1
|
Hađina S, Bruvo Mađarić B, Kazazić S, Paradžik T, Reljić S, Pinter L, Huber Đ, Vujaklija D. Malassezia pachydermatis from brown bear: A comprehensive analysis reveals novel genotypes and distribution of all detected variants in domestic and wild animals. Front Microbiol 2023; 14:1151107. [PMID: 37275156 PMCID: PMC10236562 DOI: 10.3389/fmicb.2023.1151107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/15/2023] [Indexed: 06/07/2023] Open
Abstract
Malassezia pachydermatis (phylum Basidiomycota, class Malasseziomycetes) is a zoophilic opportunistic pathogen with recognized potential for invasive infections in humans. Although this pathogenic yeast is widespread in nature, it has been primarily studied in domestic animals, so available data on its genotypes in the wild are limited. In this study, 80 yeast isolates recovered from 42 brown bears (Ursus arctos) were identified as M. pachydermatis by a culture-based approach. MALDI-TOF mass spectrometry (MS) was used to endorse conventional identification. The majority of samples exhibited a high score fluctuation, with 42.5% of isolates generating the best scores in the range confident only for genus identification. However, the use of young biomass significantly improved the identification of M. pachydermatis at the species confidence level (98.8%). Importantly, the same MALDI-TOF MS efficiency would be achieved regardless of colony age if the cut-off value was lowered to ≥1.7. Genotyping of LSU, ITS1, CHS2, and β-tubulin markers identified four distinct genotypes in M. pachydermatis isolates. The most prevalent among them was the genotype previously found in dogs, indicating its transmission potential and adaptation to distantly related hosts. The other three genotypes are described for the first time in this study. However, only one of the genotypes consisted of all four loci with bear-specific sequences, indicating the formation of a strain specifically adapted to brown bears. Finally, we evaluated the specificity of the spectral profiles of the detected genotypes. MALDI-TOF MS exhibited great potential to detect subtle differences between all M. pachydermatis isolates and revealed distinct spectral profiles of bear-specific genotypes.
Collapse
Affiliation(s)
- Suzana Hađina
- Department of Microbiology and Infectious Diseases with Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | | | - Snježana Kazazić
- Division of Physical Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Tina Paradžik
- Division of Physical Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Slaven Reljić
- Department of Forensic and State Veterinary Medicine, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Ljiljana Pinter
- Department of Microbiology and Infectious Diseases with Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Đuro Huber
- Department of Biology, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Dušica Vujaklija
- Division of Physical Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
2
|
Normand AC, Gabriel F, Riat A, Cassagne C, Bourgeois N, Huguenin A, Chauvin P, De Geyter D, Bexkens M, Rubio E, Hendrickx M, Ranque S, Piarroux R. Optimization of MALDI-ToF mass spectrometry for yeast identification: a multicenter study. Med Mycol 2021; 58:639-649. [PMID: 31579924 DOI: 10.1093/mmy/myz098] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/21/2019] [Accepted: 09/16/2019] [Indexed: 11/13/2022] Open
Abstract
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-ToF MS) is routinely used in mycology laboratories to rapidly identify pathogenic yeasts. Various methods have been proposed to perform routine MS-based identification of clinically relevant species. In this study, we focused on Bruker technology and assessed the identification performance of three protocols: two pretreatment methods (rapid formic acid extraction directly performed on targets and full extraction using formic acid/acetonitrile in tubes) and a direct deposit protocol that omits the extraction step. We also examined identification performance using three target types (ground-steel, polished-steel, and biotargets) and two databases (Bruker and online MSI [biological-mass-spectrometry-identification application]) in a multicenter manner. Ten European centers participated in the study, in which a total of 1511 yeast isolates were analyzed. The 10 centers prospectively performed the three protocols on approximately 150 yeast isolates each, and the corresponding spectra were then assessed against two reference spectra databases (MSI and Bruker), with appropriate thresholds. Three centers evaluated the impact of the targets. Scores were compared between the various combinations, and identification accuracy was assessed. The protocol omitting the extraction step was inappropriate for yeast identification, while the full extraction method yielded far better results. Rapid formic acid extraction yielded variable results depending on the target, database and threshold. Selecting the optimal extraction method in combination with the appropriate target, database and threshold may enable simple and accurate identification of clinically relevant yeast samples. Concerning the widely used polished-steel targets, the full extraction method still ensured better scores and better identification rates.
Collapse
Affiliation(s)
- Anne-Cécile Normand
- Laboratoire de Parasitologie-Mycologie, de Parasitologie-Mycologie Hôpital Pitié Salpêtrière, 75013 Paris, France
| | - Frédéric Gabriel
- Mycologie, CHU de Bordeaux, Groupe Hospitalier Pellegrin, place Amélie Raba-Léon, 33000 Bordeaux, France
| | - Arnaud Riat
- Bacteriology Laboratory, Service of Laboratory Medicine, Department of Genetics, Laboratory Medicine and Pathology, Geneva University Hospitals, 4 rue Gabrielle-Perret-Gentil, 1205 Geneva, Switzerland
| | - Carole Cassagne
- Aix Marseille University, IRD, AP-HM, SSA, VITROME, IHU Méditerranée Infection, 13006 Marseille, France
| | | | - Antoine Huguenin
- EA 7510, ESCAPE, Laboratoire de Parasitologie-Mycologie, Université de Reims Champagne-Ardenne, 51100 Reims, France.,Laboratoire de Parasitologie Mycologie, CHU de Reims Hôpital Maison Blanche, 51100 Reims, France
| | - Pamela Chauvin
- Service de Parasitologie-Mycologie, Hôpital Purpan, 31059 Toulouse, France
| | - Deborah De Geyter
- Department Microbiology and Infection Prevention, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Michiel Bexkens
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, 's-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands
| | - Elisa Rubio
- Department of Clinical Microbiology, Hospital Clinic, 08036 Barcelona, Spain
| | - Marijke Hendrickx
- Sciensano, BCCM/IHEM collection, Mycology and Aerobiology Unit, 1050 Brussels, Belgium
| | - Stéphane Ranque
- Bacteriology Laboratory, Service of Laboratory Medicine, Department of Genetics, Laboratory Medicine and Pathology, Geneva University Hospitals, 4 rue Gabrielle-Perret-Gentil, 1205 Geneva, Switzerland
| | - Renaud Piarroux
- Laboratoire de Parasitologie-Mycologie, de Parasitologie-Mycologie Hôpital Pitié Salpêtrière, 75013 Paris, France.,Sorbonne Université, INSERM, Institut Pierre-Louis d'Epidémiologie et de Santé Publique, AP-HP, Hôpital Pitié-Salpêtrière, F-75013 Paris, France
| |
Collapse
|
3
|
Calla-Quispe E, Fuentes-Rivera HL, Ramírez P, Martel C, Ibañez AJ. Mass Spectrometry: A Rosetta Stone to Learn How Fungi Interact and Talk. Life (Basel) 2020; 10:E89. [PMID: 32575729 PMCID: PMC7345136 DOI: 10.3390/life10060089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 01/08/2023] Open
Abstract
Fungi are a highly diverse group of heterotrophic organisms that play an important role in diverse ecological interactions, many of which are chemically mediated. Fungi have a very versatile metabolism, which allows them to synthesize a large number of still little-known chemical compounds, such as soluble compounds that are secreted into the medium and volatile compounds that are chemical mediators over short and long distances. Mass spectrometry (MS) is currently playing a dominant role in mycological studies, mainly due to its inherent sensitivity and rapid identification capabilities of different metabolites. Furthermore, MS has also been used as a reliable and accurate tool for fungi identification (i.e., biotyping). Here, we introduce the readers about fungal specialized metabolites, their role in ecological interactions and provide an overview on the MS-based techniques used in fungal studies. We particularly present the importance of sampling techniques, strategies to reduce false-positive identification and new MS-based analytical strategies that can be used in mycological studies, further expanding the use of MS in broader applications. Therefore, we foresee a bright future for mass spectrometry-based research in the field of mycology.
