1
|
The Development of Cytogenetic Maps for Malaria Mosquitoes. INSECTS 2018; 9:insects9030121. [PMID: 30227611 PMCID: PMC6164047 DOI: 10.3390/insects9030121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/13/2018] [Accepted: 09/13/2018] [Indexed: 11/20/2022]
Abstract
Anopheline mosquitoes are important vectors of human malaria. Next-generation sequencing opens new opportunities for studies of mosquito genomes to uncover the genetic basis of a Plasmodium transmission. Physical mapping of genome sequences to polytene chromosomes significantly improves reference assemblies. High-resolution cytogenetic maps are essential for anchoring genome sequences to chromosomes as well as for studying breakpoints of chromosome rearrangements and chromatin protein localization. Here we describe a detailed pipeline for the development of high-resolution cytogenetic maps using polytene chromosomes of malaria mosquitoes. We apply this workflow to the refinement of the cytogenetic map developed for Anopheles beklemishevi.
Collapse
|
2
|
Artemov GN, Velichevskaya AI, Bondarenko SM, Karagyan GH, Aghayan SA, Arakelyan MS, Stegniy VN, Sharakhov IV, Sharakhova MV. A standard photomap of the ovarian nurse cell chromosomes for the dominant malaria vector in Europe and Middle East Anopheles sacharovi. Malar J 2018; 17:276. [PMID: 30060747 PMCID: PMC6065146 DOI: 10.1186/s12936-018-2428-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/25/2018] [Indexed: 08/10/2023] Open
Abstract
Background Anopheles sacharovi is a dominant malaria vector species in South Europe and the Middle East which has a highly plastic behaviour at both adult and larval stages. Such plasticity has prevented this species from eradication by several anti-vector campaigns. The development of new genome-based strategies for vector control will benefit from genome sequencing and physical chromosome mapping of this mosquito. Although a cytogenetic photomap for chromosomes from salivary glands of An. sacharovi has been developed, no cytogenetic map suitable for physical genome mapping is available. Methods Mosquitoes for this study were collected at adult stage in animal shelters in Armenia. Polytene chromosome preparations were prepared from ovarian nurse cells. Fluorescent in situ hybridization (FISH) was performed using PCR amplified probes. Results This study constructed a high-quality standard photomap for polytene chromosomes from ovarian nurse cells of An. sacharovi. Following the previous nomenclature, chromosomes were sub-divided into 39 numbered and 119 lettered sub-divisions. Chromosomal landmarks for the chromosome recognition were described. Using FISH, 4 PCR-amplified genic probes were mapped to the chromosomes. The positions of the probes demonstrated gene order reshuffling between An. sacharovi and Anopheles atroparvus which has not been seen cytologically. In addition, this study described specific chromosomal landmarks that can be used for the cytotaxonomic diagnostics of An. sacharovi based on the banding pattern of its polytene chromosomes. Conclusions This study constructed a high-quality standard photomap for ovarian nurse cell chromosomes of An. sacharovi and validated its utility for physical genome mapping. Based on the map, cytotaxonomic features for identification of An. sacharovi have been described. The cytogenetic map constructed in this study will assist in creating a chromosome-based genome assembly for this mosquito and in developing cytotaxonomic tools for identification of other species from the Maculipennis group.
Collapse
Affiliation(s)
- Gleb N Artemov
- Laboratory of Ecology, Genetics and Environment Protection, Tomsk State University, Tomsk, Russia
| | - Alena I Velichevskaya
- Laboratory of Ecology, Genetics and Environment Protection, Tomsk State University, Tomsk, Russia
| | - Semen M Bondarenko
- Laboratory of Ecology, Genetics and Environment Protection, Tomsk State University, Tomsk, Russia
| | - Gayane H Karagyan
- Scientific Center of Zoology and Hydroecology, The National Academy of Sciences of the Republic of Armenia, Yerevan, Armenia
| | - Sargis A Aghayan
- Scientific Center of Zoology and Hydroecology, The National Academy of Sciences of the Republic of Armenia, Yerevan, Armenia.,Chair of Zoology, Yerevan State University, Yerevan, Armenia
| | | | - Vladimir N Stegniy
- Laboratory of Ecology, Genetics and Environment Protection, Tomsk State University, Tomsk, Russia
| | - Igor V Sharakhov
- Laboratory of Ecology, Genetics and Environment Protection, Tomsk State University, Tomsk, Russia. .,Department of Entomology, Fralin Life Science Institute, Virginia Tech, Blacksburg, VA, USA.
