1
|
Mogi M, Armbruster PA, Eritja R, Sunahara T, Tuno N. How far do forest container mosquitoes (Diptera: Culicidae) invade rural and urban areas in Japan? - Simple landscape ecology with comparison of the invasive Aedes ecology between native and invasive ranges. JOURNAL OF MEDICAL ENTOMOLOGY 2024; 61:1168-1180. [PMID: 39102891 DOI: 10.1093/jme/tjae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/01/2024] [Accepted: 07/17/2024] [Indexed: 08/07/2024]
Abstract
The distribution of container mosquitoes in relation to distances from forests was studied in temperate Japan. Mosquito larvae were collected between May and September in 4 years from tree holes, bamboo stumps, riverine rock pools, and artificial containers; sampling ranged spatially from the mountain forest across the deforested plain developed as agriculture and urban areas to the seacoast. Although tree holes, bamboo stumps, and artificial containers existed throughout the deforested plain area, 10 container species of 6 genera were found virtually only within 5 km from the nearest forest edge. Worldwide invasive Aedes albopictus (Skuse) and Aedes japonicus (Theobald) of Asian origin showed unique occurrence patterns different from other container species and from each other. Ae. japonicus was dominant in artificial containers in and near the forest but minor in forest natural containers and only occurred within 5 km from the forest. Ae. albopictus was minor in the forest irrespective of container types but not bound to the forest and dominant in natural and artificial containers throughout rural and urban areas. The 5-km range was designated as the circum-forest zone for container mosquitoes (except Ae. albopictus) in Japan, and an expanded concept, circum-boundary zone, is proposed. The widths of these zones primarily depend on the dispersal traits of mosquitoes. Whether the relation of Ae. albopictus and Ae. japonicus to forests we observed are common in the native and invasive ranges is discussed. The study of across-ecosystem dispersal is important for mosquito management under anthropogenically changing environments due to either deforestation or green restoration.
Collapse
Affiliation(s)
- Motoyoshi Mogi
- Division of Parasitology, Faculty of Medicine, Saga University, Saga, Japan (retired)
| | | | - Roger Eritja
- Centre d'Estudis Avançats de Blanes (CEAB-CSIC), Blanes, Spain
| | - Toshihiko Sunahara
- Department of Vector Ecology and Environment, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Nobuko Tuno
- Laboratory of Ecology, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
2
|
Lühken R, Brattig N, Becker N. Introduction of invasive mosquito species into Europe and prospects for arbovirus transmission and vector control in an era of globalization. Infect Dis Poverty 2023; 12:109. [PMID: 38037192 PMCID: PMC10687857 DOI: 10.1186/s40249-023-01167-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/24/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Mosquito research in Europe has a long history, primarily focused on malaria vectors. In recent years, invasive mosquito species like the Asian tiger mosquito (Aedes albopictus) and the spread of arboviruses like dengue virus, chikungunya virus or bluetongue virus have led to an intensification of research and monitoring in Europe. The risk of further dissemination of exotic species and mosquito-borne pathogens is expected to increase with ongoing globalization, human mobility, transport geography, and climate warming. Researchers have conducted various studies to understand the ecology, biology, and effective control strategies of mosquitoes and associated pathogens. MAIN BODY Three invasive mosquito species are established in Europe: Asian tiger mosquito (Aedes albopictus), Japanese bush mosquito (Ae. japonicus), and Korean bush mosquito (Aedes koreicus). Ae. albopictus is the most invasive species and has been established in Europe since 1990. Over the past two decades, there has been an increasing number of outbreaks of infections by mosquito-borne viruses in particular chikungunya virus, dengue virus or Zika virus in Europe primary driven by Ae. albopictus. At the same time, climate change with rising temperatures results in increasing threat of invasive mosquito-borne viruses, in particular Usutu virus and West Nile virus transmitted by native Culex mosquito species. Effective mosquito control programs require a high level of community participation, going along with comprehensive information campaigns, to ensure source reduction and successful control. Control strategies for container breeding mosquitoes like Ae. albopictus or Culex species involve community participation, door-to-door control activities in private areas. Further measures can involve integration of sterile insect techniques, applying indigenous copepods, Wolbachia sp. bacteria, or genetically modified mosquitoes, which is very unlike to be practiced as standard method in the near future. CONCLUSIONS Climate change and globalization resulting in the increased establishment of invasive mosquitoes in particular of the Asian tiger mosquito Ae. albopictus in Europe within the last 30 years and increasing outbreaks of infections by mosquito-borne viruses warrants intensification of research and monitoring. Further, effective future mosquito control programs require increase in intense community and private participation, applying physical, chemical, biological, and genetical control activities.
