1
|
Peterson PP, Croog S, Choi Y, Sun S, Heitman J. STRIPAK complex defects result in pseudosexual reproduction in Cryptococcus neoformans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.08.647827. [PMID: 40297506 PMCID: PMC12036433 DOI: 10.1101/2025.04.08.647827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
STRIPAK is an evolutionarily conserved signaling complex that coordinates diverse cellular processes across fungi and animals. In the human fungal pathogen Cryptococcus neoformans , STRIPAK was recently shown to play critical roles in maintaining genome stability and controlling both sexual and asexual development. In Cryptococcus , sexual reproduction is closely linked to virulence, and our findings demonstrate that the STRIPAK complex plays key roles in both processes. Here, we further investigate the specific roles of the STRIPAK catalytic subunit Pph22 and its regulatory partner Far8 during sexual development. We show that while pph22 Δ mutants are defective in α- a sexual reproduction, exhibiting impaired meiotic progression and a failure to produce viable spores, the deletion of PPH22 resulted in exclusive pseudosexual reproduction, with progeny inheriting nuclear genomes solely from the wild-type parent. Overexpression of PPG1 , a related phosphatase, rescued growth and developmental defects in pph22 Δ mutants, and restored the preference for α- a sexual reproduction over pseudosexual reproduction during mating, suggesting functional redundancy within the STRIPAK signaling network. Furthermore, deletion of FAR8 , another component of the STRIPAK complex, also led to a high rate of pseudosexual reproduction during α- a sexual mating, reinforcing the role of STRIPAK in modulating reproductive modes in C. neoformans , possibly through regulating nuclear inheritance and meiotic progression. Together, these findings highlight the distinct contributions of STRIPAK to sexual reproduction in C. neoformans and suggest that disruptions of this complex affect genome integrity and inheritance mechanisms, with broader implications for fungal adaptation and pathogenesis.
Collapse
|
2
|
Liu Y, Shang S, Liu C, Liu Y, Xu K, He D, Wang L. Roles of the Sec2p Gene in the Growth and Pathogenicity Regulation of Aspergillus fumigatus. J Fungi (Basel) 2025; 11:36. [PMID: 39852455 PMCID: PMC11767236 DOI: 10.3390/jof11010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/25/2024] [Accepted: 01/03/2025] [Indexed: 01/26/2025] Open
Abstract
Aspergillus fumigatus (A. fumigatus) is a filamentous fungus that causes invasive aspergillosis in immunocompromised individuals. Regulating fungal growth is crucial for preventing disease development. This study found that deleting the guanine nucleotide exchange factor Sec2p gene led to slower A. fumigatus growth and reduced the fungal burden and mortality of infected mice. However, the mechanism by which this gene affects A. fumigatus growth and pathogenicity remains unclear. Transmission electron microscopy revealed that the vacuoles of the gene knockout strain ΔSec2p accumulated more autophagosomes, indicating inhibition of autophagosome degradation. When phenylmethylsulfonyl fluoride was applied to inhibit autophagosome degradation, the ΔSec2p strain produced fewer autophagosomes; the ΔSec2p autophagy pathway was inhibited, affecting A. fumigatus' nutrient homeostasis and growth. Unlike the wild type, the ΔSec2p strain showed strong resistance to cell wall stress. When exposed to caspofungin, Sec2p negatively regulated the expression of cell wall integrity (CWI) pathway genes and participated in the cell wall stress response of A. fumigatus. Furthermore, this gene positively regulated the autophagy pathway and enhanced CWI pathway gene expression to respond to rapamycin-induced autophagy. In summary, Sec2p positively regulated the autophagy pathway; it negatively regulated the CWI pathway during cell wall stress, coordinating the growth and pathogenicity of A. fumigatus.
Collapse
Affiliation(s)
- Yuhuan Liu
- Department of Pathogenobiology, Jilin University Mycology Research Center, Key Laboratory of Zoonosis Research, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (Y.L.); (K.X.)
| | - Shumi Shang
- Department of Pathogenobiology, Jilin University Mycology Research Center, Key Laboratory of Zoonosis Research, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (Y.L.); (K.X.)
| | - Cong Liu
- Department of Dermatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China;
| | - Yichen Liu
- Department of Pathogenobiology, Jilin University Mycology Research Center, Key Laboratory of Zoonosis Research, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (Y.L.); (K.X.)
| | - Keyang Xu
- Department of Pathogenobiology, Jilin University Mycology Research Center, Key Laboratory of Zoonosis Research, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (Y.L.); (K.X.)
| | - Dan He
- Department of Pathogenobiology, Jilin University Mycology Research Center, Key Laboratory of Zoonosis Research, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (Y.L.); (K.X.)
