1
|
Novita R, Suprayogi A, Agusta A, Nugraha AB, Darusman HS. Unveiling the Diversity and Zoonotic Potential of Plasmodium inui: a Comprehensive Review of Insights from Indonesia and Southeast Asia. Acta Parasitol 2025; 70:59. [PMID: 39928186 DOI: 10.1007/s11686-025-00995-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 01/17/2025] [Indexed: 02/11/2025]
Abstract
PURPOSE Plasmodium inui is a type of malaria that is endemic in simian populations in Southeast Asia, primarily infecting nonhuman primates, one of which is Macaca fascicularis, or the long-tailed macaque. Plasmodium inui, a malaria parasite endemic to simian populations in Southeast Asia, predominantly targets non-human primates. The escalating rates of deforestation and urban expansion, which facilitate increased interactions between humans and primates, have intensified concerns regarding its zoonotic potential. Despite receiving comparatively less scholarly attention than P. knowlesi, P. inui is distinguished by its substantial strain diversity and capacity to infect various macaque species. This review investigates the potential for crossspecies transmission of P. inui to humans, concentrating on the regions of Indonesia and Southeast Asia. METHODS We evaluate the ecological and epidemiological determinants influencing the distribution and transmission dynamics of P. inui among macaques while also considering the implications for human infection based on a literature review obtained from PubMed, Google Scholar, and Scopus. RESULTS Although no documented human cases have emerged in Indonesia, cases in humans have only been detected in Malaysia and Thailand, the review underscores the zoonotic risk associated with P. inui, drawing comparisons to other simian malaria species that have successfully infiltrated human populations. The lack of systematic surveillance and detailed molecular investigations concerning P. inui in these regions accentuates the imperative for further scholarly inquiry. CONCLUSION This review emphasizes the need for ongoing monitoring and research to enhance the understanding of zoonotic threats associated with P. inui, and informs future public health initiatives in Southeast Asia through a comprehensive evaluation of the genetic diversity of the parasite and its potential implications for public health.
Collapse
Affiliation(s)
- Risqa Novita
- Primatology Study Program, Graduate School of IPB University, Jl. Lodaya II/5, Bogor, 16151, Indonesia.
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Genomic Building, Cibinong Science Center, Jl. Raya Bogor KM. 46, Cibinong, 16915, Indonesia.
| | - Agik Suprayogi
- Division of Physiology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Jl. Agatis, Dramaga, Bogor, 16680, Indonesia
| | - Andria Agusta
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Genomic Building, Cibinong Science Center, Jl. Raya Bogor KM. 46, Cibinong, 16915, Indonesia
| | - Arifin Budiman Nugraha
- Division of Parasitology and Medical Entomology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Jl. Agatis, Dramaga, Bogor, 16680, Indonesia
| | - Huda Shalahudin Darusman
- Primatology Study Program, Graduate School of IPB University, Jl. Lodaya II/5, Bogor, 16151, Indonesia
- Primate Research Center, IPB University, Jl. Lodaya II/5, Bogor, 16151, Indonesia
| |
Collapse
|
2
|
Le Breton C, Laporta GZ, Sallum MAM, Hesse H, Salgado-Lynn M, Manin BO, Fornace K. Advancing canopy-level entomological surveillance to monitor vector-borne and zoonotic disease dynamics. Trends Parasitol 2025; 41:150-161. [PMID: 39809620 DOI: 10.1016/j.pt.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/16/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025]
Abstract
Faced with the increased frequency of zoonotic spillover in recent decades, emerging vector-borne diseases from nonhuman primates pose a significant threat to global public health. Understanding transmission dynamics driven by arthropod vectors between wildlife populations is critical for surveillance, modeling, and mitigation. Elevated canopy-level sampling is a valuable approach for elucidating vector behavior and sylvatic transmission. However, this is underused in many regions because of the logistical and mechanical challenges of repurposing ground-based trapping for the forest canopy. We review methods of canopy-level entomological surveillance, present case studies, and identify opportunities to integrate new technologies. Paired with robust experimental design, canopy-level trapping can complement existing surveillance of emerging zoonotic diseases and provide critical insights into the role of vectors driving spillover risks.