Collapse
Affiliation(s)
- Renke Lühken
- Bernhard Nocht Institute for Tropical Medicine, 20359, Hamburg, Germany.
| | - Norbert Brattig
- Bernhard Nocht Institute for Tropical Medicine, 20359, Hamburg, Germany
| | - Norbert Becker
- Institute for Dipterology, 67346, Speyer, Germany
- Institute for Organismal Studies (COS), University of Heidelberg, 69117, Heidelberg, Germany
| |
Collapse
|
3
|
Nikookar SH, Charkame A, Nezammahalleh A, Moradi-Asl E, Enayati A, Fazeli-Dinan M, Sedaghat MM, Zaim M. Entomological surveillance of invasive Aedes mosquitoes in Mazandaran Province, northern Iran from 2014 to 2020. Sci Rep 2023; 13:8683. [PMID: 37248286 PMCID: PMC10227060 DOI: 10.1038/s41598-023-35860-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 05/24/2023] [Indexed: 05/31/2023] Open
Abstract
Mosquitoes are the most important vectors of serious infectious diseases in the world. Dengue, Zika, chikungunya and yellow fever are emerging and re-emerging infectious diseases, associated with the distribution of two key vectors i.e. Aedes aegypti and Aedes albopictus throughout the world including countries neighbouring Iran. Entomological surveillance was planned and performed monthly from May to December during 2014-2020 in selected counties of Mazandaran Province, North of Iran, by ovitrap, larval collection, hand catch and human baited trap. Overall, 4410 Aedes specimens including 2376 larvae (53.9%) and 2034 (46.1%) adults belonging to six species, namely Aedes vexans, Aedes geniculatus, Aedes caspius, Aedes echinus, Aedes pulcritarsis and Aedes flavescence were collected and morphologically identified. Over the seven years of surveillance, Ae. aegypti and Ae. albopictus were not found by any sampling method. Aedes vexans and Ae. geniculatus were the most abundant species, their populations peaked in October and November and was positively correlated with precipitation and relative humidity. Aedes flavescence was a new species record for the province. A flowchart for planning and implementation of invasive mosquito surveillance for provincial health authorities in the country is proposed. These surveillance efforts provide basic and timely information for the health system to act promptly on integrated and intensified surveillance and control programs should Ae. aegypti and Ae. albopictus detected in the province.
Collapse
Affiliation(s)
- Seyed Hassan Nikookar
- Health Sciences Research Center, Department of Medical Entomology and Vector Control, School of Public Health, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ali Charkame
- Medical Entomology, Health Expert of the Health Deputy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Asghar Nezammahalleh
- Medical Entomology, Health Expert of the Health Deputy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Eslam Moradi-Asl
- Department of Public Health, School of Public Health, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ahmadali Enayati
- Head of Medical Entomology Department, School of Public Health and Health Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Mahmoud Fazeli-Dinan
- Health Sciences Research Center, Department of Medical Entomology and Vector Control, School of Public Health, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Mohammad Mehdi Sedaghat
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Zaim
- Affiliated Professor, Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Bertola M, Mazzucato M, Pombi M, Montarsi F. Updated occurrence and bionomics of potential malaria vectors in Europe: a systematic review (2000-2021). Parasit Vectors 2022; 15:88. [PMID: 35292106 PMCID: PMC8922938 DOI: 10.1186/s13071-022-05204-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/14/2022] [Indexed: 01/09/2023] Open
Abstract
Despite the eradication of malaria across most European countries in the 1960s and 1970s, the anopheline vectors are still present. Most of the malaria cases that have been reported in Europe up to the present time have been infections acquired in endemic areas by travelers. However, the possibility of acquiring malaria by locally infected mosquitoes has been poorly investigated in Europe, despite autochthonous malaria cases having been occasionally reported in several European countries. Here we present an update on the occurrence of potential malaria vector species in Europe. Adopting a systematic review approach, we selected 288 papers published between 2000 and 2021 for inclusion in the review based on retrieval of accurate information on the following Anopheles species: An. atroparvus, An. hyrcanus sensu lato (s.l.), An. labranchiae, An. maculipennis sensu stricto (s.s.), An. messeae/daciae, An. sacharovi, An. superpictus and An. plumbeus. The distribution of these potential vector species across Europe is critically reviewed in relation to areas of major presence and principal bionomic features, including vector competence to Plasmodium. Additional information, such as geographical details, sampling approaches and species identification methods, are also reported. We compare the information on each species extracted from the most recent studies to comparable information reported from studies published in the early 2000s, with particular reference to the role of each species in malaria transmission before eradication. The picture that emerges from this review is that potential vector species are still widespread in Europe, with the largest diversity in the Mediterranean area, Italy in particular. Despite information on their vectorial capacity being fragmentary, the information retrieved suggests a re-definition of the relative importance of potential vector species, indicating An. hyrcanus s.l., An. labranchiae, An. plumbeus and An. sacharovi as potential vectors of higher importance, while An. messeae/daciae and An. maculipennis s.s. can be considered to be moderately important species. In contrast, An. atroparvus and An. superpictus should be considered as vectors of lower importance, particularly in relation to their low anthropophily. The presence of gaps in current knowledge of vectorial systems in Europe becomes evident in this review, not only in terms of vector competence but also in the definition of sampling approaches, highlighting the need for further research to adopt the appropriate surveillance system for each species.