| | - Li Wang
- Department of Pathogenobiology, Jilin University Mycology Research Center, Key Laboratory of Zoonosis Research, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (Y.L.); (K.X.)
| |
Collapse
|
3
|
Kück U, Pöggeler S. STRIPAK, a fundamental signaling hub of eukaryotic development. Microbiol Mol Biol Rev 2024; 88:e0020523. [PMID: 39526753 DOI: 10.1128/mmbr.00205-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
SUMMARYThe striatin-interacting phosphatase and kinase (STRIPAK) complex is involved in the regulation of many developmental processes in eukaryotic microorganisms and all animals, including humans. STRIPAK is a component of protein phosphatase 2A (PP2A), a highly conserved serine-threonine phosphatase composed of catalytic subunits (PP2Ac), a scaffolding subunit (PP2AA) and various substrate-directing B regulatory subunits. In particular, the B''' regulatory subunit called striatin has evoked major interest over the last 20 years. Studies in fungal systems have contributed substantially to our current knowledge about STRIPAK composition, assembly, and cellular localization, as well as its regulatory role in autophagy and the morphology of fungal development. STRIPAK represents a signaling hub with many kinases and thus integrates upstream and downstream information from many conserved eukaryotic signaling pathways. A profound understanding of STRIPAK's regulatory role in fungi opens the gateway to understanding the multifarious functions carried out by STRIPAK in higher eukaryotes, including its contribution to malignant cell growth.
Collapse
Affiliation(s)
- Ulrich Kück
- Allgemeine & Molekulare Botanik, Ruhr-University, Bochum, Germany
| | - Stefanie Pöggeler
- Department of Genetics of Eukaryotic Microorganisms, Institute of Microbiology and Genetics, Georg-August-University, Göttingen, Germany
- Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University, Göttingen, Germany
| |
Collapse
|
4
|
Peterson PP, Choi JT, Fu C, Cowen LE, Sun S, Bahn YS, Heitman J. The Cryptococcus neoformans STRIPAK complex controls genome stability, sexual development, and virulence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.06.606879. [PMID: 39149236 PMCID: PMC11326274 DOI: 10.1101/2024.08.06.606879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The eukaryotic serine/threonine protein phosphatase PP2A is a heterotrimeric enzyme composed of a scaffold A subunit, a regulatory B subunit, and a catalytic C subunit. Of the four known B subunits, the B"' subunit (known as striatin) interacts with the multi-protein striatin-interacting phosphatase and kinase (STRIPAK) complex. Orthologs of STRIPAK components were identified in Cryptococcus neoformans, namely PP2AA/Tpd3, PP2AC/Pph22, PP2AB/Far8, STRIP/Far11, SLMAP/Far9, and Mob3. Structural modeling, protein domain analysis, and detected protein-protein interactions suggest C. neoformans STRIPAK is assembled similarly to the human and fungal orthologs. Here, STRIPAK components Pph22, Far8, and Mob3 were functionally characterized. Whole-genome sequencing revealed that mutations in STRIPAK complex subunits lead to increased segmental and chromosomal aneuploidy, suggesting STRIPAK functions in maintaining genome stability. We demonstrate that PPH22 is a haploinsufficient gene: heterozygous PPH22/pph22Δ mutant diploid strains exhibit defects in hyphal growth and sporulation and have a significant fitness disadvantage when grown in competition against a wild-type diploid. Deletion mutants pph22Δ, far8Δ, and mob3Δ exhibit defects in mating and sexual differentiation, including impaired hyphae, basidia, and basidiospore production. Loss of either PPH22 or FAR8 in a haploid background leads to growth defects at 30°C, severely reduced growth at elevated temperature, abnormal cell morphology, and impaired virulence. Additionally, pph22Δ strains frequently accumulate suppressor mutations that result in overexpression of another putative PP2A catalytic subunit, PPG1. The pph22Δ and far8Δ mutants are also unable to grow in the presence of the calcineurin inhibitors cyclosporine A or FK506, and thus these mutations are synthetically lethal with loss of calcineurin activity. Conversely, mob3Δ mutants display increased thermotolerance, capsule production, and melanization, and are hypervirulent in a murine infection model. Taken together, these findings reveal that the C. neoformans STRIPAK complex plays an important role in genome stability, vegetative growth, sexual development, and virulence in this prominent human fungal pathogen.