Collapse
Affiliation(s)
| | - Gabriel Z Laporta
- Graduate Research and Innovation Program, Centro Universitario FMABC, Santo André, São Paulo, Brazil
| | - Maria Anice Mureb Sallum
- Departamento de Epidemiologia, Faculdade de Saude Publica, Universidade de São Paulo, São Paulo, Brazil
| | - Henrik Hesse
- James Watt School of Engineering, University of Glasgow, Glasgow, UK
| | - Milena Salgado-Lynn
- Danau Girang Field Centre, c/o Sabah Wildlife Department, Sabah, Malaysia; School of Biosciences, Cardiff University, Cardiff, UK
| | | | - Kimberly Fornace
- Saw Swee Hock School of Public Health and National University Health System, National University of Singapore, Singapore.
| |
Collapse
|
3
|
Cecilia H, Althouse BM, Azar SR, Moehn BA, Yun R, Rossi SL, Vasilakis N, Hanley KA. Aedes albopictus is not an arbovirus aficionado when feeding on cynomolgus macaques or squirrel monkeys. iScience 2024; 27:111198. [PMID: 39555418 PMCID: PMC11563999 DOI: 10.1016/j.isci.2024.111198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/27/2024] [Accepted: 10/15/2024] [Indexed: 11/19/2024] Open
Abstract
Viruses transmitted by Aedes mosquitoes (e.g., dengue [DENV], Zika [ZIKV]) have demonstrated high potential to spill over from their ancestral, sylvatic cycles in non-human primates to establish transmission in humans. Epidemiological models require accurate knowledge of the contact structure between hosts and vectors, which is highly sensitive to any impacts of virus infection in mosquitoes or hosts on mosquito feeding behavior. Current evidence for whether these viruses affect vector behavior is mixed. Here we leveraged a study on sylvatic DENV-2 and ZIKV transmission between two species of monkey and Aedes albopictus to determine whether virus infection of either host or vector alters vector feeding behavior. Engorgement rates varied from 0% to 100%, but this was not driven by vector nor host infection, but rather by the individual host, host species, and host body temperature. This study highlights the importance of incorporating individual-level heterogeneity of vector biting in arbovirus transmission models.
Collapse
Affiliation(s)
- Hélène Cecilia
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| | - Benjamin M. Althouse
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
- Information School, University of Washington, Seattle, WA 98105, USA
| | - Sasha R. Azar
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Center for Tissue Engineering, Department of Surgery, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Brett A. Moehn
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| | - Ruimei Yun
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Shannan L. Rossi
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Microbiology and Immunology, Unviersity of Texas Medical Branch, Galveston, TX 77555, USA
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Kathryn A. Hanley
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| |
Collapse
|
4
|
Javed N, Paradkar PN, Bhatti A. An overview of technologies available to monitor behaviours of mosquitoes. Acta Trop 2024; 258:107347. [PMID: 39103110 DOI: 10.1016/j.actatropica.2024.107347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/07/2024]
Abstract
Mosquito-borne diseases such as malaria, dengue, Zika, and chikungunya cause significant morbidity and mortality globally, resulting in over 600,000 deaths from malaria and around 36,000 deaths from dengue each year, with millions of people infected annually, leading to substantial economic losses. The existing mosquito control measures, such as long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS), helped to reduce the infections. However, mosquito-borne diseases are still among the deadliest diseases, forcing us to improve the existing control methods and look for alternative methods simultaneously. Advanced monitoring techniques, including remote sensing, and geographic information systems (GIS) have significantly enhanced the efficiency and effectiveness of mosquito control measures. Mosquitoes' behavioural traits, such as locomotion, blood-feeding, and fertility are the key determinants of disease transmission and epidemiology. Technological advancements, such as high-resolution cameras, infrared imaging, and artificial intelligence (AI) driven object detection models, including groundbreaking convolutional neural networks, have provided efficient and precise options to monitor various mosquito behaviours, including locomotion, oviposition, fertility, and host-seeking. However, they are not commonly employed in mosquito-based research. This review highlights the novel and significant advancements in behaviour-monitoring tools, mostly from the last decade, due to cutting-edge video monitoring technology and artificial intelligence. These advancements can offer enhanced accuracy, efficiency, and the ability to quickly process large volumes of data, enabling detailed behavioural analysis over extended periods and large sample sizes, unlike traditional manual methods prone to human error and labour-intensive. The use of behaviour-assaying techniques can support or replace existing monitoring techniques and directly contribute to improving control measures by providing more accurate and real-time data on mosquito activity patterns and responses to interventions. This enhanced understanding can help establish the role of behavioural changes in improving epidemiological models, making them more precise and dynamic. As a result, mosquito management strategies can become more adaptive and responsive, leading to more effective and targeted interventions. Ultimately, this will reduce disease transmission and significantly improve public health outcomes.
