1
|
Shen G, Cao H, Zeng Q, Guo X, Shao H, Wang H, Luo L, Yue C, Zeng L. Integrated Physiological, Transcriptomic, and Metabolomic Analysis Reveals Mechanism Underlying the Serendipita indica-Enhanced Drought Tolerance in Tea Plants. PLANTS (BASEL, SWITZERLAND) 2025; 14:989. [PMID: 40219054 PMCID: PMC11990811 DOI: 10.3390/plants14070989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/11/2025] [Accepted: 03/14/2025] [Indexed: 04/14/2025]
Abstract
Drought stress significantly impairs the output of tea plants and the quality of tea products. Although Serendipita indica has demonstrated the ability to enhance drought tolerance in host plants, its impact on tea plants (Camellia sinensis) experiencing drought stress is unknown. This study assessed the response of tea plants by inoculating S. indica under drought conditions. Phenotypic and physiological analyses demonstrated that S. indica mitigated drought damage in tea plants by regulating osmotic equilibrium and antioxidant enzyme activity. Metabolome analysis showed that S. indica promoted the accumulation of flavonoid metabolites, including naringin, (-)-epiafzelechin, naringenin chalcone, and dihydromyricetin, while inhibiting the content of amino acids and derivatives, such as homoarginine, L-arginine, N6-acetyl-L-lysine, and N-palmitoylglycine, during water deficit. The expression patterns of S. indica-stimulated genes were investigated using transcriptome analysis. S. indica-induced drought-responsive genes involved in osmotic regulation, antioxidant protection, transcription factors, and signaling were identified and recognized as possibly significant in S. indica-mediated drought tolerance in tea plants. Particularly, the flavonoid biosynthesis pathway was identified from the metabolomic and transcriptomic analysis using Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Moreover, flavonoid biosynthesis-related genes were identified. S. indica-inoculation significantly upregulated the expression of cinnamate 4-hydroxylase (C4H), chalcone synthase (CHS), flavanone 3-hydroxylase (F3H), dihydroflavonol 4-reductase (DFR), anthocyanidin reductase (ANR), and leucoanthocyanidin reductase (LAR) genes compared to uninoculated plants subjected to water stress. Consequently, we concluded that S. indica inoculation primarily alleviates drought stress in tea plants by modulating the flavonoid biosynthesis pathway. These results will provide insights into the mechanisms of S. indica-enhanced drought tolerance in tea plants and establish a solid foundation for its application as a microbial agent in the management of drought in tea plants cultivation.
Collapse
Affiliation(s)
- Gaojian Shen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Food Science, Southwest University, Chongqing 400715, China
| | - Hongli Cao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Food Science, Southwest University, Chongqing 400715, China
| | - Qin Zeng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Food Science, Southwest University, Chongqing 400715, China
| | - Xiaoyu Guo
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Food Science, Southwest University, Chongqing 400715, China
| | - Huixin Shao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Food Science, Southwest University, Chongqing 400715, China
| | - Huiyi Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Food Science, Southwest University, Chongqing 400715, China
| | - Liyong Luo
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Chongqing 400715, China
| | - Chuan Yue
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Chongqing 400715, China
| | - Liang Zeng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Chongqing 400715, China
| |
Collapse
|
2
|
Zhang Q, Wang L, Wang X, Qiao J, Wang H. Roles of Germin-like Protein Family in Response to Seed Germination and Shoot Branching in Brassica napus. Int J Mol Sci 2024; 25:11518. [PMID: 39519071 PMCID: PMC11546990 DOI: 10.3390/ijms252111518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Germin-like proteins (GLPs) play important roles in the regulation of various plant development processes, such as seed vigor, root and leaf development and disease resistance, while the roles of GLPs on agronomic traits are rarely studied in Brassica napus. Here, we identified GLPs family genes in rapeseed and analyzed their potential functions. There are 77 GLPs family genes (BnGLPs) in the Zhongshuang11 rapeseed reference genome, divided into a, b, c, d, e, f six subfamilies. Tissue expression profile analysis of BnGLPs revealed the following: e subfamily genes were highly expressed in early stages of silique, cotyledon, vegetative rosette and leaf development; f subfamily genes were highly expressed in seed development; genes of a subfamily were mainly expressed in the root; and genes of b, c, d subfamily exhibited low-level or no expression in above mentioned tissues. RT-qPCR analysis confirmed that the transcripts of two f subfamily members decreased dramatically during seed germination, suggesting that f subfamily proteins may play vital roles in the early stage of seed germination. Transcriptome analysis of axillary buds in sequential developing stages revealed that the transcripts of eight e subfamily genes showed a rapid increase at the beginning of shoot branching, implying that the e subfamily members played vital roles in branch development. These results demonstrate that rapeseed BnGLPs likely play essential roles in seedling development, root development and plant architecture, indicating that harnessing certain BnGLPs may contribute to the improvement of rapeseed yield.