Collapse
Affiliation(s)
- Michela Bertola
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020, Legnaro, Italy
| | - Matteo Mazzucato
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020, Legnaro, Italy
| | - Marco Pombi
- Dipartimento di Sanità Pubblica e Malattie Infettive, Università di Roma "Sapienza", P.le Aldo Moro 5, 00185, Roma, Italy.
| | - Fabrizio Montarsi
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020, Legnaro, Italy.,Dipartimento di Sanità Pubblica e Malattie Infettive, Università di Roma "Sapienza", P.le Aldo Moro 5, 00185, Roma, Italy
| |
Collapse
|
5
|
Dormont L, Mulatier M, Carrasco D, Cohuet A. Mosquito Attractants. J Chem Ecol 2021; 47:351-393. [PMID: 33725235 DOI: 10.1007/s10886-021-01261-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/18/2021] [Accepted: 03/02/2021] [Indexed: 01/01/2023]
Abstract
Vector control and personal protection against anthropophilic mosquitoes mainly rely on the use of insecticides and repellents. The search for mosquito-attractive semiochemicals has been the subject of intense studies for decades, and new compounds or odor blends are regularly proposed as lures for odor-baited traps. We present a comprehensive and up-to-date review of all the studies that have evaluated the attractiveness of volatiles to mosquitoes, including individual chemical compounds, synthetic blends of compounds, or natural host or plant odors. A total of 388 studies were analysed, and our survey highlights the existence of 105 attractants (77 volatile compounds, 17 organism odors, and 11 synthetic blends) that have been proved effective in attracting one or several mosquito species. The exhaustive list of these attractants is presented in various tables, while the most common mosquito attractants - for which effective attractiveness has been demonstrated in numerous studies - are discussed throughout the text. The increasing knowledge on compounds attractive to mosquitoes may now serve as the basis for complementary vector control strategies, such as those involving lure-and-kill traps, or the development of mass trapping. This review also points out the necessity of further improving the search for new volatile attractants, such as new compound blends in specific ratios, considering that mosquito attraction to odors may vary over the life of the mosquito or among species. Finally, the use of mosquito attractants will undoubtedly have an increasingly important role to play in future integrated vector management programs.
Collapse
Affiliation(s)
- Laurent Dormont
- CEFE, Univ Paul Valéry Montpellier 3, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France.
| | - Margaux Mulatier
- Institut Pasteur de Guadeloupe, Laboratoire d'étude sur le contrôle des vecteurs (LeCOV), Lieu-Dit Morne Jolivièrex, 97139, Les Abymes, Guadeloupe, France
| | - David Carrasco
- MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France
| | - Anna Cohuet
- MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France
| |
Collapse
|
6
|
Ali El Hadi Mohamed R, Abdelgadir DM, Bashab HM, Al-Shuraym LA, Sfouq Aleanizy F, Alqahtani FY, Ahmed Al-Keridis L, Mohamed N. First record of West Nile Virus detection inside wild mosquitoes in Khartoum capital of Sudan using PCR. Saudi J Biol Sci 2020; 27:3359-3364. [PMID: 33304143 PMCID: PMC7715056 DOI: 10.1016/j.sjbs.2020.08.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/17/2020] [Accepted: 08/30/2020] [Indexed: 11/25/2022] Open
Abstract
This study aimed to explore the presence of West Nile Virus (WNV) inside four species of mosquitoes: Culex univittatus (Theobald), Culex quinquefasciatus (Say) Aedes vittatus (Bigot) and Aedes vexans (Meigen). Adult wild mosquitoes were collected from different sites: Soba West, Hellat Kuku, Shambat, and Khartoum North Central Live Stock Market (KCLM). Surveys were carried out at Khartoum State during two phases: pre to the rainy season and post to the rainy season. Mosquito specimens were identified using classical keys then preserved at -80 °C freezer for two weeks till the virus examination using polymerase chain reaction (PCR) were carried out. WNV has been detected inside the three species of mosquitoes: A. vexans, C. univittatus, and C. quinquefasciatus. The species were collected from Hellat Kuku, (Shambat and Hellat Kuku), and (Shambat and KCLM) respectively. Two species of mosquitoes were positive for the virus: C. quinquefasciatus and C. univittatus. Positive results for the virus during the first phase of the study; males of C. quinquefasciatus and C. univittatus collected during the second phase of the study were also tested for the existence of the virus and they were positive. For our knowledge this study represents first record of WNV inside wild mosquitoes in Sudan. PCR technique provided reliable information because specific primer-probe sets were used for the detection of the virus. Extra studies are required to incriminate these species of mosquitoes as potential vectors of WNV.