Collapse
Affiliation(s)
- Erika Calla-Quispe
- Instituto de Ciencias Ómicas y Biotecnología Aplicada (ICOBA), Pontificia Universidad Católica del Perú (PUCP), Av. Universitaria 1801, San Miguel 15088, Lima, Peru; (E.C.-Q.); (H.L.F.-R.); (C.M.)
| | - Hammerly Lino Fuentes-Rivera
- Instituto de Ciencias Ómicas y Biotecnología Aplicada (ICOBA), Pontificia Universidad Católica del Perú (PUCP), Av. Universitaria 1801, San Miguel 15088, Lima, Peru; (E.C.-Q.); (H.L.F.-R.); (C.M.)
- Laboratory of Molecular Microbiology and Biotechnology, Faculty of Biological Sciences, Universidad Nacional Mayor de San Marcos (UNMSM), Av. Germán Amézaga 375, Lima 15081, Peru;
| | - Pablo Ramírez
- Laboratory of Molecular Microbiology and Biotechnology, Faculty of Biological Sciences, Universidad Nacional Mayor de San Marcos (UNMSM), Av. Germán Amézaga 375, Lima 15081, Peru;
| | - Carlos Martel
- Instituto de Ciencias Ómicas y Biotecnología Aplicada (ICOBA), Pontificia Universidad Católica del Perú (PUCP), Av. Universitaria 1801, San Miguel 15088, Lima, Peru; (E.C.-Q.); (H.L.F.-R.); (C.M.)
- Museo de Historia Natural, Universidad Nacional Mayor de San Marcos (UNMSM), Av. Arenales 1256, Jesús María 15072, Lima, Peru
| | - Alfredo J. Ibañez
- Instituto de Ciencias Ómicas y Biotecnología Aplicada (ICOBA), Pontificia Universidad Católica del Perú (PUCP), Av. Universitaria 1801, San Miguel 15088, Lima, Peru; (E.C.-Q.); (H.L.F.-R.); (C.M.)
| |
Collapse
|
4
|
Wang H, Li Y, Fan X, Chiueh TS, Xu YC, Hsueh PR. Evaluation of Bruker Biotyper and Vitek MS for the identification of Candida tropicalis on different solid culture media. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2019; 52:604-611. [DOI: 10.1016/j.jmii.2017.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 11/01/2017] [Indexed: 01/05/2023]
|
5
|
Rath S, Das SR, Padhy RN. Bayesian analysis of two methods MALDI-TOF-MS system and culture test in otomycosis infection. World J Otorhinolaryngol Head Neck Surg 2019; 5:6-13. [PMID: 30775695 PMCID: PMC6364575 DOI: 10.1016/j.wjorl.2018.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/19/2017] [Accepted: 03/21/2018] [Indexed: 01/28/2023] Open
Abstract
Objective Identification of otomycotic fungi using matrix-assisted laser desorption ionization (MALDI) time of flight (TOF) mass spectroscopy (MS) and to quantify pervasive errors with Bayes rule; values of sensitivity and specificity of culture test and MALDI-TOF-MS method are quantified. Method Fungi cultured ear discharge samples were identified with culture test and MALDI-TOF-MS system. Minimum inhibitory concentration (MIC) or MEC (minimum effective concentration) for 6 antifungals were determined by antifungal susceptibility testing in vitro. With Bayes rule, sensitivity and specificity of both MALDI-TOF MS and culture test methods were computed. Results Cultures yielded 42 fungal isolates which were confirmed as species (specified against each species) belonging to 8 genera, A. niger 22, Candida sp. 7, A. fumigatus 3, A. flavus 3, mixed Aspergillus sp. 3, Mucor sp. 2, Rhizopus sp. 1, and Scopulariopsis sp.1; and MALDI-TOF-MS system also confirmed those isolates. In vitro antifungal susceptibility testing with terms of MIC 50 and MIC 90, isolates fungi were highly susceptible to 6 antifungals; and caspofungin was the most active antifungal. The high value of specificity 84.6%, suggested a limited loss of confidence on the culture test at the absence of an infection, in comparison to MALDI-TOF-MS. Sensitivity of the culture test was 87.5%; this high figure strongly approves the culture test to be the dependable method for the otomycosis diagnosis, when the infection is stable. Conclusion Based on sensitivity and specificity together the culture test could be done in face of the gold-standard MALDI-TOF-MS system the estimating both methods.
Collapse
Affiliation(s)
- Sibanarayan Rath
- Central Research Laboratory, Institute of Medical Sciences and Sum Hospital, Siksha 'O' Anusandhan University, Odisha, India
| | - Saumya Ranjan Das
- Department of Ear Nose and Throat, Institute of Medical Sciences and Sum Hospital, Siksha 'O' Anusandhan University, Odisha, India
| | - Rabindra Nath Padhy
- Central Research Laboratory, Institute of Medical Sciences and Sum Hospital, Siksha 'O' Anusandhan University, Odisha, India
| |
Collapse
|
6
|
A Moldy Application of MALDI: MALDI-ToF Mass Spectrometry for Fungal Identification. J Fungi (Basel) 2019; 5:jof5010004. [PMID: 30609833 PMCID: PMC6463175 DOI: 10.3390/jof5010004] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/07/2018] [Accepted: 12/25/2018] [Indexed: 12/20/2022] Open
Abstract
As a result of its being inexpensive, easy to perform, fast and accurate, matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-ToF MS) is quickly becoming the standard means of bacterial identification from cultures in clinical microbiology laboratories. Its adoption for routine identification of yeasts and even dimorphic and filamentous fungi in cultures, while slower, is now being realized, with many of the same benefits as have been recognized on the bacterial side. In this review, the use of MALDI-ToF MS for identification of yeasts, and dimorphic and filamentous fungi grown in culture will be reviewed, with strengths and limitations addressed.
Collapse
|
7
|
[Identification of Candida yeasts: Conventional methods and MALDI-TOF MS]. Rev Iberoam Micol 2018; 35:151-154. [PMID: 30078526 DOI: 10.1016/j.riam.2018.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 01/22/2018] [Accepted: 02/26/2018] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Invasive fungal infections are increasing, and Candida yeasts are the main cause. Species other than Candida albicans are becoming more frequent, and some of them may have variable patterns of susceptibility to antifungal agents, making it important to identify them correctly. Conventional identification methods used by most laboratories may present with drawbacks. Mass spectrometry (MALDI-TOF MS) has emerged as an alternative method. AIMS The aim of this study was to evaluate the concordance of the identification, at species level, by conventional methods (API) and MALDI-TOF MS. METHODS The following species and number of isolates were studied: Candida parapsilosis (28), Candida glabrata (34), Candida krusei (24), Candida tropicalis (45), Candida guilliermondii (30), C. albicans (28), Candida dubliniensis (6), Candida kefyr (1), and Candida lipolytica (1) from the strain collection of Autonomous City of Buenos Aires Mycology Network (RMCABA). The strains C. parapsilosis 22019, C. glabrata 90030, C. krusei 6258 and C. albicans 68548 from the American Type Culture Collection (ATCC) were also included. Discrepancies were resolved by genotyping. RESULTS AND CONCLUSIONS The direct concordance between the conventional identification method and MALDI-TOF MS was 92.5% (186/201).