Collapse
Affiliation(s)
| | | | | | - Jiangwei Qiao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | | |
Collapse
|
3
|
Ahmad R, Ullah I, Ullah Z, Alam S, Rady A, Khan SS, Durrani IS. Genomic Exploration: Unraveling the Intricacies of Indica Rice Oryza sativa L. Germin-Like Protein Gene 12-3 ( OsGLP12-3) Promoter via Cloning, Sequencing, and In Silico Analysis. ACS OMEGA 2024; 9:15271-15281. [PMID: 38585130 PMCID: PMC10993326 DOI: 10.1021/acsomega.3c09670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/21/2024] [Accepted: 03/05/2024] [Indexed: 04/09/2024]
Abstract
Germin and Germin-like proteins (GLPs) are a class of plant proteins that are part of the Cupins superfamily, found in several plant organs including roots, seeds, leaves, and nectar glands. They play a crucial role in plant defense against pathogens and environmental stresses. Herein, this study focused on the promoter analysis of OsGLP12-3 in rice cultivar Swat-1 to elucidate its regulation and functions. The region (1863bp) of the OsGLP12-3 promoter from Swat-1 genomic DNA was amplified, purified, quantified, and cloned using Topo cloning technology, followed by sequencing. Further in silico comparative analysis was conducted between the OsGLP12-3 promoters from Nipponbare and Swat-1 using the Plant CARE database, identifying 24 cis-acting regulatory elements with diverse functions. These elements exhibited distinct distribution patterns in the 2 rice varieties. The OsGLP12-3 promoter revealed an abundance of regulatory elements associated with biotic and abiotic stress responses. Computational tools were employed to analyze the regulatory features of this region. In silico expression analysis of OsGLP12-3, considering various developmental stages, stress conditions, hormones, and expression timing, was performed using the TENOR tool. Pairwise alignment indicated 86% sequence similarity between Nipponbare and Swat-1. Phylogenetic analysis was conducted to explore the evolutionary relationship between the OsGLP12-3 and other plant GLPs. Additionally, 2 unique regulatory elements were modeled and docked, GARE and MBS to understand their hydrogen bonding interactions in gene regulation. The study highlights the importance of OsGLP12-3 in plant defense against biotic and abiotic stresses, supported by its expression patterns in response to various stressors and the presence of specific regulatory elements within its promoter region.
