, which were named intracellular necrosis-inducing effector 1-5 (SsINE1-5). We show for the first time a broad host range pathogen effector, SsINE1, that uses an RxLR-like motif to enter host cells. Furthermore, we provide preliminary evidence that SsINE5 induces necrosis via an NLR protein. All five of the identified effectors are highly conserved in globally sourced S. sclerotiorum isolates. Taken together, these results advance our understanding of the virulence mechanisms employed by S. sclerotiorum and reveal potential avenues for enhancing genetic resistance to this damaging fungal pathogen.
Collapse
Affiliation(s)
- Toby E. Newman
- Centre for Crop and Disease Management, School of Molecular and Life SciencesCurtin UniversityBentleyWestern AustraliaAustralia
| | - Haseong Kim
- Plant Immunity Research CenterSeoul National UniversitySeoul08826Republic of Korea
| | - Yuphin Khentry
- Centre for Crop and Disease Management, School of Molecular and Life SciencesCurtin UniversityBentleyWestern AustraliaAustralia
| | - Kee Hoon Sohn
- Plant Immunity Research CenterSeoul National UniversitySeoul08826Republic of Korea
- Department of Agricultural BiotechnologySeoul National UniversitySeoul08826Republic of Korea
- Research Institute of Agriculture and Life SciencesSeoul National UniversitySeoul08826Republic of Korea
| | - Mark C. Derbyshire
- Centre for Crop and Disease Management, School of Molecular and Life SciencesCurtin UniversityBentleyWestern AustraliaAustralia
| | - Lars G. Kamphuis
- Centre for Crop and Disease Management, School of Molecular and Life SciencesCurtin UniversityBentleyWestern AustraliaAustralia
| |
Collapse
|
12
|
Yue Y, Deng J, Wang H, Lv T, Dou W, Jiao Y, Peng X, Zhang Y. Two Secretory T2 RNases Act as Cytotoxic Factors Contributing to the Virulence of an Insect Fungal Pathogen. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7069-7081. [PMID: 37122240 DOI: 10.1021/acs.jafc.3c01617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
RNase T2 members are secreted by several pathogens or parasites during infection, playing various roles in pathogen-host interaction. However, functions of those members in biocontrol microbes targeting their hosts are still unknown. Here, we report that an insect fungal pathogen, Beauveria bassiana, produces two secretory RNase T2 members that act as cytotoxic factors, which were examined by insect bioassays using the targeted gene(s) disruption and overexpression strains. Overexpression strains displayed dramatically increased virulence, which was concurrent with few fungal cells and hemocytes in hemocoel, suggesting a cytotoxicity of the overexpressed gene products. In vitro assays using yeast-expressed proteins verified the cytotoxicity of the two members against insect cells, to which the cytotoxic effect was dependent on their RNases enzyme activities and glycosylation modification. Moreover, the excessive humoral immune responses triggered by the two ribonucleases were examined. These results suggested prospects of these two T2 ribonucleases for improvement of biocontrol agents.