Collapse
Affiliation(s)
- Nouman Javed
- Institute for Intelligent Systems Research and Innovation, Deakin University, Geelong, Victoria 3216 Australia.
| | - Prasad N Paradkar
- CSIRO Health & Biosecurity, Australian Centre for Disease Preparedness, Geelong, Victoria 3220 Australia
| | - Asim Bhatti
- Institute for Intelligent Systems Research and Innovation, Deakin University, Geelong, Victoria 3216 Australia
| |
Collapse
|
5
|
Abstract
African apes harbor at least twelve Plasmodium species, some of which have been a source of human infection. It is now well established that Plasmodium falciparum emerged following the transmission of a gorilla parasite, perhaps within the last 10,000 years, while Plasmodium vivax emerged earlier from a parasite lineage that infected humans and apes in Africa before the Duffy-negative mutation eliminated the parasite from humans there. Compared to their ape relatives, both human parasites have greatly reduced genetic diversity and an excess of nonsynonymous mutations, consistent with severe genetic bottlenecks followed by rapid population expansion. A putative new Plasmodium species widespread in chimpanzees, gorillas, and bonobos places the origin of Plasmodium malariae in Africa. Here, we review what is known about the origins and evolutionary history of all human-infective Plasmodium species, the time and circumstances of their emergence, and the diversity, host specificity, and zoonotic potential of their ape counterparts.
Collapse
Affiliation(s)
- Paul M Sharp
- Institute of Evolutionary Biology and Centre for Immunity, Infection and Evolution, University of Edinburgh, EH9 3FL, United Kingdom
| | - Lindsey J Plenderleith
- Institute of Evolutionary Biology and Centre for Immunity, Infection and Evolution, University of Edinburgh, EH9 3FL, United Kingdom
| | - Beatrice H Hahn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| |
Collapse
|
6
|
Konopka JK, Task D, Afify A, Raji J, Deibel K, Maguire S, Lawrence R, Potter CJ. Olfaction in Anopheles mosquitoes. Chem Senses 2021; 46:6246230. [PMID: 33885760 DOI: 10.1093/chemse/bjab021] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
As vectors of disease, mosquitoes are a global threat to human health. The Anopheles mosquito is the deadliest mosquito species as the insect vector of the malaria-causing parasite, which kills hundreds of thousands every year. These mosquitoes are reliant on their sense of smell (olfaction) to guide most of their behaviors, and a better understanding of Anopheles olfaction identifies opportunities for reducing the spread of malaria. This review takes a detailed look at Anopheles olfaction. We explore a range of topics from chemosensory receptors, olfactory neurons, and sensory appendages to behaviors guided by olfaction (including host-seeking, foraging, oviposition, and mating), to vector management strategies that target mosquito olfaction. We identify many research areas that remain to be addressed.