Collapse
Affiliation(s)
- Rashid Ahmad
- Institute
of Biotechnology and Genetic Engineering (IBGE), The University of Agriculture, Peshawar 25000, Khyber Pakhtunkhwa, Pakistan
| | - Irfan Ullah
- College
of Life Science and Technology, Beijing
University of Chemical Technology, Beijing 100029, China
| | - Zakir Ullah
- College
of Life Science and Technology, Beijing
University of Chemical Technology, Beijing 100029, China
| | - Shahab Alam
- Institute
of Biotechnology and Genetic Engineering (IBGE), The University of Agriculture, Peshawar 25000, Khyber Pakhtunkhwa, Pakistan
| | - Ahmed Rady
- Department
of Zoology, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Shahin Shah Khan
- College
of Life Science and Technology, Beijing
University of Chemical Technology, Beijing 100029, China
| | - Irfan Safdar Durrani
- Institute
of Biotechnology and Genetic Engineering (IBGE), The University of Agriculture, Peshawar 25000, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
4
|
Ilyas M, Ali I, Nasser Binjawhar D, Ullah S, Eldin SM, Ali B, Iqbal R, Bokhari SHA, Mahmood T. Molecular Characterization of Germin-like Protein Genes in Zea mays ( ZmGLPs) Using Various In Silico Approaches. ACS OMEGA 2023; 8:16327-16344. [PMID: 37179620 PMCID: PMC10173433 DOI: 10.1021/acsomega.3c01104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/10/2023] [Indexed: 05/15/2023]
Abstract
Germin (GER) and germin-like proteins (GLPs) play an important role in various plant processes. Zea mays contains 26 germin-like protein genes (ZmGLPs) located on chromosomes 2, 4, and 10; most of which are functionally unexplored. The present study aimed to characterize all ZmGLPs using the latest computational tools. All of them were studied at a physicochemical, subcellular, structural, and functional level, and their expression was predicted in plant development, against biotic and abiotic stresses using various in silico approaches. Overall, ZmGLPs showed greater similarity in their physicochemical properties, domain architecture, and structure, mostly localized in the cytoplasmic or extracellular regions. Phylogenetically, they have a narrow genetic background with a recent history of gene duplication events on chromosome 4. Functional analysis revealed novel enzymatic activities of phosphoglycolate phosphatase, adenosylhomocysteinase, phosphoglycolate phosphatase-like, osmotin/thaumatin-like, and acetohydroxy acid isomeroreductase largely mediated by disulfide bonding. Expression analysis revealed their crucial role in the root, root tips, crown root, elongation and maturation zones, radicle, and cortex with the highest expression being observed during germination and at the maturity levels. Further, ZmGLPs showed strong expression against biotic (Aspergillus flavus, Colletotrichum graminicola, Cercospora zeina, Fusarium verticillioides, and Fusarium virguliforme) while limited expression was noted against abiotic stresses. Concisely, our results provide a platform for additional functional exploration of the ZmGLP genes against various environmental stresses.
Collapse
Affiliation(s)
- Muhammad Ilyas
- Department
of Botany, Kohsar University Murree, Murree 19679, Punjab, Pakistan
| | - Iftikhar Ali
- Centre
for Plant Science and Biodiversity, University
of Swat, Charbagh 19120, Pakistan
- Department
of Genetics and Development, Columbia University
Irving Medical Center, New York, New York 10032, United States
| | - Dalal Nasser Binjawhar
- Department
of Chemistry, College of Science, Princess
Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Sami Ullah
- Department
of Forestry & Range Management, Kohsar
University Murree, Murree 19679, Pakistan
| | - Sayed M Eldin
- Center
of
Research, Faculty of Engineering, Future
University in Egypt, New Cairo 11835, Egypt
| | - Baber Ali
- Department
of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Rashid Iqbal
- Department
of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Syed Habib Ali Bokhari
- Department
of Biosciences, CUI, Islamabad, Pakistan; Faculty of Biomedical and
Life Sciences, Kohsar University Murree, Murree 19679, Pakistan
| | - Tariq Mahmood
- Department
of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| |
Collapse
|
5
|
Hu F, Ye Z, Dong K, Zhang W, Fang D, Cao J. Divergent structures and functions of the Cupin proteins in plants. Int J Biol Macromol 2023; 242:124791. [PMID: 37164139 DOI: 10.1016/j.ijbiomac.2023.124791] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023]
Abstract
Cupin superfamily proteins have extensive functions. Their members are not only involved in the development of plants but also responded to various stresses. Whereas, the research on the Cupin members has not attracted enough attention. In this article, we summarized the research progress on these family genes in recent years and explored their evolution, structural characteristics, and biological functions. The significance of members of the Cupin family in the development of plant cell walls, roots, leaves, flowers, fruits, and seeds and their role in stress response are highlighted. Simultaneously, the prospective application of Cupin protein in crop enhancement was introduced. Some members can enhance plant growth, development, and resistance to adversity, thereby increasing crop yield. It will be as a foundation for future effective crop research and breeding.
Collapse
Affiliation(s)
- Fei Hu
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Ziyi Ye
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Kui Dong
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Weimeng Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Da Fang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Jun Cao
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|