Collapse
Affiliation(s)
- Yong Yue
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Biotechnology Research Center, Southwest University, Chongqing 400715, People's Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Southwest University, Chongqing 400715, People's Republic of China
| | - Juan Deng
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Biotechnology Research Center, Southwest University, Chongqing 400715, People's Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Southwest University, Chongqing 400715, People's Republic of China
| | - Huifang Wang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Biotechnology Research Center, Southwest University, Chongqing 400715, People's Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Southwest University, Chongqing 400715, People's Republic of China
| | - Ting Lv
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Biotechnology Research Center, Southwest University, Chongqing 400715, People's Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Southwest University, Chongqing 400715, People's Republic of China
| | - Wei Dou
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Biotechnology Research Center, Southwest University, Chongqing 400715, People's Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Southwest University, Chongqing 400715, People's Republic of China
| | - Yufei Jiao
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Biotechnology Research Center, Southwest University, Chongqing 400715, People's Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Southwest University, Chongqing 400715, People's Republic of China
| | - Xinxin Peng
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Biotechnology Research Center, Southwest University, Chongqing 400715, People's Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Southwest University, Chongqing 400715, People's Republic of China
| | - Yongjun Zhang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Biotechnology Research Center, Southwest University, Chongqing 400715, People's Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Southwest University, Chongqing 400715, People's Republic of China
| |
Collapse
|
13
|
VdGAL4 Modulates Microsclerotium Formation, Conidial Morphology, and Germination To Promote Virulence in Verticillium dahliae. Microbiol Spectr 2023; 11:e0351522. [PMID: 36475739 PMCID: PMC9927093 DOI: 10.1128/spectrum.03515-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Verticillium dahliae Kleb is a typical soilborne pathogen that can cause vascular wilt disease on more than 400 plants. Functional analysis of genes related to the growth and virulence is crucial to revealing the molecular mechanism of the pathogenicity of V. dahliae. Glycosidase hydrolases can hydrolyze the glycosidic bond, and some can cause host plant immune response to V. dahliae. Here, we reported a functional validation of VdGAL4 as an α-galactosidase that belongs to glycoside hydrolase family 27. VdGAL4 could cause plant cell death, and its signal peptide plays an important role in cellular immune response. VdGAL4-triggered cell death depends on BAK1 and SOBIR1 in Nicotiana benthamiana. In V. dahliae, the function of VdGAL4 in mycelial growth, conidia, microsclerotium, and pathogenicity was studied by constructing VdGAL4 deletion and complementation mutants. Results showed that the deletion of VdGAL4 reduced the conidial yield and conidial germination rate of V. dahliae and changed the microscopic morphology of conidia; the mycelia were arranged more disorderly and were unable to produce microsclerotium. The VdGAL4 deletion mutants exhibited reduced utilization of different carbon sources, such as raffinose and sucrose. The VdGAL4 deletion mutants were also more sensitive to abiotic stress agents of SDS, sorbitol, low-temperature stress of 16°C, and high-temperature stress of 45°C. In addition, the VdGAL4 deletion mutants lost the ability to penetrate cellophane and its mycelium were disorderly arranged. Remarkably, VdGAL4 deletion mutants exhibited reduced pathogenicity of V. dahliae. These results showed that VdGAL4 played a critical role in the pathogenicity of V. dahliae by regulating mycelial growth, conidial morphology, and the formation of microsclerotium. IMPORTANCE This study showed that α-galactosidase VdGAL4 of V. dahliae could activate plant immune response and plays an important role in conidial morphology and yield, formation of microsclerotia, and mycelial penetration. VdGAL4 deletion mutants significantly reduced the pathogenicity of V. dahliae. These findings deepened the understanding of pathogenic virulence factors and how the mechanism of pathogenic fungi infected the host, which may help to seek new strategies for effective control of plant diseases caused by pathogenic fungi.
Collapse
|
14
|
Lv J, Zhou J, Chang B, Zhang Y, Feng Z, Wei F, Zhao L, Zhang Y, Feng H. Two Metalloproteases VdM35-1 and VdASPF2 from Verticillium dahliae Are Required for Fungal Pathogenicity, Stress Adaptation, and Activating Immune Response of Host. Microbiol Spectr 2022; 10:e0247722. [PMID: 36222688 PMCID: PMC9769895 DOI: 10.1128/spectrum.02477-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/13/2022] [Indexed: 01/06/2023] Open
Abstract
Verticillium dahliae is a soilborne fungus that causes destructive vascular wilt diseases in a wide range of plant hosts. In this study, we identified two M35 family metalloproteinases: VdM35-1 and VdASPF2, and investigated their function in vitro and in vivo. The results showed that VdM35-1 and VdASPF2 were located in the cell membrane, as secreted proteins depended on signal peptide, and two histidine residues (H) induced cell death and activated plant immune response. VdM35-1 depended on membrane receptor proteins NbBAK1 and NbSOBIR1 in the process of inducing cell death, while VdASPF2 did not depend on them. The deletion of VdM35-1 and VdASPF2 led to the decrease of sporulation and the slow shortening of mycelial branch growth, and the spore morphology of VdM35-1-deficient strain became malformed. In addition, ΔVdM35-1 and ΔVdASPF2 showed more sensitive to osmotic stress, SDS, Congo red (CR), and high temperature. In terms of the utilization of carbon sources, the knockout mutants exhibited decreased utilization of carbon sources, and the growth rates on the medium containing sucrose, starch, and pectin were lower than the wild type strain, with significantly limited growth, especially on galactose-containing medium. Furthermore, ΔVdM35-1 and ΔVdASPF2 showed a significant reduction in pathogenicity. Collectively, these results suggested that VdM35-1 and VdASPF2 were important multifunction factors in the pathogenicity of V. dahliae and relative to stress adaptation and activated plant immune response. IMPORTANCE Verticillium wilt, caused by the notorious fungal pathogen V. dahliae, is one of the main limiting factors for agricultural production. Metalloproteases played an important role in the pathogenic mechanism of pathogens. Our research found that M35 family metalloproteases VdM35-1 and VdASPF2 played an important role in the development, adaptability, and pathogenicity of V. dahliae, providing a new perspective for further understanding the molecular mechanism of virulence of fungal pathogens.