| | - Maria V Sharakhova
- Laboratory of Ecology, Genetics and Environment Protection, Tomsk State University, Tomsk, Russia. .,Department of Entomology, Fralin Life Science Institute, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
3
|
Artemov GN, Bondarenko SM, Naumenko AN, Stegniy VN, Sharakhova MV, Sharakhov IV. Partial-arm translocations in evolution of malaria mosquitoes revealed by high-coverage physical mapping of the Anopheles atroparvus genome. BMC Genomics 2018; 19:278. [PMID: 29688842 PMCID: PMC5914054 DOI: 10.1186/s12864-018-4663-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 04/12/2018] [Indexed: 02/06/2023] Open
Abstract
Background Malaria mosquitoes have had a remarkable stability in the number of chromosomes in their karyotype (2n = 6) during 100 million years of evolution. Moreover, autosomal arms were assumed to maintain their integrity even if their associations with each other changed via whole-arm translocations. Here we use high-coverage comparative physical genome mapping of three Anopheles species to test the extent of evolutionary conservation of chromosomal arms in malaria mosquitoes. Results In this study, we developed a physical genome map for Anopheles atroparvus, one of the dominant malaria vectors in Europe. Using fluorescence in situ hybridization (FISH) of DNA probes with the ovarian nurse cell polytene chromosomes and synteny comparison, we anchored 56 genomic scaffolds to the An. atroparvus chromosomes. The obtained physical map represents 89.6% of the An. atroparvus genome. This genome has the second highest mapping coverage among Anophelinae assemblies after An. albimanus, which has 98.2% of the genome assigned to its chromosomes. A comparison of the An. atroparvus, An. albimanus, and An. gambiae genomes identified partial-arm translocations between the autosomal arms that break down the integrity of chromosome elements in evolution affecting the structure of the genetic material in the pericentromeric regions. Unlike An. atroparvus and An. albimanus, all chromosome elements of An. gambiae are fully syntenic with chromosome elements of the putative ancestral Anopheles karyotype. We also detected nonrandom distribution of large conserved synteny blocks and confirmed a higher rate of inversion fixation in the X chromosome compared with autosomes. Conclusions Our study demonstrates the power of physical mapping for understanding the genome evolution in malaria mosquitoes. The results indicate that syntenic relationships among chromosome elements of Anopheles species have not been fully preserved because of multiple partial-arm translocations. Electronic supplementary material The online version of this article (10.1186/s12864-018-4663-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gleb N Artemov
- Laboratory of Ecology, Genetics and Environmental Protection, Tomsk State University, 36 Lenin Avenue, Tomsk, 634050, Russia
| | - Semen M Bondarenko
- Laboratory of Ecology, Genetics and Environmental Protection, Tomsk State University, 36 Lenin Avenue, Tomsk, 634050, Russia
| | - Anastasia N Naumenko
- Department of Entomology, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, 360 West Campus Drive, Blacksburg, VA, 24061, USA
| | - Vladimir N Stegniy
- Laboratory of Ecology, Genetics and Environmental Protection, Tomsk State University, 36 Lenin Avenue, Tomsk, 634050, Russia
| | - Maria V Sharakhova
- Laboratory of Ecology, Genetics and Environmental Protection, Tomsk State University, 36 Lenin Avenue, Tomsk, 634050, Russia. .,Department of Entomology, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, 360 West Campus Drive, Blacksburg, VA, 24061, USA.
| | - Igor V Sharakhov
- Laboratory of Ecology, Genetics and Environmental Protection, Tomsk State University, 36 Lenin Avenue, Tomsk, 634050, Russia. .,Department of Entomology, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, 360 West Campus Drive, Blacksburg, VA, 24061, USA.