Collapse
Affiliation(s)
- Rania Ali El Hadi Mohamed
- Faculty of Science, Biology Department, Princess Nourah Bint Abdurrahman University, Riyadh, Saudi Arabia
- Scientific Researchers, Federal Ministry of Health, Khartoum, Sudan
| | | | - Hind M. Bashab
- Scientific Researchers, Federal Ministry of Health, Khartoum, Sudan
| | - Laila A. Al-Shuraym
- Faculty of Science, Biology Department, Princess Nourah Bint Abdurrahman University, Riyadh, Saudi Arabia
| | - Fadilah Sfouq Aleanizy
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fulwah Y. Alqahtani
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Lamya Ahmed Al-Keridis
- Faculty of Science, Biology Department, Princess Nourah Bint Abdurrahman University, Riyadh, Saudi Arabia
| | - Nahla Mohamed
- Uppsala UniversityNorbyvägen; 18 DSE-752 36 Uppsala Sweden
- College of Medicine, Virology unit, Princess Nourah Bint Abdurrahman University, Riyadh, Saudi Arabia
| |
Collapse
|
7
|
Müller P, Engeler L, Vavassori L, Suter T, Guidi V, Gschwind M, Tonolla M, Flacio E. Surveillance of invasive Aedes mosquitoes along Swiss traffic axes reveals different dispersal modes for Aedes albopictus and Ae. japonicus. PLoS Negl Trop Dis 2020; 14:e0008705. [PMID: 32986704 PMCID: PMC7544034 DOI: 10.1371/journal.pntd.0008705] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/08/2020] [Accepted: 08/12/2020] [Indexed: 12/19/2022] Open
Abstract
Over the past three decades, Europe has witnessed an increased spread of invasive aedine mosquito species, most notably Aedes albopictus, a key vector of chikungunya, dengue and Zika virus. While its distribution in southern Europe is well documented, its dispersal modes across the Alps remain poorly investigated, preventing a projection of future scenarios beyond its current range in order to target mosquito control. To monitor the presence and frequency of invasive Aedes mosquitoes across and beyond the Alps we set oviposition and BG-Sentinel traps at potential points of entry with a focus on motorway service areas across Switzerland. We placed the traps from June to September and controlled them for the presence of mosquitoes every other week between 2013 and 2018. Over the six years of surveillance we identified three invasive Aedes species, including Ae. albopictus, Ae. japonicus and Ae. koreicus. Based on the frequency and distribution patterns we conclude that Ae. albopictus and Ae. koreicus are being passively spread primarily along the European route E35 from Italy to Germany, crossing the Alps, while Ae. japonicus has been expanding its range from northern Switzerland across the country most likely through active dispersal. Because of global trade of used tyres and ornamental plants, invasive mosquitoes of the genus Aedes are spreading passively between continents. Within continents, adults are frequently travelling along roads as hitchhikers in motorised vehicles and may then colonise new areas. Because some Aedes mosquitoes are competent to transmit diseases they threaten public and veterinary health. In Europe, the Asian tiger mosquito, Aedes albopictus is of particular concern as it is a vector of chikungunya, dengue and Zika virus. While its distribution in southern Europe is well documented, its dispersal modes across the Alps remain poorly investigated, preventing a projection of future scenarios beyond its current range in order to target mosquito control. To monitor the introduction of invasive Aedes mosquitoes beyond the Alps we placed traps at motorway service areas across Switzerland. Between 2013 and 2018 we identified three invasive Aedes species, including Ae. albopictus, Ae. koreicus (Korean bush mosquito) and Ae. japonicus (Japanese bush mosquito). Based on the frequency and distribution patterns we conclude that Ae. albopictus and Ae. koreicus are being passively spread primarily along the European route E35 from Italy to Germany, while Ae. japonicus has been expanding its range across Switzerland mainly through active dispersal.