Collapse
Affiliation(s)
- Patricia P. Peterson
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Jin-Tae Choi
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Ci Fu
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Yong-Sun Bahn
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
5
|
Peterson PP, Choi JT, Fu C, Cowen LE, Sun S, Bahn YS, Heitman J. The Cryptococcus neoformans STRIPAK complex controls genome stability, sexual development, and virulence. PLoS Pathog 2024; 20:e1012735. [PMID: 39561188 PMCID: PMC11614259 DOI: 10.1371/journal.ppat.1012735] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/03/2024] [Accepted: 11/07/2024] [Indexed: 11/21/2024] Open
Abstract
The eukaryotic serine/threonine protein phosphatase PP2A is a heterotrimeric enzyme composed of a scaffold A subunit, a regulatory B subunit, and a catalytic C subunit. Of the four known B subunits, the B"' subunit (known as striatin) interacts with the multi-protein striatin-interacting phosphatase and kinase (STRIPAK) complex. Orthologs of STRIPAK components were identified in Cryptococcus neoformans, namely PP2AA/Tpd3, PP2AC/Pph22, PP2AB/Far8, STRIP/Far11, SLMAP/Far9, and Mob3. Structural modeling, protein domain analysis, and detected protein-protein interactions suggest C. neoformans STRIPAK is assembled similarly to the human and fungal orthologs. Here, STRIPAK components Pph22, Far8, and Mob3 were functionally characterized. Whole-genome sequencing revealed that mutations in STRIPAK complex subunits lead to increased segmental and chromosomal aneuploidy, suggesting STRIPAK functions in maintaining genome stability. We demonstrate that PPH22 is a haploinsufficient gene: heterozygous PPH22/pph22Δ mutant diploid strains exhibit defects in hyphal growth and sporulation and have a significant fitness disadvantage when grown in competition against a wild-type diploid. Deletion mutants pph22Δ, far8Δ, and mob3Δ exhibit defects in mating and sexual differentiation, including impaired hyphae, basidia, and basidiospore production. Loss of either PPH22 or FAR8 in a haploid background leads to growth defects at 30°C, severely reduced growth at elevated temperature, abnormal cell morphology, and impaired virulence. Additionally, pph22Δ strains frequently accumulate suppressor mutations that result in overexpression of another putative PP2A catalytic subunit, PPG1. The pph22Δ and far8Δ mutants are also unable to grow in the presence of the calcineurin inhibitors cyclosporine A or FK506, and thus these mutations are synthetically lethal with loss of calcineurin activity. Conversely, mob3Δ mutants display increased thermotolerance, capsule production, and melanization, and are hypervirulent in a murine infection model. Taken together, these findings reveal that the C. neoformans STRIPAK complex plays an important role in genome stability, vegetative growth, sexual development, and virulence in this prominent human fungal pathogen.
Collapse
Affiliation(s)
- Patricia P. Peterson
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Jin-Tae Choi
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Ci Fu
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Yong-Sun Bahn
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|
6
|
Song Y, Wang Y, Zhang H, Saddique MAB, Luo X, Ren M. The TOR signalling pathway in fungal phytopathogens: A target for plant disease control. MOLECULAR PLANT PATHOLOGY 2024; 25:e70024. [PMID: 39508186 PMCID: PMC11541241 DOI: 10.1111/mpp.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/10/2024] [Accepted: 10/18/2024] [Indexed: 11/08/2024]
Abstract
Plant diseases caused by fungal phytopathogens have led to significant economic losses in agriculture worldwide. The management of fungal diseases is mainly dependent on the application of fungicides, which are not suitable for sustainable agriculture, human health, and environmental safety. Thus, it is necessary to develop novel targets and green strategies to mitigate the losses caused by these pathogens. The target of rapamycin (TOR) complexes and key components of the TOR signalling pathway are evolutionally conserved in pathogens and closely related to the vegetative growth and pathogenicity. As indicated in recent systems, chemical, genetic, and genomic studies on the TOR signalling pathway, phytopathogens with TOR dysfunctions show severe growth defects and nonpathogenicity, which makes the TOR signalling pathway to be developed into an ideal candidate target for controlling plant disease. In this review, we comprehensively discuss the current knowledge on components of the TOR signalling pathway in microorganisms and the diverse roles of various plant TOR in response to plant pathogens. Furthermore, we analyse a range of disease management strategies that rely on the TOR signalling pathway, including genetic modification technologies and chemical controls. In the future, disease control strategies based on the TOR signalling network are expected to become a highly effective weapon for crop protection.