| |
Collapse
|
4
|
Wei Y, Cheng B, Zhu G, Shen D, Liang J, Wang C, Wang J, Tang J, Cao J, Sharakhov IV, Xia A. Comparative physical genome mapping of malaria vectors Anopheles sinensis and Anopheles gambiae. Malar J 2017; 16:235. [PMID: 28583133 PMCID: PMC5460330 DOI: 10.1186/s12936-017-1888-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/31/2017] [Indexed: 11/29/2022] Open
Abstract
Background Anopheles sinensis is a dominant natural vector of Plasmodium vivax in China, Taiwan, Japan, and Korea. Recent genome sequencing of An. sinensis provides important insights into the genomic basis of vectorial capacity. However, the lack of a physical genome map with chromosome assignment and orientation of sequencing scaffolds hinders comparative analyses with other genomes to infer evolutionary changes relevant to the vector capacity. Results Here, a physical genome map for An. sinensis was constructed by assigning 52 scaffolds onto the chromosomes using fluorescence in situ hybridization (FISH). This chromosome-based genome assembly composes approximately 36% of the total An. sinensis genome. Comparisons of 3955 orthologous genes between An. sinensis and Anopheles gambiae identified 361 conserved synteny blocks and 267 inversions fixed between these two lineages. The rate of gene order reshuffling on the X chromosome is approximately 3.2 times higher than that on the autosomes. Conclusions The physical map will facilitate detailed genomic analysis of An. sinensis and contribute to understanding of the patterns and mechanisms of large-scale genome rearrangements in anopheline mosquitoes. Electronic supplementary material The online version of this article (doi:10.1186/s12936-017-1888-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yun Wei
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Biao Cheng
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Guoding Zhu
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu Province, China
| | - Danyu Shen
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Jiangtao Liang
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Cong Wang
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Jing Wang
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Jianxia Tang
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu Province, China
| | - Jun Cao
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu Province, China
| | - Igor V Sharakhov
- Department of Entomology, Fralin Life Science Institute, Virginia Tech, Blacksburg, VA, USA.,Laboratory for Ecology, Genetics and Environmental Protection, Tomsk State University, Tomsk, Russia
| | - Ai Xia
- Department of Entomology, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
5
|
The Physical Genome Mapping of Anopheles albimanus Corrected Scaffold Misassemblies and Identified Interarm Rearrangements in Genus Anopheles. G3-GENES GENOMES GENETICS 2017; 7:155-164. [PMID: 27821634 PMCID: PMC5217105 DOI: 10.1534/g3.116.034959] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The genome of the Neotropical malaria vector Anopheles albimanus was sequenced as part of the 16 Anopheles Genomes Project published in 2015. The draft assembly of this species consisted of 204 scaffolds with an N50 scaffold size of 18.1 Mb and a total assembly size of 170.5 Mb. It was among the smallest genomes with the longest scaffolds in the 16 Anopheles species cluster, making An. albimanus the logical choice for anchoring the genome assembly to chromosomes. In this study, we developed a high-resolution cytogenetic photomap with completely straightened polytene chromosomes from the salivary glands of the mosquito larvae. Based on this photomap, we constructed a chromosome-based genome assembly using fluorescent in situ hybridization of PCR-amplified DNA probes. Our physical mapping, assisted by an ortholog-based bioinformatics approach, identified and corrected nine misassemblies in five large genomic scaffolds. Misassemblies mostly occurred in junctions between contigs. Our comparative analysis of scaffolds with the An. gambiae genome detected multiple genetic exchanges between pericentromeric regions of chromosomal arms caused by partial-arm translocations. The final map consists of 40 ordered genomic scaffolds and corrected fragments of misassembled scaffolds. The An. albimanus physical map comprises 98.2% of the total genome assembly and represents the most complete genome map among mosquito species. This study demonstrates that physical mapping is a powerful tool for correcting errors in draft genome assemblies and for creating chromosome-anchored reference genomes.
Collapse
|
6
|
Liang J, Cheng B, Zhu G, Wei Y, Tang J, Cao J, Ma Y, Sharakhova MV, Xia A, Sharakhov IV. Structural divergence of chromosomes between malaria vectors Anopheles lesteri and Anopheles sinensis. Parasit Vectors 2016; 9:608. [PMID: 27887641 PMCID: PMC5124334 DOI: 10.1186/s13071-016-1855-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 10/23/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Anopheles lesteri and Anopheles sinensis are two major malaria vectors in China and Southeast Asia. They are dramatically different in terms of geographical distribution, host preference, resting habitats, and other traits associated with ecological adaptation and malaria transmission. Both species belong to the Anopheles hyrcanus group, but the extent of genetic differences between them is not well understood. To provide an effective way to differentiate between species and to find useful markers for population genetics studies, we performed a comparative cytogenetic analysis of these two malaria vectors. RESULTS Presented here is a standard cytogenetic map for An. lesteri, and a comparative analysis of chromosome structure and gene order between An. lesteri and An. sinensis. Our results demonstrate that much of the gene order on chromosomes X and 2 was reshuffled between the two species. However, the banding pattern and the gene order on chromosome 3 appeared to be conserved. We also found two new polymorphic inversions, 2Lc and 3Rb, in An. lesteri, and we mapped the breakpoints of these two inversions on polytene chromosomes. CONCLUSIONS Our results demonstrate the extent of structural divergence of chromosomes between An. lesteri and An. sinensis, and provide a new taxonomic cytogenetic tool to distinguish between these two species. Polymorphic inversions of An. lesteri could serve as markers for studies of the population structure and ecological adaptations of this major malaria vector.