Collapse
Affiliation(s)
- Pie Müller
- Swiss Tropical and Public Health Institute, Socinstrasse, Basel, Switzerland
- University of Basel, Petersplatz, Basel, Switzerland
- * E-mail:
| | - Lukas Engeler
- Laboratory of Applied Microbiology, University of Applied Sciences and Arts of Southern Switzerland, Bellinzona, Switzerland
| | - Laura Vavassori
- Swiss Tropical and Public Health Institute, Socinstrasse, Basel, Switzerland
- University of Basel, Petersplatz, Basel, Switzerland
| | - Tobias Suter
- Swiss Tropical and Public Health Institute, Socinstrasse, Basel, Switzerland
- University of Basel, Petersplatz, Basel, Switzerland
| | - Valeria Guidi
- Laboratory of Applied Microbiology, University of Applied Sciences and Arts of Southern Switzerland, Bellinzona, Switzerland
| | - Martin Gschwind
- Swiss Tropical and Public Health Institute, Socinstrasse, Basel, Switzerland
- University of Basel, Petersplatz, Basel, Switzerland
| | - Mauro Tonolla
- Laboratory of Applied Microbiology, University of Applied Sciences and Arts of Southern Switzerland, Bellinzona, Switzerland
| | - Eleonora Flacio
- Laboratory of Applied Microbiology, University of Applied Sciences and Arts of Southern Switzerland, Bellinzona, Switzerland
| |
Collapse
|
8
|
Sauer FG, Jaworski L, Lühken R, Kiel E. Impacts of sampling rhythm and exposition on the effectiveness of artificial resting shelters for mosquito collection in northern Germany. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2020; 45:142-146. [PMID: 32492276 DOI: 10.1111/jvec.12383] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
- Felix G Sauer
- Carl von Ossietzky University of Oldenburg, Aquatic Ecology and Nature Conservation, Oldenburg, Germany
| | - Linda Jaworski
- Carl von Ossietzky University of Oldenburg, Aquatic Ecology and Nature Conservation, Oldenburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Renke Lühken
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Universität Hamburg, Faculty of Mathematics, Informatics and Natural Sciences, Hamburg, Germany
| | - Ellen Kiel
- Carl von Ossietzky University of Oldenburg, Aquatic Ecology and Nature Conservation, Oldenburg, Germany
| |
Collapse
|
9
|
Wipf NC, Guidi V, Tonolla M, Ruinelli M, Müller P, Engler O. Evaluation of honey-baited FTA cards in combination with different mosquito traps in an area of low arbovirus prevalence. Parasit Vectors 2019; 12:554. [PMID: 31753035 PMCID: PMC6873520 DOI: 10.1186/s13071-019-3798-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/08/2019] [Indexed: 12/14/2022] Open
Abstract
Background The threat of mosquito-borne diseases is increasing in continental Europe as demonstrated by several autochthonous chikungunya, dengue and West Nile virus outbreaks. In Switzerland, despite the presence of competent vectors, routine surveillance of arboviruses in mosquitoes is not being carried out, mainly due to the high costs associated with the need of a constant cold chain and laborious processing of thousands of mosquitoes. An alternative approach is using honey-baited nucleic acid preserving cards (FTA cards) to collect mosquito saliva that may be analysed for arboviruses. Here, we evaluate whether FTA cards could be used to detect potentially emerging viruses in an area of low virus prevalence in combination with an effective mosquito trap. Methods In a field trial in southern Switzerland we measured side-by-side the efficacy of the BG-Sentinel 2, the BG-GAT and the Box gravid trap to catch Aedes and Culex mosquitoes in combination with honey-baited FTA cards during 80 trapping sessions of 48 hours. We then screened both the mosquitoes and the FTA cards for the presence of arboviruses using reverse-transcription PCR. The efficacy of the compared trap types was evaluated using generalized linear mixed models. Results The Box gravid trap collected over 11 times more mosquitoes than the BG-GAT and BG-Sentinel 2 trap. On average 75.9% of the specimens fed on the honey-bait with no significant difference in feeding rates between the three trap types. From the total of 1401 collected mosquitoes, we screened 507 Aedes and 500 Culex females for the presence of arboviruses. A pool of six Cx. pipiens/Cx. torrentium mosquitoes and also the FTA card from the same Box gravid trap were positive for Usutu virus. Remarkably, only two of the six Culex mosquitoes fed on the honey-bait, emphasising the high sensitivity of the method. In addition, two Ae. albopictus collections but no FTA cards were positive for mosquito-only flaviviruses. Conclusions Based on our results we conclude that honey-baited FTA cards, in combination with the Box gravid trap, are an effective method for arbovirus surveillance in areas of low prevalence, particularly where resources are limited for preservation and screening of individual mosquitoes.![]()
Collapse
Affiliation(s)
- Nadja C Wipf
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 57, P.O. Box, 4002, Basel, Switzerland.,University of Basel, Petersplatz 1, P.O. Box, 4001, Basel, Switzerland.,Laboratory of Applied Microbiology, University of Applied, Sciences and Arts of Southern Switzerland, Via Mirasole 22a, 6501, Bellinzona, Switzerland
| | - Valeria Guidi
- Laboratory of Applied Microbiology, University of Applied, Sciences and Arts of Southern Switzerland, Via Mirasole 22a, 6501, Bellinzona, Switzerland
| | - Mauro Tonolla
- Laboratory of Applied Microbiology, University of Applied, Sciences and Arts of Southern Switzerland, Via Mirasole 22a, 6501, Bellinzona, Switzerland
| | - Michela Ruinelli
- Laboratory of Applied Microbiology, University of Applied, Sciences and Arts of Southern Switzerland, Via Mirasole 22a, 6501, Bellinzona, Switzerland
| | - Pie Müller
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 57, P.O. Box, 4002, Basel, Switzerland. .,University of Basel, Petersplatz 1, P.O. Box, 4001, Basel, Switzerland.