Collapse
Affiliation(s)
- Junyuan Lv
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Jinglong Zhou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- Western Agricultural Research Center of Chinese Academy of Agricultural Sciences, Changji, Xinjiang, China
| | - BaiYang Chang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Yihao Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Zili Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Feng Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Lihong Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- Western Agricultural Research Center of Chinese Academy of Agricultural Sciences, Changji, Xinjiang, China
| | - Yalin Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Hongjie Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- Western Agricultural Research Center of Chinese Academy of Agricultural Sciences, Changji, Xinjiang, China
| |
Collapse
|
15
|
De Mandal S, Jeon J. Nuclear Effectors in Plant Pathogenic Fungi. MYCOBIOLOGY 2022; 50:259-268. [PMID: 36404902 PMCID: PMC9645283 DOI: 10.1080/12298093.2022.2118928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/25/2022] [Indexed: 05/29/2023]
Abstract
The nuclear import of proteins is a fundamental process in the eukaryotes including plant. It has become evident that such basic process is exploited by nuclear effectors that contain nuclear localization signal (NLS) and are secreted into host cells by fungal pathogens of plants. However, only a handful of nuclear effectors have been known and characterized to date. Here, we first summarize the types of NLSs and prediction tools available, and then delineate examples of fungal nuclear effectors and their roles in pathogenesis. Based on the knowledge on NLSs and what has been gleaned from the known nuclear effectors, we point out the gaps in our understanding of fungal nuclear effectors that need to be filled in the future researches.
Collapse
Affiliation(s)
- Surajit De Mandal
- Department of Biotechnology, College of Life and Applied Sciences, Yeungnam University, Gyeongsan, Korea
| | - Junhyun Jeon
- Department of Biotechnology, College of Life and Applied Sciences, Yeungnam University, Gyeongsan, Korea
- Plant Immunity Research Center, Seoul National University, Seoul, Korea
| |
Collapse
|
16
|
He S, Huang Y, Sun Y, Liu B, Wang S, Xuan Y, Gao Z. The Secreted Ribonuclease SRE1 Contributes to Setosphaeria turcica Virulence and Activates Plant Immunity. Front Microbiol 2022; 13:941991. [PMID: 35875548 PMCID: PMC9304870 DOI: 10.3389/fmicb.2022.941991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
During the plant infection process, pathogens can secrete several effectors. Some of the effectors are well-known for their roles in regulating plant immunity and promoting successful pathogen colonization. However, there are few studies on the ribonuclease (RNase) effectors secreted by fungi. In the present study, we discovered a secretable RNase (SRE1) in the secretome of Setosphaeria turcica that was significantly upregulated during the early stages of S. turcica infection in maize. Knockdown of SRE1 significantly reduced the virulence of S. turcica. SRE1 can induce cell death in maize and Nicotiana benthamiana. However, unlike the conventional hypersensitive response (HR) caused by other effectors, SRE1 is not dependent on its signal peptide (SP) or plant receptor kinases (such as BAK1 and SOBIR1). SRE1-induced cell death depends upon its enzymatic activity and the N-terminal β-hairpin structure. SRE1 relies on its N-terminal β-hairpin structure to enter cells, and then degrades plant's RNA through its catalytic activity causing cytotoxic effects. Additionally, SRE1 enhances N. benthamiana's resistance to pathogenic fungi and oomycetes. In summary, SRE1 promotes the virulence of S. turcica, inducing plant cell death and activating plant immune responses.