Collapse
Affiliation(s)
- Jiangtao Liang
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Biao Cheng
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Guoding Zhu
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu Province, China
| | - Yun Wei
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Jianxia Tang
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu Province, China
| | - Jun Cao
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu Province, China
| | - Yajun Ma
- Department of Tropical Infectious Diseases, Faculty of Tropical Medicine and Public Health, Second Military Medical University, Shanghai, 200433, China
| | - Maria V Sharakhova
- Department of Entomology, Fralin Life Science Institute, Virginia Tech, Blacksburg, VA, USA.,Laboratory for Ecology, Genetics and Environmental Protection, Tomsk State University, Tomsk, Russia
| | - Ai Xia
- Department of Entomology, Nanjing Agricultural University, Nanjing, China.
| | - Igor V Sharakhov
- Department of Entomology, Fralin Life Science Institute, Virginia Tech, Blacksburg, VA, USA. .,Laboratory for Ecology, Genetics and Environmental Protection, Tomsk State University, Tomsk, Russia.
| |
Collapse
|
7
|
GNBP domain of Anopheles darlingi: are polymorphic inversions and gene variation related to adaptive evolution? Genetica 2016; 144:99-106. [PMID: 26767379 DOI: 10.1007/s10709-016-9881-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 01/09/2016] [Indexed: 10/22/2022]
Abstract
Anopheles darlingi is the main malaria vector in humans in South America. In the Amazon basin, it lives along the banks of rivers and lakes, which responds to the annual hydrological cycle (dry season and rainy season). In these breeding sites, the larvae of this mosquito feed on decomposing organic and microorganisms, which can be pathogenic and trigger the activation of innate immune system pathways, such as proteins Gram-negative binding protein (GNBP). Such environmental changes affect the occurrence of polymorphic inversions especially at the heterozygote frequency, which confer adaptative advantage compared to homozygous inversions. We mapped the GNBP probe to the An. darlingi 2Rd inversion by fluorescent in situ hybridization (FISH), which was a good indicator of the GNBP immune response related to the chromosomal polymorphic inversions and adaptative evolution. To better understand the evolutionary relations and time of divergence of the GNBP of An. darlingi, we compared it with nine other mosquito GNBPs. The results of the phylogenetic analysis of the GNBP sequence between the species of mosquitoes demonstrated three clades. Clade I and II included the GNBPB5 sequence, and clade III the sequence of GNBPB1. Most of these sequences of GNBP analyzed were homologous with that of subfamily B, including that of An. gambiae (87 %), therefore suggesting that GNBP of An. darling belongs to subfamily B. This work helps us understand the role of inversion polymorphism in evolution of An. darlingi.
Collapse
|
8
|
Artemov GN, Sharakhova MV, Naumenko AN, Karagodin DA, Baricheva EM, Stegniy VN, Sharakhov IV. A standard photomap of ovarian nurse cell chromosomes in the European malaria vector Anopheles atroparvus. MEDICAL AND VETERINARY ENTOMOLOGY 2015; 29:230-237. [PMID: 25776224 PMCID: PMC4515173 DOI: 10.1111/mve.12113] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/20/2014] [Accepted: 06/04/2014] [Indexed: 06/04/2023]
Abstract
Anopheles atroparvus (Diptera: Culicidae) is one of the main malaria vectors of the Maculipennis group in Europe. Cytogenetic analysis based on salivary gland chromosomes has been used in taxonomic and population genetic studies of mosquitoes from this group. However, a high-resolution cytogenetic map that could be used in physical genome mapping in An. atroparvus is still lacking. In the present study, a high-quality photomap of the polytene chromosomes from ovarian nurse cells of An. atroparvus was developed. Using fluorescent in situ hybridization, 10 genes from the five largest genomic supercontigs on the polytene chromosome were localized and 28% of the genome was anchored to the cytogenetic map. The study established chromosome arm homology between An. atroparvus and the major African malaria vector Anopheles gambiae, suggesting a whole-arm translocation between autosomes of these two species. The standard photomap constructed for ovarian nurse cell chromosomes of An. atroparvus will be useful for routine physical mapping. This map will assist in the development of a fine-scale chromosome-based genome assembly for this species and will also facilitate comparative and evolutionary genomics studies in the genus Anopheles.
Collapse
Affiliation(s)
- Gleb N. Artemov
- Tomsk State University, Institute of Biology and Biophysics, Tomsk, Russia
| | - Maria V. Sharakhova
- Tomsk State University, Institute of Biology and Biophysics, Tomsk, Russia
- Virginia Tech, Department of Entomology, Fralin Life Science Institute, Blacksburg, VA, USA
| | - Anastasia N. Naumenko
- Virginia Tech, Department of Entomology, Fralin Life Science Institute, Blacksburg, VA, USA
| | | | | | | | - Igor V. Sharakhov
- Virginia Tech, Department of Entomology, Fralin Life Science Institute, Blacksburg, VA, USA
| |
Collapse
|