Collapse
|
8
|
Ruiz de Alegría Puig C, Agüero-Balbín J, Fernández-Mazarrasa C, Martínez-Martínez L. Evaluation of the Vitek-MS™ system in the identification of Candida isolates from bloodstream infections. Rev Iberoam Micol 2018; 35:130-133. [DOI: 10.1016/j.riam.2018.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/17/2018] [Accepted: 02/26/2018] [Indexed: 01/13/2023] Open
|
9
|
Yan Y, Zhao Z, Dong G, Han Y, Yang D, Yin H, Piao Y, He C, Tian C, Wan H, Li X, Jin Y, Fang J, Liu H. Using IFN-γ antibodies to identify the pathogens of fungal rhinosinusitis: A novel immunohistochemical approach. Mol Med Rep 2017; 17:3627-3632. [PMID: 29286163 PMCID: PMC5802167 DOI: 10.3892/mmr.2017.8359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 12/19/2016] [Indexed: 12/31/2022] Open
Abstract
Fungal rhinosinusitis (FRS) is commonly caused by various Aspergillus species (spp) and Mucorales fungi, and the treatment and prognosis of cases differ depending on the causative fungus. The present study describes a novel immunohistochemical method that has high sensitivity and specificity for distinguishing between these two types of fungi in patients with FRS. Three groups were included in the study. Group A included formalin-fixed paraffin-embedded blocks of 51 nasal tissue specimens of patients with FRS (27 Aspergillus spp and 24 Mucorales) that were continuously obtained from the Department of Pathology of Tongren Hospital in Beijing as the experimental group and 34 cultures (26 Aspergillus spp and 8 Mucorales) of FRS that were randomly selected from the bacterial laboratory of Tongren Hospital in Beijing to verify the staining results of the paraffin-embedded blocks. Formalin-fixed paraffin-embedded blocks of 10 esophageal cancer specimens were included in Group B as the positive control group. All specimens in Groups A and B were stained with interferon-γ (IFN-γ) antibody. Group C consisted of the same specimens as described in Group A, however, when performing the immunohistochemical assay, IFN-γ antibody was replaced by PBS and this served as the negative control group. The differences in IFN-γ immunohistochemical staining between Aspergillus spp and Mucorales were analyzed. Staining of IFN-γ in paraffin-embedded samples was positive in 92.6% (25/27) of specimens in which Aspergillus spp were the causative pathogen, which was significantly higher compared with specimens in which Mucorales was causative (P<0.001), with only 4.2% (1/24) of specimens staining positive for IFN-γ. Immunohistochemical staining of cell cultures was 100% positive for Aspergillus spp, whereas all Mucorales were negative. Thus, the results of the current study indicated that IFN-γ antibody immunohistochemical staining may be used as a novel diagnostic tool to distinguish between Aspergillus spp and Mucorales when identifying the causative agent in FRS, providing a useful supplementary test to the current immunohistochemical methods in the clinical diagnosis of FRS.
Collapse
Affiliation(s)
- Yuyan Yan
- Department of Pathology, Affiliated Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Zuotao Zhao
- Department of Dermatology, First Hospital, Peking University, Beijing 100034, P.R. China
| | - Gehong Dong
- Department of Pathology, Affiliated Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Yiding Han
- Department of Pathology, Affiliated Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Dongmei Yang
- Department of Pathology, Affiliated Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Hongyan Yin
- Department of Pathology, Affiliated Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Yingshi Piao
- Department of Pathology, Affiliated Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Chunyan He
- Department of Pathology, Affiliated Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Cheng Tian
- Department of Pathology, Affiliated Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Hongfei Wan
- Department of Pathology, Affiliated Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Xue Li
- Department of Pathology, Affiliated Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Yulan Jin
- Department of Pathology, Affiliated Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Jugao Fang
- Department of ENT, Affiliated Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Honggang Liu
- Department of Pathology, Affiliated Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| |
Collapse
|
10
|
Methods of Candida dubliniensis identification and its occurrence in human clinical material. Folia Microbiol (Praha) 2017; 62:401-408. [DOI: 10.1007/s12223-017-0510-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 02/21/2017] [Indexed: 01/30/2023]
|
11
|
Detection and Management of Fungal Respiratory Infection by Using Molecular Markers. Fungal Biol 2017. [DOI: 10.1007/978-3-319-34106-4_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Stübiger G, Wuczkowski M, Mancera L, Lopandic K, Sterflinger K, Belgacem O. Characterization of Yeasts and Filamentous Fungi using MALDI Lipid Phenotyping. J Microbiol Methods 2016; 130:27-37. [DOI: 10.1016/j.mimet.2016.08.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/16/2016] [Accepted: 08/16/2016] [Indexed: 12/12/2022]
|
13
|
Cassagne C, Normand AC, L'Ollivier C, Ranque S, Piarroux R. Performance of MALDI-TOF MS platforms for fungal identification. Mycoses 2016; 59:678-690. [DOI: 10.1111/myc.12506] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 03/04/2016] [Accepted: 03/12/2016] [Indexed: 01/03/2023]
Affiliation(s)
- Carole Cassagne
- Parasitology and Mycology; Assistance Publique-Hôpitaux de Marseille; CHU Timone-Adultes; Marseilles CEDEX 5 France
- Aix-Marseille University; UMR MD3 IP-TPT; Marseilles France
| | - Anne-Cécile Normand
- Parasitology and Mycology; Assistance Publique-Hôpitaux de Marseille; CHU Timone-Adultes; Marseilles CEDEX 5 France
| | - Coralie L'Ollivier
- Parasitology and Mycology; Assistance Publique-Hôpitaux de Marseille; CHU Timone-Adultes; Marseilles CEDEX 5 France
- Aix-Marseille University; UMR MD3 IP-TPT; Marseilles France
| | - Stéphane Ranque
- Parasitology and Mycology; Assistance Publique-Hôpitaux de Marseille; CHU Timone-Adultes; Marseilles CEDEX 5 France
- Aix-Marseille University; UMR MD3 IP-TPT; Marseilles France
| | - Renaud Piarroux
- Parasitology and Mycology; Assistance Publique-Hôpitaux de Marseille; CHU Timone-Adultes; Marseilles CEDEX 5 France
- Aix-Marseille University; UMR MD3 IP-TPT; Marseilles France
| |
Collapse
|
14
|
Fraser M, Brown Z, Houldsworth M, Borman AM, Johnson EM. Rapid identification of 6328 isolates of pathogenic yeasts using MALDI-ToF MS and a simplified, rapid extraction procedure that is compatible with the Bruker Biotyper platform and database. Med Mycol 2015; 54:80-8. [PMID: 26591008 DOI: 10.1093/mmy/myv085] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 08/11/2015] [Indexed: 12/31/2022] Open
Abstract
Rapid and accurate identification of yeast isolates from clinical samples is essential, given their innately variable antifungal susceptibility profiles, and the proposal of species-specific antifungal susceptibility interpretive breakpoints. Here we have evaluated the utility of MALDI-ToF MS analysis for the identification of clinical isolates of pathogenic yeasts. A simplified, rapid extraction method, developed in our laboratory, was applied to 6343 isolates encompassing 71 different yeast species, which were then subjected to MALDI-ToF MS analysis using a Bruker Microflex and the resulting spectra were assessed using the supplied Bruker database. In total, 6328/6343 (99.8%) of isolates were correctly identified by MALDI-ToF MS. Our simplified extraction protocol allowed the correct identification of 93.6% of isolates, without the need for laborious full extraction, and a further 394 (6.2%) of isolates could be identified after full extraction. Clinically relevant identifications with both extraction methods were achieved using the supplied Bruker database and did not require the generation of bespoke, in-house databases created using profiles obtained with the adapted extraction method. In fact, the mean LogScores obtained using our method were as robust as those obtained using the recommended, published full extraction procedures. However, an in-house database can provide a useful additional identification tool for unusual or rarely encountered organisms. Finally, the proposed methodology allowed the correct identification of over 75% of isolates directly from the initial cultures referred to our laboratory, without the requirement for additional sub-culture on standardised mycological media.