Collapse
Affiliation(s)
- Shidao He
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yufei Huang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yanqiu Sun
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Bo Liu
- College of Life Sciences, Yan'an University, Yan'an, China
| | - Suna Wang
- College of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Yuanhu Xuan
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Zenggui Gao
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
- *Correspondence: Zenggui Gao
| |
Collapse
|
17
|
Zhang S, Li C, Si J, Han Z, Chen D. Action Mechanisms of Effectors in Plant-Pathogen Interaction. Int J Mol Sci 2022; 23:6758. [PMID: 35743201 PMCID: PMC9224169 DOI: 10.3390/ijms23126758] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/09/2022] [Accepted: 06/15/2022] [Indexed: 02/08/2023] Open
Abstract
Plant pathogens are one of the main factors hindering the breeding of cash crops. Pathogens, including oomycetes, fungus, and bacteria, secrete effectors as invasion weapons to successfully invade and propagate in host plants. Here, we review recent advances made in the field of plant-pathogen interaction models and the action mechanisms of phytopathogenic effectors. The review illustrates how effectors from different species use similar and distinct strategies to infect host plants. We classify the main action mechanisms of effectors in plant-pathogen interactions according to the infestation process: targeting physical barriers for disruption, creating conditions conducive to infestation, protecting or masking themselves, interfering with host cell physiological activity, and manipulating plant downstream immune responses. The investigation of the functioning of plant pathogen effectors contributes to improved understanding of the molecular mechanisms of plant-pathogen interactions. This understanding has important theoretical value and is of practical significance in plant pathology and disease resistance genetics and breeding.
Collapse
Affiliation(s)
| | | | | | - Zhigang Han
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China; (S.Z.); (C.L.); (J.S.)
| | - Donghong Chen
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China; (S.Z.); (C.L.); (J.S.)
| |
Collapse
|
18
|
Zhang DD, Dai XF, Klosterman SJ, Subbarao KV, Chen JY. The secretome of Verticillium dahliae in collusion with plant defence responses modulates Verticillium wilt symptoms. Biol Rev Camb Philos Soc 2022; 97:1810-1822. [PMID: 35478378 PMCID: PMC9542920 DOI: 10.1111/brv.12863] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 12/12/2022]
Abstract
Verticillium dahliae is a notorious soil‐borne pathogen that enters hosts through the roots and proliferates in the plant water‐conducting elements to cause Verticillium wilt. Historically, Verticillium wilt symptoms have been explained by vascular occlusion, due to the accumulation of mycelia and plant biomacromolecule aggregation, and also by phytotoxicity caused by pathogen‐secreted toxins. Beyond the direct cytotoxicity of some members of the secretome, this review systematically discusses the roles of the V. dahliae secretome in vascular occlusion, including the deposition of polysaccharides as an outcome of plant cell wall destruction, the accumulation of fungal mycelia, and modulation of plant defence responses. By modulating plant defences and hormone levels, the secretome manipulates the vascular environment to induce Verticillium wilt. Thus, the secretome of V. dahliae colludes with plant defence responses to modulate Verticillium wilt symptoms, and thereby bridges the historical concepts of both toxin production by the pathogen and vascular occlusion as the cause of wilting symptoms.
Collapse
Affiliation(s)
- Dan-Dan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiao-Feng Dai
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Steven J Klosterman
- United States Department of Agriculture, Agricultural Research Service, Crop Improvement and Protection Research Unit, Salinas, CA, 93905, USA
| | - Krishna V Subbarao
- Department of Plant Pathology, University of California, Davis, CA, 95616, USA
| | - Jie-Yin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|