| | - Olivier Engler
- Spiez Laboratory, Federal Office for Civil Protection, Austrasse, 3700, Spiez, Switzerland
| |
Collapse
|
10
|
Jourdain F, Samy AM, Hamidi A, Bouattour A, Alten B, Faraj C, Roiz D, Petrić D, Pérez-Ramírez E, Velo E, Günay F, Bosevska G, Salem I, Pajovic I, Marić J, Kanani K, Paronyan L, Dente MG, Picard M, Zgomba M, Sarih M, Haddad N, Gaidash O, Sukhiasvili R, Declich S, Shaibi T, Sulesco T, Harrat Z, Robert V. Towards harmonisation of entomological surveillance in the Mediterranean area. PLoS Negl Trop Dis 2019; 13:e0007314. [PMID: 31194743 PMCID: PMC6563966 DOI: 10.1371/journal.pntd.0007314] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND The Mediterranean Basin is historically a hotspot for trade, transport, and migration. As a result, countries surrounding the Mediterranean Sea share common public health threats. Among them are vector-borne diseases, and in particular, mosquito-borne viral diseases are prime candidates as (re)emerging diseases and are likely to spread across the area. Improving preparedness and response capacities to these threats at the regional level is therefore a major issue. The implementation of entomological surveillance is, in particular, of utmost importance. Guidance in designing entomological surveillance systems is critical, and these systems may pursue different specific objectives depending on the disease. The purpose of the proposed review is to draw up guidelines for designing effective and sustainable entomological surveillance systems in order to improve preparedness and response. However, we make it clear that there is no universal surveillance system, so the thinking behind harmonisation is to define evidence-based standards in order to promote best practises, identify the most appropriate surveillance activities, and optimise the use of resources. Such guidance is aimed at policymakers and diverse stakeholders and is intended to be used as a framework for the implementation of entomological surveillance programmes. It will also be useful to collaborate and share information with health professionals involved in other areas of disease surveillance. Medical entomologists and vector control professionals will be able to refer to this report to advocate for tailored entomological surveillance strategies. The main threats targeted in this review are the vectors of dengue virus, chikungunya virus, Zika virus, West Nile virus, and Rift Valley fever virus. The vectors of all these arboviruses are mosquitoes. METHODS Current knowledge on vector surveillance in the Mediterranean area is reviewed. The analysis was carried out by a collaboration of the medical entomology experts in the region, all of whom belong to the MediLabSecure network, which is currently funded by the European Union and represents an international effort encompassing 19 countries in the Mediterranean and Black Sea region. FINDINGS Robust surveillance systems are required to address the globalisation of emerging arboviruses. The prevention and management of mosquito-borne viral diseases must be addressed in the prism of a One Health strategy that includes entomological surveillance as an integral part of the policy. Entomological surveillance systems should be designed according to the entomological and epidemiological context and must have well-defined objectives in order to effect a tailored and graduated response. We therefore rely on different scenarios according to different entomological and epidemiological contexts and set out detailed objectives of surveillance. The development of multidisciplinary networks involving both academics and public authorities will provide resources to address these health challenges by promoting good practises in surveillance (identification of surveillance aims, design of surveillance systems, data collection, dissemination of surveillance results, evaluation of surveillance activities) and through the sharing of effective knowledge and information. These networks will also contribute to capacity building and stronger collaborations between sectors at both the local and regional levels. Finally, concrete guidance is offered on the vector of the main arbovirus based on the current situation in the area.