Collapse
Affiliation(s)
- Mark Fraser
- UK National Mycology Reference Laboratory, Public Health England, Bristol, United Kingdom
| | - Zoe Brown
- UK National Mycology Reference Laboratory, Public Health England, Bristol, United Kingdom
| | - Marian Houldsworth
- UK National Mycology Reference Laboratory, Public Health England, Bristol, United Kingdom
| | - Andrew M Borman
- UK National Mycology Reference Laboratory, Public Health England, Bristol, United Kingdom
| | - Elizabeth M Johnson
- UK National Mycology Reference Laboratory, Public Health England, Bristol, United Kingdom
| |
Collapse
|
15
|
García-Agudo L, Galán F, García-Martos P, Carranza R, Rodríguez-Iglesias M. [Utility of mass spectrometry in the microbiological diagnosis of candiduria]. Rev Iberoam Micol 2015; 33:58-9. [PMID: 26561412 DOI: 10.1016/j.riam.2015.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Revised: 01/10/2015] [Accepted: 02/25/2015] [Indexed: 11/17/2022] Open
Affiliation(s)
- Lidia García-Agudo
- Helse Møre og Romsdal, Molde sykehus, Laboratorium for medisinsk mikrobiologi, Noruega.
| | - Fátima Galán
- Servicio de Microbiología, Hospital Puerta del Mar, Cádiz, España
| | | | - Rafael Carranza
- Servicio de Análisis Clínicos, Hospital General La Mancha-Centro, Alcázar de San Juan, Ciudad Real, España
| | | |
Collapse
|
16
|
Pushing the Limits of MALDI-TOF Mass Spectrometry: Beyond Fungal Species Identification. J Fungi (Basel) 2015; 1:367-383. [PMID: 29376916 PMCID: PMC5753130 DOI: 10.3390/jof1030367] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/05/2015] [Accepted: 10/07/2015] [Indexed: 12/12/2022] Open
Abstract
Matrix assisted laser desorption ionization time of flight (MALDI-TOF) is a powerful analytical tool that has revolutionized microbial identification. Routinely used for bacterial identification, MALDI-TOF has recently been applied to both yeast and filamentous fungi, confirming its pivotal role in the rapid and reliable diagnosis of infections. Subspecies-level identification holds an important role in epidemiological investigations aimed at tracing virulent or drug resistant clones. This review focuses on present and future applications of this versatile tool in the clinical mycology laboratory.
Collapse
|
17
|
Rodríguez-Leguizamón G, Fiori A, López LF, Gómez BL, Parra-Giraldo CM, Gómez-López A, Suárez CF, Ceballos A, Van Dijck P, Patarroyo MA. Characterising atypical Candida albicans clinical isolates from six third-level hospitals in Bogotá, Colombia. BMC Microbiol 2015; 15:199. [PMID: 26438104 PMCID: PMC4594647 DOI: 10.1186/s12866-015-0535-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 09/25/2015] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Candida species are the most frequently found fungal pathogens causing nosocomial disease in a hospital setting. Such species must be correctly identified to ensure that appropriate control measures are taken and that suitable treatment is given for each species. Candida albicans is causing most fungal disease burden worldwide; the challenge lies in differentiating it from emerging atypical, minor and related species such as Candida dubliniensis and Candida africana. The purpose of this study was to compare identification based on MALDI-TOF MS to standard identification systems using a set of nosocomial isolates. METHODS Eleven nosocomial samples were collected from 6 third-level hospitals in Bogotá, Colombia. All the samples were identified by combining MALDI-TOF MS with morphological characters, carbohydrate assimilation and molecular markers (D1/D2 and HWP1). RESULTS The present work describes the first collection of atypical Colombian Candida clinical isolates; these were identified as Candida albicans/Candida africana by their MALDI-TOF MS profile. Phenotypical characteristics showed that they were unable to produce chlamydospores, assimilate trehalose, glucosamine, N- acetyl-glucosamine and barely grew at 42 °C, as would be expected for Candida africana. The molecular identification of the D1/D2 region of large subunit ribosomal RNA and HWP1 hyphal cell wall protein 1 sequences from these isolates was consistent with those for Candida albicans. The mass spectra obtained by MALDI-TOF MS were analysed by multi-dimensional scaling (MDS) and cluster analysis, differences being revealed between Candida albicans, Candida africana, Candida dubliniensis reference spectra and two clinical isolate groups which clustered according to the clinical setting, one of them being clearly related to C. albicans. CONCLUSION This study highlights the importance of using MALDI-TOF MS in combination with morphology, substrate assimilation and molecular markers for characterising Candida albicans-related and atypical C. albicans species, thereby overcoming conventional identification methods. This is the first report of hospital-obtained isolates of this type in Colombia; the approach followed might be useful for gathering knowledge regarding local epidemiology which could, in turn, have an impact on clinical management. The findings highlight the complexity of distinguishing between typical and atypical Candida albicans isolates in hospitals.
Collapse
Affiliation(s)
- Giovanni Rodríguez-Leguizamón
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia. .,VIB Department of Molecular Microbiology, Leuven, Belgium. .,KU Leuven Laboratory of Molecular Cell Biology, Leuven, Belgium.
| | - Alessandro Fiori
- VIB Department of Molecular Microbiology, Leuven, Belgium. .,KU Leuven Laboratory of Molecular Cell Biology, Leuven, Belgium.
| | - Luisa F López
- Medical and Experimental Mycology Unit, Corporación para las Investigaciones Biológicas (CIB), Medellín, Colombia.
| | - Beatriz L Gómez
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia. .,Medical and Experimental Mycology Unit, Corporación para las Investigaciones Biológicas (CIB), Medellín, Colombia.
| | - Claudia M Parra-Giraldo
- Infectious Diseases Research Group, Microbiology Department, Pontificia Universidad Javeriana, Bogotá, Colombia.
| | - Arley Gómez-López
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia.
| | - Carlos F Suárez
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia. .,Biomathematics Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia.
| | - Andrés Ceballos
- Infectious Diseases Research Group, Microbiology Department, Pontificia Universidad Javeriana, Bogotá, Colombia.
| | - Patrick Van Dijck
- VIB Department of Molecular Microbiology, Leuven, Belgium. .,KU Leuven Laboratory of Molecular Cell Biology, Leuven, Belgium.
| | - Manuel A Patarroyo
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia. .,Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia.