Collapse
Affiliation(s)
- Yun Song
- College of Agriculture and BiologyLiaocheng UniversityLiaochengChina
| | - Yaru Wang
- College of Agriculture and BiologyLiaocheng UniversityLiaochengChina
| | - Huafang Zhang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences; Chengdu Agricultural Science and Technology CenterChengduChina
| | - Muhammad Abu Bakar Saddique
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences; Chengdu Agricultural Science and Technology CenterChengduChina
| | - Xiumei Luo
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences; Chengdu Agricultural Science and Technology CenterChengduChina
| | - Maozhi Ren
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences; Chengdu Agricultural Science and Technology CenterChengduChina
| |
Collapse
|
7
|
Niu G, Yang Q, Liao Y, Sun D, Tang Z, Wang G, Xu M, Wang C, Kang J. Advances in Understanding Fusarium graminearum: Genes Involved in the Regulation of Sexual Development, Pathogenesis, and Deoxynivalenol Biosynthesis. Genes (Basel) 2024; 15:475. [PMID: 38674409 PMCID: PMC11050156 DOI: 10.3390/genes15040475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
The wheat head blight disease caused by Fusarium graminearum is a major concern for food security and the health of both humans and animals. As a pathogenic microorganism, F. graminearum produces virulence factors during infection to increase pathogenicity, including various macromolecular and small molecular compounds. Among these virulence factors, secreted proteins and deoxynivalenol (DON) are important weapons for the expansion and colonization of F. graminearum. Besides the presence of virulence factors, sexual reproduction is also crucial for the infection process of F. graminearum and is indispensable for the emergence and spread of wheat head blight. Over the last ten years, there have been notable breakthroughs in researching the virulence factors and sexual reproduction of F. graminearum. This review aims to analyze the research progress of sexual reproduction, secreted proteins, and DON of F. graminearum, emphasizing the regulation of sexual reproduction and DON synthesis. We also discuss the application of new gene engineering technologies in the prevention and control of wheat head blight.
Collapse
Affiliation(s)
- Gang Niu
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (G.N.); (Q.Y.); (Y.L.); (D.S.); (Z.T.); (G.W.); (M.X.)
| | - Qing Yang
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (G.N.); (Q.Y.); (Y.L.); (D.S.); (Z.T.); (G.W.); (M.X.)
| | - Yihui Liao
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (G.N.); (Q.Y.); (Y.L.); (D.S.); (Z.T.); (G.W.); (M.X.)
| | - Daiyuan Sun
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (G.N.); (Q.Y.); (Y.L.); (D.S.); (Z.T.); (G.W.); (M.X.)
| | - Zhe Tang
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (G.N.); (Q.Y.); (Y.L.); (D.S.); (Z.T.); (G.W.); (M.X.)
| | - Guanghui Wang
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (G.N.); (Q.Y.); (Y.L.); (D.S.); (Z.T.); (G.W.); (M.X.)
| | - Ming Xu
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (G.N.); (Q.Y.); (Y.L.); (D.S.); (Z.T.); (G.W.); (M.X.)
| | - Chenfang Wang
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (G.N.); (Q.Y.); (Y.L.); (D.S.); (Z.T.); (G.W.); (M.X.)
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jiangang Kang
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (G.N.); (Q.Y.); (Y.L.); (D.S.); (Z.T.); (G.W.); (M.X.)
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
8
|
Moonjely S, Ebert M, Paton-Glassbrook D, Noel ZA, Roze L, Shay R, Watkins T, Trail F. Update on the state of research to manage Fusarium head blight. Fungal Genet Biol 2023; 169:103829. [PMID: 37666446 DOI: 10.1016/j.fgb.2023.103829] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/06/2023]
Abstract
Fusarium head blight (FHB) is one of the most devastating diseases of cereal crops, causing severe reduction in yield and quality of grain worldwide. In the United States, the major causal agent of FHB is the mycotoxigenic fungus, Fusarium graminearum. The contamination of grain with mycotoxins, including deoxynivalenol and zearalenone, is a particularly serious concern due to its impact on the health of humans and livestock. For the past few decades, multidisciplinary studies have been conducted on management strategies designed to reduce the losses caused by FHB. However, effective management is still challenging due to the emergence of fungicide-tolerant strains of F. graminearum and the lack of highly resistant wheat and barley cultivars. This review presents multidisciplinary approaches that incorporate advances in genomics, genetic-engineering, new fungicide chemistries, applied biocontrol, and consideration of the disease cycle for management of FHB.
Collapse
Affiliation(s)
- Soumya Moonjely
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA
| | - Malaika Ebert
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA
| | - Drew Paton-Glassbrook
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA; Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48823, USA
| | - Zachary A Noel
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA
| | - Ludmila Roze
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA
| | - Rebecca Shay
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA
| | - Tara Watkins
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA; Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48823, USA
| | - Frances Trail
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA; Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48823, USA.
| |
Collapse
|