Collapse
Affiliation(s)
- Joanna K Konopka
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, 21205 MD, USA
| | - Darya Task
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, 21205 MD, USA
| | - Ali Afify
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, 21205 MD, USA
| | - Joshua Raji
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, 21205 MD, USA
| | - Katelynn Deibel
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, 21205 MD, USA
| | - Sarah Maguire
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, 21205 MD, USA
| | - Randy Lawrence
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, 21205 MD, USA
| | - Christopher J Potter
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, 21205 MD, USA
| |
Collapse
|
7
|
Jeyaprakasam NK, Pramasivan S, Liew JWK, Van Low L, Wan-Sulaiman WY, Ngui R, Jelip J, Vythilingam I. Evaluation of Mosquito Magnet and other collection tools for Anopheles mosquito vectors of simian malaria. Parasit Vectors 2021; 14:184. [PMID: 33794965 PMCID: PMC8015311 DOI: 10.1186/s13071-021-04689-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/16/2021] [Indexed: 12/21/2022] Open
Abstract
Background Vector surveillance is essential in determining the geographical distribution of mosquito vectors and understanding the dynamics of malaria transmission. With the elimination of human malaria cases, knowlesi malaria cases in humans are increasing in Malaysia. This necessitates intensive vector studies using safer trapping methods which are both field efficient and able to attract the local vector populations. Thus, this study evaluated the potential of Mosquito Magnet as a collection tool for Anopheles mosquito vectors of simian malaria along with other known collection methods. Methods A randomized 4 × 4 Latin square designed experiment was conducted to compare the efficiency of the Mosquito Magnet against three other common trapping methods: human landing catch (HLC), CDC light trap and human baited trap (HBT). The experiment was conducted over six replicates where sampling within each replicate was carried out for 4 consecutive nights. An additional 4 nights of sampling was used to further evaluate the Mosquito Magnet against the “gold standard” HLC. The abundance of Anopheles sampled by different methods was compared and evaluated with focus on the Anopheles from the Leucosphyrus group, the vectors of knowlesi malaria. Results The Latin square designed experiment showed HLC caught the greatest number of Anopheles mosquitoes (n = 321) compared to the HBT (n = 87), Mosquito Magnet (n = 58) and CDC light trap (n = 13). The GLMM analysis showed that the HLC method caught significantly more Anopheles mosquitoes compared to Mosquito Magnet (P = 0.049). However, there was no significant difference in mean nightly catch of Anopheles mosquitoes between Mosquito Magnet and the other two trapping methods, HBT (P = 0.646) and CDC light traps (P = 0.197). The mean nightly catch for both An. introlatus (9.33 ± 4.341) and An. cracens (4.00 ± 2.273) caught using HLC was higher than that of Mosquito Magnet, though the differences were not statistically significant (P > 0.05). This is in contrast to the mean nightly catch of An. sinensis (15.75 ± 5.640) and An. maculatus (15.78 ± 3.479) where HLC showed significantly more mosquito catches compared to Mosquito Magnet (P < 0.05). Conclusions Mosquito Magnet has a promising ability to catch An. introlatus and An. cracens, the important vectors of knowlesi and other simian malarias in Peninsular Malaysia. The ability of Mosquito Magnet to catch some of the Anopheles mosquito species is comparable to HLC and makes it an ethical and safer alternative. Graphic Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04689-3.