| |
Collapse
|
18
|
Saracli M. MALDI-TOF MS: A Rapid and New Approach in Fungal Diagnosis and Susceptibility Testing. Med Mycol 2015. [DOI: 10.1201/b18707-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
19
|
Galán F, García-Agudo L, Guerrero I, Marín P, García-Tapia A, García-Martos P, Rodríguez-Iglesias M. Evaluación de la espectrometría de masas en la identificación de levaduras de interés clínico. Enferm Infecc Microbiol Clin 2015; 33:372-8. [DOI: 10.1016/j.eimc.2014.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 07/29/2014] [Accepted: 10/01/2014] [Indexed: 10/24/2022]
|
20
|
Gruenwald M, Rabenstein A, Remesch M, Kuever J. MALDI-TOF mass spectrometry fingerprinting: A diagnostic tool to differentiate dematiaceous fungi Stachybotrys chartarum and Stachybotrys chlorohalonata. J Microbiol Methods 2015; 115:83-8. [PMID: 26036596 DOI: 10.1016/j.mimet.2015.05.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 05/27/2015] [Accepted: 05/29/2015] [Indexed: 11/17/2022]
Abstract
Stachybotrys chartarum and Stachybotrys chlorohalonata are two closely related species. Unambiguous identification of these two species is a challenging task if relying solely on morphological criteria and therefore smarter and less labor-intensive approaches are needed. Here we show that even such closely related species of fungi as S. chartarum and S. chlorohalonata are unequivocally discriminated by their highly reproducible MALDI-TOF-MS fingerprints (matrix assisted laser desorption/ionization time-of-flight mass spectrometry fingerprints). We examined 19 Stachybotrys and one Aspergillus isolate by MALDI-TOF-MS. All but one isolate produced melanin containing conidia on malt extract agar. Mass spectra were obtained in good quality from the analysis of hyaline and darkly pigmented conidia by circumventing the property of melanin which causes signal suppression. MALDI-TOF fingerprint analysis clearly discriminated not only the two morphologically similar species S. chartarum and S. chlorohalonata from each other but separated them precisely from Stachybotrys bisbyi and Aspergillus versicolor isolates. Furthermore, even S. chartarum chemotypes A and S could be differentiated into two distinct groups by their MALDI-TOF fingerprints. The chemotypes of S. chartarum isolates were identified by trichodiene synthase 5 (tri5) sequences prior to mass spectra analysis. Additionally, species identities of all isolates were verified by their 18S rRNA and tri5 gene sequences.
Collapse
Affiliation(s)
- Maike Gruenwald
- Bremen Institute for Materials Testing, Microbiology Department, Paul-Feller-Straße 1, 28199 Bremen, Germany.
| | - Andreas Rabenstein
- Bremen Institute for Materials Testing, Microbiology Department, Paul-Feller-Straße 1, 28199 Bremen, Germany.
| | - Markko Remesch
- Bremen Institute for Materials Testing, Microbiology Department, Paul-Feller-Straße 1, 28199 Bremen, Germany.
| | - Jan Kuever
- Bremen Institute for Materials Testing, Microbiology Department, Paul-Feller-Straße 1, 28199 Bremen, Germany.
| |
Collapse
|
21
|
Sow D, Fall B, Ndiaye M, Ba BS, Sylla K, Tine R, Lô AC, Abiola A, Wade B, Dieng T, Dieng Y, Ndiaye JL, Hennequin C, Gaye O, Faye B. Usefulness of MALDI-TOF Mass Spectrometry for Routine Identification of Candida Species in a Resource-Poor Setting. Mycopathologia 2015; 180:173-9. [DOI: 10.1007/s11046-015-9905-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 05/19/2015] [Indexed: 10/23/2022]
|
22
|
Molecular and nonmolecular diagnostic methods for invasive fungal infections. Clin Microbiol Rev 2015; 27:490-526. [PMID: 24982319 DOI: 10.1128/cmr.00091-13] [Citation(s) in RCA: 227] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Invasive fungal infections constitute a serious threat to an ever-growing population of immunocompromised individuals and other individuals at risk. Traditional diagnostic methods, such as histopathology and culture, which are still considered the gold standards, have low sensitivity, which underscores the need for the development of new means of detecting fungal infectious agents. Indeed, novel serologic and molecular techniques have been developed and are currently under clinical evaluation. Tests like the galactomannan antigen test for aspergillosis and the β-glucan test for invasive Candida spp. and molds, as well as other antigen and antibody tests, for Cryptococcus spp., Pneumocystis spp., and dimorphic fungi, have already been established as important diagnostic approaches and are implemented in routine clinical practice. On the other hand, PCR and other molecular approaches, such as matrix-assisted laser desorption ionization (MALDI) and fluorescence in situ hybridization (FISH), have proved promising in clinical trials but still need to undergo standardization before their clinical use can become widespread. The purpose of this review is to highlight the different diagnostic approaches that are currently utilized or under development for invasive fungal infections and to identify their performance characteristics and the challenges associated with their use.
Collapse
|
23
|
Criseo G, Scordino F, Romeo O. Current methods for identifying clinically important cryptic Candida species. J Microbiol Methods 2015; 111:50-6. [PMID: 25659326 DOI: 10.1016/j.mimet.2015.02.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/03/2015] [Accepted: 02/03/2015] [Indexed: 01/12/2023]
Abstract
In recent years, the taxonomy of the most important pathogenic Candida species (Candida albicans, Candida parapsilosis and Candida glabrata) has undergone profound changes due to the description of new closely-related species. This has resulted in the establishment of cryptic species complexes difficult to recognize in clinical diagnostic laboratories. The identification of these novel Candida species seems to be clinically relevant because it is likely that they differ in virulence and drug resistance. Nevertheless, current phenotypic methods are not suitable to accurately distinguish all the species belonging to a specific cryptic complex and therefore their recognition still requires molecular methods. Since traditional mycological techniques have not been useful, a number of molecular based methods have recently been developed. These range from simple PCR-based methods to more sophisticated real-time PCR and/or MALDI-TOF methods. In this article, we review the current methods designed for discriminating among closely related Candida species by highlighting, in particular, the limits of the existing phenotypic tests and the development of rapid and specific molecular tools for their proper identification.
Collapse
Affiliation(s)
- Giuseppe Criseo
- Department of Environmental and Biological Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Fabio Scordino
- Department of Environmental and Biological Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Orazio Romeo
- Department of Environmental and Biological Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy.
| |
Collapse
|
24
|
Deak E, Charlton CL, Bobenchik AM, Miller SA, Pollett S, McHardy IH, Wu MT, Garner OB. Comparison of the Vitek MS and Bruker Microflex LT MALDI-TOF MS platforms for routine identification of commonly isolated bacteria and yeast in the clinical microbiology laboratory. Diagn Microbiol Infect Dis 2015; 81:27-33. [DOI: 10.1016/j.diagmicrobio.2014.09.018] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 09/18/2014] [Accepted: 09/21/2014] [Indexed: 11/27/2022]
|
25
|
Abstract
Abstract
BACKGROUND
First introduced into clinical microbiology laboratories in Europe, MALDI-TOF MS is being rapidly embraced by laboratories around the globe. Although it has multiple applications, its widespread adoption in clinical microbiology relates to its use as an inexpensive, easy, fast, and accurate method for identification of grown bacteria and fungi based on automated analysis of the mass distribution of bacterial proteins.
CONTENT
This review provides a historical perspective on this new technology. Modern applications in the clinical microbiology laboratory are reviewed with a focus on the most recent publications in the field. Identification of aerobic and anaerobic bacteria, mycobacteria, and fungi are discussed, as are applications for testing urine and positive blood culture bottles. The strengths and limitations of MALDI-TOF MS applications in clinical microbiology are also addressed.
SUMMARY
MALDI-TOF MS is a tool for rapid, accurate, and cost-effective identification of cultured bacteria and fungi in clinical microbiology. The technology is automated, high throughput, and applicable to a broad range of common as well as esoteric bacteria and fungi. MALDI-TOF MS is an incontrovertibly beneficial technology for the clinical microbiology laboratory.