Collapse
Affiliation(s)
- Frédéric Jourdain
- French National Research Institute for Sustainable Development, Research unit MIVEGC IRD-CNRS-Montpellier University, Montpellier, France
| | - Abdallah M. Samy
- Entomology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Afrim Hamidi
- University of Prishtina, Faculty of Agriculture and Veterinary Sciences, Prishtina, Kosovo
| | - Ali Bouattour
- Université de Tunis El Manar, Institut Pasteur de Tunis, LR11IPT03 Service d’entomologie médicale, Tunis, Tunisia
| | - Bülent Alten
- Hacettepe University, Faculty of Science, Biology Department, Ecology Section, Ankara, Turkey
| | - Chafika Faraj
- Laboratoire d'Entomologie Médicale, Institut National d'Hygiène, Rabat, Morocco
| | - David Roiz
- French National Research Institute for Sustainable Development, Research unit MIVEGC IRD-CNRS-Montpellier University, Montpellier, France
| | - Dušan Petrić
- Faculty of Agriculture, Department of Phytomedicine and Environment Protection, Laboratory for Medical Entomology, University of Novi Sad, Novi Sad, Serbia
| | - Elisa Pérez-Ramírez
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CISA), Carretera Algete-El Casar, Valdeolmos, Madrid, Spain
| | - Enkeledja Velo
- Control of Infectious Diseases Department, Institute of Public Health, Tirana, Albania
| | - Filiz Günay
- Hacettepe University, Faculty of Science, Biology Department, Ecology Section, Ankara, Turkey
| | - Golubinka Bosevska
- Institute of Public Health of R. Macedonia, Laboratory for virology and molecular diagnostics, Skopje, the Former Yugoslav Republic of Macedonia
| | - Ibrahim Salem
- Ministry of Health, Central public health laboratory, Ramallah, Palestine
| | - Igor Pajovic
- University of Montenegro, Biotechnical Faculty, Podgorica, Montenegro
| | - Jelena Marić
- PI Veterinary Institute of the Republic of Srpska, Banja Luka, Bosnia and Herzegovina
| | - Khalil Kanani
- Parasitic and Zoonotic Diseases Department, Vector-Borne Diseases programmes manager, MOH, Ramallah, Jordan
| | - Lusine Paronyan
- Epidemiology of Vector borne and Parasitic diseases, National Center for Disease Control and Prevention, Ministry of Health, Yerevan, Armenia
| | - Maria-Grazia Dente
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| | - Marie Picard
- French National Research Institute for Sustainable Development, Research unit MIVEGC IRD-CNRS-Montpellier University, Montpellier, France
| | - Marija Zgomba
- Faculty of Agriculture, Department of Phytomedicine and Environment Protection, Laboratory for Medical Entomology, University of Novi Sad, Novi Sad, Serbia
| | - M'hammed Sarih
- Laboratoire des Maladies Vectorielles, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Nabil Haddad
- Laboratory of Immunology and Vector-Borne Diseases, Faculty of Public Health, Lebanese University, Fanar, Lebanon
| | - Oleksandr Gaidash
- State Body “Ukrainian I. I. Mechnikov Research Anti-Plague Institute of Ministry of Health of Ukraine”, Laboratory of Especially Dangerous Infections Epizootology, Odessa, Ukraine
| | - Roena Sukhiasvili
- National Center for Disease Control and Public Health, Tbilisi, Georgia
| | - Silvia Declich
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| | - Taher Shaibi
- Reference Laboratory of Parasites & Vector Borne Diseases, NCDC Libya, and Zoology Department, Faculty of Science, University of Tripoli, Libya
| | - Tatiana Sulesco
- Institute of Zoology, Ministry of Education, Culture and Research, Chisinau, Moldova
| | - Zoubir Harrat
- Laboratoire éco-épidémiologie Parasitaire et Génétique des Populations, Institut Pasteur d’Algérie, Algiers, Algeria
| | - Vincent Robert
- French National Research Institute for Sustainable Development, Research unit MIVEGC IRD-CNRS-Montpellier University, Montpellier, France
| |
Collapse
|
11
|
Vogler BR, Hartnack S, Ziegler U, Lelli D, Vögtlin A, Hoop R, Albini S. Resource-Effective Serosurveillance for the Detection of West Nile Virus in Switzerland Using Abattoir Samples of Free-Range Laying Hens. Vector Borne Zoonotic Dis 2018; 19:222-224. [PMID: 30457933 DOI: 10.1089/vbz.2018.2319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
West Nile virus (WNV) is an important zoonotic pathogen maintained in a natural transmission cycle between mosquitoes and birds as reservoir hosts. In dead-end hosts, such as humans, infection may result in fatal neurologic disease translating into disease and death-related suffering and increased health care costs. In humans, WNV may also be transmitted through blood transfusions and organ transplants. WNV is not present in Switzerland yet, but competent vector species (especially Culex pipiens and Aedes japonicus) are prevalent and an introduction of the virus, likely through wild birds, is expected at any time. Therefore, it is important for Switzerland to be prepared and establish a surveillance system for WNV to initiate increased prevention activities, such as the screening of blood and organ donations and public education activities in case virus circulation is detected. The long-term goal of these surveillance measures would be a reduced infection rate in humans resulting in less suffering and reduced health care costs. To provide the basis for a pragmatic and resource-effective WNV surveillance program, this study used aliquots of serum samples of free-range laying hens taken at the abattoir and collected in the frame of the ongoing Swiss Avian Influenza and Newcastle Disease monitoring program for a 2-year period. All 961 aliquots were analyzed using a commercial competitive WNV enzyme-linked immunosorbent assay (ELISA). The study allowed to set up sampling and laboratory routines as a basis for future WNV surveillance activities. At this stage there is no evidence for circulation of WNV in Switzerland.