Collapse
Affiliation(s)
| | - Sandthya Pramasivan
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Jonathan Wee Kent Liew
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Lun Van Low
- Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, Kuala Lumpur, Malaysia
| | - Wan-Yusoff Wan-Sulaiman
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Romano Ngui
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Jenarun Jelip
- Division of Disease Control, Ministry of Health Malaysia, Putrajaya, Malaysia
| | - Indra Vythilingam
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
8
|
Dormont L, Mulatier M, Carrasco D, Cohuet A. Mosquito Attractants. J Chem Ecol 2021; 47:351-393. [PMID: 33725235 DOI: 10.1007/s10886-021-01261-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/18/2021] [Accepted: 03/02/2021] [Indexed: 01/01/2023]
Abstract
Vector control and personal protection against anthropophilic mosquitoes mainly rely on the use of insecticides and repellents. The search for mosquito-attractive semiochemicals has been the subject of intense studies for decades, and new compounds or odor blends are regularly proposed as lures for odor-baited traps. We present a comprehensive and up-to-date review of all the studies that have evaluated the attractiveness of volatiles to mosquitoes, including individual chemical compounds, synthetic blends of compounds, or natural host or plant odors. A total of 388 studies were analysed, and our survey highlights the existence of 105 attractants (77 volatile compounds, 17 organism odors, and 11 synthetic blends) that have been proved effective in attracting one or several mosquito species. The exhaustive list of these attractants is presented in various tables, while the most common mosquito attractants - for which effective attractiveness has been demonstrated in numerous studies - are discussed throughout the text. The increasing knowledge on compounds attractive to mosquitoes may now serve as the basis for complementary vector control strategies, such as those involving lure-and-kill traps, or the development of mass trapping. This review also points out the necessity of further improving the search for new volatile attractants, such as new compound blends in specific ratios, considering that mosquito attraction to odors may vary over the life of the mosquito or among species. Finally, the use of mosquito attractants will undoubtedly have an increasingly important role to play in future integrated vector management programs.
Collapse
Affiliation(s)
- Laurent Dormont
- CEFE, Univ Paul Valéry Montpellier 3, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France.
| | - Margaux Mulatier
- Institut Pasteur de Guadeloupe, Laboratoire d'étude sur le contrôle des vecteurs (LeCOV), Lieu-Dit Morne Jolivièrex, 97139, Les Abymes, Guadeloupe, France
| | - David Carrasco
- MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France
| | - Anna Cohuet
- MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France
| |
Collapse
|
9
|
Ellwanger JH, Cardoso JDC, Chies JAB. Variability in human attractiveness to mosquitoes. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2021; 1:100058. [PMID: 35284885 PMCID: PMC8906108 DOI: 10.1016/j.crpvbd.2021.100058] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/20/2021] [Accepted: 10/27/2021] [Indexed: 12/21/2022]
Abstract
Blood-feeding mosquitoes locate humans spatially by detecting a combination of human-derived chemical signals, including carbon dioxide, lactic acid, and other volatile organic compounds. Mosquitoes use these signals to differentiate humans from other animals. Spatial abiotic factors (e.g. humidity, heat) are also used by mosquitoes to find a host. Mosquitoes cause discomfort and harm to humans, being vectors of many pathogens. However, not all humans suffer from mosquito bites with the same frequency or intensity. Some individuals are more attractive to mosquitoes than others, and this has an important impact on the risk of infection by pathogens transmitted by these vectors, such as arboviruses and malaria parasites. Variability in human attractiveness to mosquitoes is partially due to individual characteristics in the composition and intensity in the release of mosquito attractants. The factors that determine these particularities are diverse, modestly understood and still quite controversial. Thus, this review discusses the role of pregnancy, infection with malaria parasites (Plasmodium spp.), skin microbiota, diet, and genetics in human attractiveness to mosquitoes. In brief, pregnancy and Plasmodium infection increase the host attractiveness to mosquitoes. Skin microbiota and human genetics (especially HLA alleles) modulate the production of mosquito attractants and therefore influence individual susceptibility to these insects. There is evidence pointing to a role of diet on human susceptibility to mosquitoes, with some dietary components having a bigger influence than others. In the last part of the review, other factors affecting human-mosquito interactions are debated, with a special focus on the role of mosquito genetics, pathogens and environmental factors (e.g. wind, environmental disturbances). This work highlights that individual susceptibility to mosquitoes is composed of interactions of different human-associated components, environmental factors, and mosquito characteristics. Understanding the importance of these factors, and how they interact with each other, is essential for the development of better mosquito control strategies and studies focused on infectious disease dynamics. Individual human attractiveness to mosquitoes is highly variable. Mosquito attractants released into the air vary from person to person. Variation in attractiveness to mosquitoes alters the risk of mosquito-borne infections. Pregnancy, malaria infection, skin microbiota and genetic factors alter the release of mosquito attractants. Environment and mosquito-related factors affect human–mosquito interactions.