Collapse
Affiliation(s)
- Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, and
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, MN
| |
Collapse
|
26
|
Ngouana TK, Krasteva D, Drakulovski P, Toghueo RK, Kouanfack C, Ambe A, Reynes J, Delaporte E, Boyom FF, Mallié M, Bertout S. Investigation of minor species Candida africana, Candida stellatoidea and Candida dubliniensis in the Candida albicans complex among Yaoundé (Cameroon) HIV-infected patients. Mycoses 2014; 58:33-9. [PMID: 25289589 DOI: 10.1111/myc.12266] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 08/31/2014] [Accepted: 09/01/2014] [Indexed: 01/23/2023]
Abstract
Minor species of the Candida albicans complex may cause overestimation of the epidemiology of C. albicans, and misidentifications could mask their implication in human pathology. Authors determined the occurrence of minor species of the C. albicans complex (C. africana, C. dubliniensis and C. stellatoidea) among Yaoundé HIV-infected patients, Cameroon. Stool, vaginal discharge, urine and oropharyngeal samples were analysed by mycological diagnosis. Isolates were identified by conventional methods and mass spectrometry (MS; carried out by the matrix-assisted laser desorption-ionisation time-of-flight MS protocol). Candida albicans isolates were thereafter submitted to the PCR amplification of the Hwp1 gene. The susceptibility of isolates to antifungal drugs was tested using the Clinical and Laboratory Standards Institute M27-A3 protocol. From 115 C. albicans obtained isolates, neither C. dubliniensis nor C. stellatoidea was observed; two strains of C. africana (422PV and 448PV) were identified by PCR electrophoretic profiles at 700 bp. These two C. africana strains were vaginal isolates. The isolate 448PV was resistant to ketoconazole at the minimal inhibitory concentration of 2 μg ml(-1), and showed reduced susceptibility to amphotericin B at 1 μg ml(-1). This first report on C. africana occurrence in Cameroon brings clues for the understanding of the global epidemiology of this yeast as well as that of minor species of the C. albicans complex.
Collapse
Affiliation(s)
- Thierry K Ngouana
- Clinical Biology Laboratory, Yaoundé Central Hospital, Yaoundé, Cameroon; Laboratoire de Parasitologie et Mycologie Médicale UFR Pharmacie, UMI 233 UM1-IRD-UCAD-UY1 «TransVIHMI», Université de Montpellier 1, Montpellier, France; Antimicrobial Agents Unit (AMAU), Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Pavlovic M, Mewes A, Maggipinto M, Schmidt W, Messelhäußer U, Balsliemke J, Hörmansdorfer S, Busch U, Huber I. MALDI-TOF MS based identification of food-borne yeast isolates. J Microbiol Methods 2014; 106:123-128. [PMID: 25193440 DOI: 10.1016/j.mimet.2014.08.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 08/04/2014] [Accepted: 08/26/2014] [Indexed: 10/24/2022]
Abstract
In this study, food-borne yeast isolates (n=96), comprising at least 33 species, were identified using MALDI-TOF MS and conventional methods (API ID 32 C and Phoenix Yeast ID). Discrepancies of both methods were resolved by sequencing the ITS1-5.8S-rRNA-ITS2 region. For ten isolates, mainly classified to Rhodotorula and Trichosporon species, no clear final species identification was possible. 62 isolates were correctly identified to species level using either MALDI-TOF MS or conventional tests. 15 isolates were misidentified when applying conventional assays. In contrary, no species misidentifications were observed after MALDI-TOF MS based classification. In return, 16 isolates were not identifiable after matching their protein fingerprints against MALDI Biotyper 4.0.0.1 library. MALDI TOF MS in-house database update clearly improved the identification. In conclusion, the presented data suggest that MALDI-TOF MS is an appropriate platform for reliable classification and identification of food-borne yeast isolates.
Collapse
Affiliation(s)
- Melanie Pavlovic
- Bavarian Health and Food Safety Authority, Veterinaerstr. 2, 85764 Oberschleißheim, Germany.
| | - Anne Mewes
- Bavarian Health and Food Safety Authority, Veterinaerstr. 2, 85764 Oberschleißheim, Germany
| | - Marzena Maggipinto
- Bavarian Health and Food Safety Authority, Veterinaerstr. 2, 85764 Oberschleißheim, Germany
| | - Wolfgang Schmidt
- Bavarian Health and Food Safety Authority, Veterinaerstr. 2, 85764 Oberschleißheim, Germany
| | - Ute Messelhäußer
- Bavarian Health and Food Safety Authority, Veterinaerstr. 2, 85764 Oberschleißheim, Germany
| | - Joachim Balsliemke
- Bavarian Health and Food Safety Authority, Eggenreuther Weg 43, 91058 Erlangen, Germany
| | - Stefan Hörmansdorfer
- Bavarian Health and Food Safety Authority, Veterinaerstr. 2, 85764 Oberschleißheim, Germany
| | - Ulrich Busch
- Bavarian Health and Food Safety Authority, Veterinaerstr. 2, 85764 Oberschleißheim, Germany
| | - Ingrid Huber
- Bavarian Health and Food Safety Authority, Veterinaerstr. 2, 85764 Oberschleißheim, Germany
| |
Collapse
|
28
|
|
29
|
Accuracy of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of clinical pathogenic fungi: a meta-analysis. J Clin Microbiol 2014; 52:2573-82. [PMID: 24829234 DOI: 10.1128/jcm.00700-14] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Fungal infections in the clinic have become increasingly serious. In many cases, the identification of clinically relevant fungi remains time-consuming and may also be unreliable. Matrix-assisted laser desorption ionization-time of flight mass spectroscopy (MALDI-TOF MS) is a newly developed diagnostic tool that is increasingly being employed to rapidly and accurately identify clinical pathogenic microorganisms. The present meta-analysis aimed to systematically evaluate the accuracy of MALDI-TOF MS for the identification of clinical pathogenic fungi. After a rigorous selection process, 33 articles, involving 38 trials and a total of 9,977 fungal isolates, were included in the meta-analysis. The random-effects pooled identification accuracy of MALDI-TOF MS increased from 0.955 (95% confidence interval [CI], 0.939 to 0.969) at the species level to 0.977 (95% CI, 0.955 to 0.993) at the genus level (P < 0.001; χ(2) = 15.452). Subgroup analyses were performed at the species level for several categories, including strain, source of strain, system, system database, and modified outcomes, to calculate the accuracy and to investigate heterogeneity. These analyses revealed significant differences between the overall meta-analysis and some of the subanalyses. In parallel, significant differences in heterogeneity among different systems and among different methods for calculating the identification ratios were found by multivariate metaregression, but none of the factors, except for the moderator of outcome, was significantly associated with heterogeneity by univariate metaregression. In summary, the MALDI-TOF MS method is highly accurate for the identification of clinically pathogenic fungi; future studies should analyze the comprehensive capability of this technology for clinical diagnostic microbiology.