Collapse
Affiliation(s)
- Barbara R Vogler
- 1 Vetsuisse Faculty, Institute of Veterinary Bacteriology, National Reference Centre for Poultry and Rabbit Diseases (NRGK), University of Zurich, Zurich, Switzerland
| | - Sonja Hartnack
- 2 Section of Epidemiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Ute Ziegler
- 3 Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany
| | - Davide Lelli
- 4 Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER), Brescia, Italy
| | - Andrea Vögtlin
- 5 Institute of Virology and Immunology, Bern & Mittelhäusern, Switzerland.,6 Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Richard Hoop
- 1 Vetsuisse Faculty, Institute of Veterinary Bacteriology, National Reference Centre for Poultry and Rabbit Diseases (NRGK), University of Zurich, Zurich, Switzerland
| | - Sarah Albini
- 1 Vetsuisse Faculty, Institute of Veterinary Bacteriology, National Reference Centre for Poultry and Rabbit Diseases (NRGK), University of Zurich, Zurich, Switzerland
| |
Collapse
|
12
|
Jansen S, Heitmann A, Lühken R, Jöst H, Helms M, Vapalahti O, Schmidt-Chanasit J, Tannich E. Experimental transmission of Zika virus by Aedes japonicus japonicus from southwestern Germany. Emerg Microbes Infect 2018; 7:192. [PMID: 30482893 PMCID: PMC6258727 DOI: 10.1038/s41426-018-0195-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 10/16/2018] [Accepted: 10/25/2018] [Indexed: 01/08/2023]
Abstract
The invasive mosquito species Aedes japonicus japonicus (Ae. japonicus) is widely distributed in Central Europe and is a known vector of various arboviruses in the laboratory, including flaviviruses such as Japanese Encephalitis virus or West Nile virus. However, the vector competence of Ae. japonicus for the recently emerging Zika virus (ZIKV) has not been determined. Therefore, field-caught Ae. japonicus from Germany were orally infected with ZIKV and incubated at 21, 24, or 27 °C to evaluate the vector competence under climate conditions representative of the temperate regions (21 °C) in the species' main distribution area in Europe and of Mediterranean regions (27 °C). Aedes japonicus was susceptible to ZIKV at all temperatures, showing infection rates between 10.0% (21 °C) and 66.7% (27 °C). However, virus transmission was detected exclusively at 27 °C with a transmission rate of 14.3% and a transmission efficiency of 9.5%. Taking into account the present distribution of Ae. japonicus in the temperate regions of Central Europe, the risk of ZIKV transmission by the studied Ae. japonicus population in Central Europe has to be considered as low. Nevertheless, due to the species' vector competence for ZIKV and other mosquito-borne viruses, in combination with the possibility of further spread to Mediterranean regions, Ae. japonicus must be kept in mind as a potential vector of pathogens inside and outside of Europe.
Collapse
Affiliation(s)
- Stephanie Jansen
- Bernhard Nocht Institute for Tropical Medicine, 20359, Hamburg, Germany
- German Centre for Infection Research (DZIF), Partner site Hamburg-Luebeck-Borstel-Riems, 20359, Hamburg, Germany
| | - Anna Heitmann
- Bernhard Nocht Institute for Tropical Medicine, 20359, Hamburg, Germany.
| | - Renke Lühken
- Bernhard Nocht Institute for Tropical Medicine, 20359, Hamburg, Germany
| | - Hanna Jöst
- Bernhard Nocht Institute for Tropical Medicine, 20359, Hamburg, Germany
| | - Michelle Helms
- Bernhard Nocht Institute for Tropical Medicine, 20359, Hamburg, Germany
| | - Olli Vapalahti
- University of Helsinki and Helsinki University Hospital, 00100, Helsinki, Finland
| | - Jonas Schmidt-Chanasit
- Bernhard Nocht Institute for Tropical Medicine, 20359, Hamburg, Germany
- German Centre for Infection Research (DZIF), Partner site Hamburg-Luebeck-Borstel-Riems, 20359, Hamburg, Germany
| | - Egbert Tannich
- Bernhard Nocht Institute for Tropical Medicine, 20359, Hamburg, Germany
- German Centre for Infection Research (DZIF), Partner site Hamburg-Luebeck-Borstel-Riems, 20359, Hamburg, Germany
| |
Collapse
|