Collapse
Affiliation(s)
- Joel Henrique Ellwanger
- Laboratório de Imunobiologia e Imunogenética, Programa de Pós-Graduação em Genética e Biologia Molecular - PPGBM, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
- Corresponding author.
| | - Jáder da Cruz Cardoso
- Divisão de Vigilância Ambiental em Saúde, Centro Estadual de Vigilância em Saúde, Secretaria da Saúde do Estado do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - José Artur Bogo Chies
- Laboratório de Imunobiologia e Imunogenética, Programa de Pós-Graduação em Genética e Biologia Molecular - PPGBM, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
10
|
Ruiz-López MJ. Mosquito Behavior and Vertebrate Microbiota Interaction: Implications for Pathogen Transmission. Front Microbiol 2020; 11:573371. [PMID: 33362732 PMCID: PMC7755997 DOI: 10.3389/fmicb.2020.573371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/19/2020] [Indexed: 01/03/2023] Open
Abstract
The microbiota is increasingly recognized for its ability to influence host health and individual fitness through multiple pathways, such as nutrient synthesis, immune system development, and even behavioral processes. Most of these studies though focus on the direct effects microbiota has on its host, but they do not consider possible interactions with other individuals. However, host microbiota can change not only host behavior but also the behavior of other individuals or species toward the host. For example, microbes can have an effect on animal chemistry, influencing animal behaviors mediated by chemical communication, such as mosquito attraction. We know that host skin microbes play a major role in odor production and thus can affect the behavior of mosquitoes leading to differences in attraction to their hosts. Ultimately, the vector feeding preference of mosquitoes conditions the risk of vertebrates of coming into contact with a vector-borne pathogen, affecting its transmission, and thus epidemiology of vector-borne diseases. In this mini review, I provide an overview of the current status of research on the interaction between mosquito behavior and host skin microbiota, both in humans and other vertebrates. I consider as well the factors that influence vertebrate skin microbiota composition, such as sex, genetic makeup, and infection status, and discuss the implications for pathogen transmission.
Collapse
Affiliation(s)
- María José Ruiz-López
- Departamento de Humedales, Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| |
Collapse
|
11
|
Martinez J, Showering A, Oke C, Jones RT, Logan JG. Differential attraction in mosquito-human interactions and implications for disease control. Philos Trans R Soc Lond B Biol Sci 2020; 376:20190811. [PMID: 33357061 PMCID: PMC7776937 DOI: 10.1098/rstb.2019.0811] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Mosquito-borne diseases are a major burden on human health worldwide and their eradication through vector control methods remains challenging. In particular, the success of vector control interventions for targeting diseases such as malaria is under threat, in part due to the evolution of insecticide resistance, while for other diseases effective control solutions are still lacking. The rate at which mosquitoes encounter and bite humans is a key determinant of their capacity for disease transmission. Future progress is strongly reliant on improving our understanding of the mechanisms leading to a mosquito bite. Here, we review the biological factors known to influence the attractiveness of mosquitoes to humans, such as body odour, the skin microbiome, genetics and infection by parasites. We identify the knowledge gaps around the relative contribution of each factor, and the potential links between them, as well as the role of natural selection in shaping vector–host–parasite interactions. Finally, we argue that addressing these questions will contribute to improving current tools and the development of novel interventions for the future. This article is part of the theme issue ‘Novel control strategies for mosquito-borne diseases'.
Collapse
Affiliation(s)
- Julien Martinez
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Alicia Showering
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Catherine Oke
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Robert T Jones
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - James G Logan
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| |
Collapse
|