Collapse
|
30
|
Pence MA, McElvania TeKippe E, Wallace MA, Burnham CAD. Comparison and optimization of two MALDI-TOF MS platforms for the identification of medically relevant yeast species. Eur J Clin Microbiol Infect Dis 2014; 33:1703-12. [PMID: 24800928 DOI: 10.1007/s10096-014-2115-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 04/07/2014] [Indexed: 01/14/2023]
Abstract
The rapid identification of yeast is essential for the optimization of antifungal therapy. The objective of our study was to evaluate two matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) platforms, the bioMérieux VITEK MS (IVD Knowledgebase v.2.0) and Bruker Biotyper (software version 3.1), for the rapid identification of medically relevant yeast. One hundred and seventeen isolates, representing six genera and 18 species, were analyzed using multiple direct smear methods to optimize identification. Sequence analysis was the gold standard for comparison. Isolates were analyzed with VITEK MS using the direct smear method +/- a 25 % formic acid on-plate extraction. For Biotyper, isolates were analyzed using direct smear without formic acid, and with 25 % and 100 % formic acid on-plate extractions. When all methods were included, VITEK MS correctly identified 113 (96.6 %) isolates after 24 h with one misidentification, and Biotyper correctly identified 77 (65.8 %) isolates using a threshold of ≥2.0 with no misidentifications. Using a revised threshold of ≥1.7, Biotyper correctly identified 103 (88.0 %) isolates, with 3 (2.6 %) misidentifications. For both platforms, the number of identifications was significantly increased using a formic acid overlay (VITEK MS, p < 0.01; Biotyper, p < 0.001), and reducing the Biotyper threshold from ≥2.0 to ≥1.7 significantly increased the rate of identification (p < 0.001). The data in this study demonstrate that the direct smear method with on-plate formic acid extraction can be used for yeast identification on both MS platforms, and more isolates are identified using the VITEK MS system (p < 0.01).
Collapse
Affiliation(s)
- M A Pence
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, 660 S. Euclid Ave., Campus Box 8118, St. Louis, MO, 63110, USA
| | | | | | | |
Collapse
|
31
|
Acosta-Martin AE, Lane L. Combining bioinformatics and MS-based proteomics: clinical implications. Expert Rev Proteomics 2014; 11:269-84. [PMID: 24720436 DOI: 10.1586/14789450.2014.900446] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Clinical proteomics research aims at i) discovery of protein biomarkers for screening, diagnosis and prognosis of disease, ii) discovery of protein therapeutic targets for improvement of disease prevention, treatment and follow-up, and iii) development of mass spectrometry (MS)-based assays that could be implemented in clinical chemistry, microbiology or hematology laboratories. MS has been increasingly applied in clinical proteomics studies for the identification and quantification of proteins. Bioinformatics plays a key role in the exploitation of MS data in several aspects such as the generation and curation of protein sequence databases, the development of appropriate software for MS data treatment and integration with other omics data and the establishment of adequate standard files for data sharing. In this article, we discuss the main MS approaches and bioinformatics solutions that are currently applied to accomplish the objectives of clinical proteomic research.
Collapse
|
32
|
Development and validation of an in-house database for matrix-assisted laser desorption ionization-time of flight mass spectrometry-based yeast identification using a fast protein extraction procedure. J Clin Microbiol 2014; 52:1453-8. [PMID: 24554755 DOI: 10.1128/jcm.03355-13] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In recent studies evaluating the usefulness of the matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS)-based identification of yeasts for the routine diagnosis of fungal infections, preanalytical sample processing has emerged as a critical step for reliable MALDI-TOF MS outcomes, especially when the Bruker Daltonics Biotyper software was used. In addition, inadequate results often occurred due to discrepancies between the methods used for clinical testing and database construction. Therefore, we created an in-house MALDI-TOF MS library using the spectra from 156 reference and clinical yeast isolates (48 species in 11 genera), which were generated with a fast sample preparation procedure. After a retrospective validation study, our database was evaluated on 4,232 yeasts routinely isolated during a 6-month period and fast prepared for MALDI-TOF MS analysis. Thus, 4,209 (99.5%) of the isolates were successfully identified to the species level (with scores of ≥2.0), with 1,676 (39.6%) having scores of >2.3. For the remaining 23 (0.5%) isolates, no reliable identification (with scores of <1.7) was obtained. Interestingly, these isolates were almost always from species uniquely represented or not included in the database. As the MALDI-TOF MS results were, except for 23 isolates, validated without additional phenotypic or molecular tests, our proposed strategy can enhance the rapidity and accuracy of MALDI-TOF MS in identifying medically important yeast species. However, while continuous updating of our database will be necessary to enrich it with more strains/species of new and emerging yeasts, the present in-house MALDI-TOF MS library can be made publicly available for future multicenter studies.
Collapse
|
33
|
Evaluation of a short, on-plate formic acid extraction method for matrix-assisted laser desorption ionization-time of flight mass spectrometry-based identification of clinically relevant yeast isolates. J Clin Microbiol 2014; 52:1253-5. [PMID: 24478407 DOI: 10.1128/jcm.03489-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This report describes a short, on-plate formic acid (FA) extraction method for the identification of clinical yeast isolates using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS). A total of 41.1% (78/190) and 63.7% (121/190) of yeasts were identified using species log score thresholds of >2.0 and >1.9, respectively. Overall, 97.4% (185/190) of yeasts were identified in combination with conventional FA extraction.
Collapse
|
34
|
Charnot-Katsikas A, Tesic V, Boonlayangoor S, Bethel C, Frank KM. Prospective evaluation of the VITEK MS for the routine identification of bacteria and yeast in the clinical microbiology laboratory: assessment of accuracy of identification and turnaround time. J Med Microbiol 2013; 63:235-241. [PMID: 24227878 DOI: 10.1099/jmm.0.063636-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This study assessed the accuracy of bacterial and yeast identification using the VITEK MS, and the time to reporting of isolates before and after its implementation in routine clinical practice. Three hundred and sixty-two isolates of bacteria and yeast, consisting of a variety of clinical isolates and American Type Culture Collection strains, were tested. Results were compared with reference identifications from the VITEK 2 system and with 16S rRNA sequence analysis. The VITEK MS provided an acceptable identification to species level for 283 (78 %) isolates. Considering organisms for which genus-level identification is acceptable for routine clinical care, 315 isolates (87 %) had an acceptable identification. Six isolates (2 %) were identified incorrectly, five of which were Shigella species. Finally, the time for reporting the identifications was decreased significantly after implementation of the VITEK MS for a total mean reduction in time of 10.52 h (P<0.0001). Overall, accuracy of the VITEK MS was comparable or superior to that from the VITEK 2. The findings were also comparable to other studies examining the accuracy of the VITEK MS, although differences exist, depending on the diversity of species represented as well as on the versions of the databases used. The VITEK MS can be incorporated effectively into routine use in a clinical microbiology laboratory and future expansion of the database should provide improved accuracy for the identification of micro-organisms.
Collapse
Affiliation(s)
- Angella Charnot-Katsikas
- Department of Pathology, University of Chicago Medicine, 5841 S. Maryland Avenue, Chicago, IL 60637, USA
| | - Vera Tesic
- Department of Pathology, University of Chicago Medicine, 5841 S. Maryland Avenue, Chicago, IL 60637, USA
| | - Sue Boonlayangoor
- Department of Pathology, University of Chicago Medicine, 5841 S. Maryland Avenue, Chicago, IL 60637, USA
| | - Cindy Bethel
- Department of Pathology, University of Chicago Medicine, 5841 S. Maryland Avenue, Chicago, IL 60637, USA
| | - Karen M Frank
- Department of Pathology, University of Chicago Medicine, 5841 S. Maryland Avenue, Chicago, IL 60637, USA
| |
Collapse
|
35
|
Chalupová J, Raus M, Sedlářová M, Sebela M. Identification of fungal microorganisms by MALDI-TOF mass spectrometry. Biotechnol Adv 2013; 32:230-41. [PMID: 24211254 DOI: 10.1016/j.biotechadv.2013.11.002] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 10/24/2013] [Accepted: 11/03/2013] [Indexed: 12/26/2022]
Abstract
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has emerged as a reliable tool for fast identification and classification of microorganisms. In this regard, it represents a strong challenge to microscopic and molecular biology methods. Nowadays, commercial MALDI systems are accessible for biological research work as well as for diagnostic applications in clinical medicine, biotechnology and industry. They are employed namely in bacterial biotyping but numerous experimental strategies have also been developed for the analysis of fungi, which is the topic of the present review. Members of many fungal genera such as Aspergillus, Fusarium, Penicillium or Trichoderma and also various yeasts from clinical samples (e.g. Candida albicans) have been successfully identified by MALDI-TOF MS. However, there is no versatile method for fungi currently available even though the use of only a limited number of matrix compounds has been reported. Either intact cell/spore MALDI-TOF MS is chosen or an extraction of surface proteins is performed and then the resulting extract is measured. Biotrophic fungal phytopathogens can be identified via a direct acquisition of MALDI-TOF mass spectra e.g. from infected plant organs contaminated by fungal spores. Mass spectrometric peptide/protein profiles of fungi display peaks in the m/z region of 1000-20000, where a unique set of biomarker ions may appear facilitating a differentiation of samples at the level of genus, species or strain. This is done with the help of a processing software and spectral database of reference strains, which should preferably be constructed under the same standardized experimental conditions.
Collapse
Affiliation(s)
- Jana Chalupová
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, CZ-783 71 Olomouc, Czech Republic
| | - Martin Raus
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, CZ-783 71 Olomouc, Czech Republic
| | - Michaela Sedlářová
- Department of Botany, Faculty of Science, Palacký University, Šlechtitelů 11, CZ-783 71 Olomouc, Czech Republic
| | - Marek Sebela
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, CZ-783 71 Olomouc, Czech Republic.
| |
Collapse
|
36
|
Comparison of the Bruker Biotyper and Vitek MS matrix-assisted laser desorption ionization-time of flight mass spectrometry systems for identification of mycobacteria using simplified protein extraction protocols. J Clin Microbiol 2013; 52:130-8. [PMID: 24172150 DOI: 10.1128/jcm.01996-13] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has recently been described as a fast and inexpensive method for the identification of mycobacteria. Although mycobacteria require extraction prior to MALDI-TOF MS analysis, previously published protocols have been relatively complex, involving significant hands-on time and materials not often found in the clinical laboratory. In this study, we tested two simplified protein extraction protocols developed at the University of Washington (UW) and by bioMérieux (BMX) for use with two different mass spectrometry platforms (the Bruker MALDI Biotyper and the bioMérieux Vitek MS, respectively). Both extraction protocols included vortexing with silica beads in the presence of ethanol. The commercial Bruker database was also augmented with an in-house database composed of 123 clinical Mycobacterium strains. A total of 198 clinical strains, representing 18 Mycobacterium species, were correctly identified to the species level 94.9% of the time when extracted using the UW protocol and compared to the augmented database. The BMX protocol and Vitek MS system resulted in correct species-level identifications for 94.4% of these strains. In contrast, only 79.3% of the strains were identified to the species level by the nonaugmented Bruker database, although the use of a lower identification score threshold (≥1.7) increased the identification rate to 93.9%, with two misidentifications that were unlikely to be clinically relevant. The two simplified protein extraction protocols described in this study are easy to use for identifying commonly encountered Mycobacterium species.
Collapse
|
37
|
Advantages of using matrix-assisted laser desorption ionization-time of flight mass spectrometry as a rapid diagnostic tool for identification of yeasts and mycobacteria in the clinical microbiological laboratory. J Clin Microbiol 2013; 51:3981-7. [PMID: 24048537 DOI: 10.1128/jcm.01437-13] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Yeast and mycobacteria can cause infections in immunocompromised patients and normal hosts. The rapid identification of these organisms can significantly improve patient care. There has been an increasing number of studies on using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for rapid yeast and mycobacterial identifications. However, studies on direct comparisons between the Bruker Biotyper and bioMérieux Vitek MS systems for the identification of yeast and mycobacteria have been limited. This study compared the performance of the two systems in their identification of 98 yeast and 102 mycobacteria isolates. Among the 98 yeast isolates, both systems generated species-level identifications in >70% of the specimens, of which Candida albicans was the most commonly cultured species. At a genus-level identification, the Biotyper system identified more isolates than the Vitek MS system for Candida (75/78 [96.2%]versus 68/78 [87.2%], respectively; P = 0.0426) and non-Candida yeasts (18/20 [90.0%]versus 7/20 [35.0%], respectively; P = 0.0008). For mycobacterial identification, the Biotyper system generated reliable identifications for 89 (87.3%) and 64 (62.8%) clinical isolates at the genus and species levels, respectively, from solid culture media, whereas the Vitek MS system did not generate any reliable identification. The MS method differentiated 12/21 clinical species, despite the fact that no differentiation between Mycobacterium abscessus and Mycobacterium chelonae was found by using 16S rRNA gene sequencing. In summary, the MALDI-TOF MS method provides short turnaround times and a standardized working protocol for the identification of yeast and mycobacteria. Our study demonstrates that MALDI-TOF MS is suitable as a first-line test for the identification of yeast and mycobacteria in clinical laboratories.
Collapse
|
38
|
|
39
|
|
40
|
Comparison between the Biflex III-Biotyper and the Axima-SARAMIS systems for yeast identification by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 2013; 51:1231-6. [PMID: 23390281 DOI: 10.1128/jcm.03268-12] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is emerging in laboratories as a new diagnostic tool for microorganism identification. We prospectively compared the performances of the Biflex III-Biotyper (Bruker Daltonics) and the Axima (Shimadzu)-SARAMIS (AnagnosTec) systems for the identification of 312 yeasts isolated from clinical specimens (249 Candida spp., including 19 C. albicans and 230 non-albicans species and 63 isolates belonging to different species of the genera Saccharomyces [20 isolates], Rhodotorula [8 isolates], Cryptococcus [8 isolates], Trichosporon [7 isolates], Pichia [7 isolates], Geotrichum [12 isolates], and Sporopachydermia cereana [1 isolate]). Species were identified by using routine conventional phenotypical methods and internal transcribed spacer (ITS) sequencing in case of discrepancy. We used expanded thresholds for species identification (log score of ≥1.7 with 3 identical consecutive propositions and no discrepancy between the duplicates for the Bruker Daltonics system and similitude of ≥40% with 5 successive identical propositions and no discrepancy between the duplicates for the Shimadzu system). Of the 312 isolates, 272 (87.2%) and 258 (82.7%) were successfully identified by the Bruker Daltonics and Shimadzu systems, respectively. All isolates were successfully identified within the most frequent and clinically relevant Candida species by the two systems. Nonvalid results corresponded mainly to species not or poorly represented in the databases. Major misidentifications were observed for 2 isolates (0.6%) by the Bruker Daltonics system and 4 isolates (1.3%) by the Shimadzu system. In conclusion, the performances of the Bruker Daltonics and the Shimadzu systems for yeast identification were good and comparable under routine clinical conditions, despite their differences in sample preparation, database content, and spectrum analysis.
Collapse
|
41
|
Bader O. MALDI-TOF-MS-based species identification and typing approaches in medical mycology. Proteomics 2013; 13:788-99. [DOI: 10.1002/pmic.201200468] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Revised: 11/17/2012] [Accepted: 11/24/2012] [Indexed: 12/26/2022]
Affiliation(s)
- Oliver Bader
- Institute for Medical Microbiology and German National Reference Center for Systemic Mycoses; University Medical Center Göttingen; Göttingen Germany
| |
Collapse
|