1
|
Ghorbani Alvanegh A, Esmaeili Gouvarchin Ghaleh H, Mohammad Ganji S. The Growth of A549 Cell Line is Inhibited by Pemetrexed Through Up-regulation of hsa-MiR-320a Expression. Adv Biomed Res 2024; 13:50. [PMID: 39411702 PMCID: PMC11478724 DOI: 10.4103/abr.abr_483_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/18/2024] [Accepted: 01/20/2024] [Indexed: 10/19/2024] Open
Abstract
Background Lung cancer deaths are increasing worldwide and the most common form of lung cancer treatment is chemotherapy. Pemetrexed (PMX) has been shown to be effective as a second-line treatment for advanced patients. Drugs can alter the expression of MicroRNAs, and MicroRNAs also can either enhance or reduce the drug's effectiveness and this is a two-way relationship. Hsa-MiR-320a is known to play a crucial role in the lung cancer. This study aims to investigate the expression of hsa-MiR-320a in lung cancer cells after treatment with PMX. Materials and Methods A549 cells were cultured and treated with varying concentrations of PMX. Various parameters were measured, including cell viability, reactive oxygen species (ROS) production, lactate dehydrogenase (LDH) release, apoptosis assay, caspase 3 and 7 enzyme activity, and scratch assay. Additionally, gene expression profiles of hsa-MiR-320a, VDAC1, STAT3, BAX, and BCL2 were evaluated. Results PMX reduced the viability and increased apoptosis. After 48 h, ROS production was 3.366-fold higher than in control cells and the LDH release rate was increased by 39%. PMX also up-regulated the expression of hsa-MiR-320a by about 12-fold change. Conclusion Changes in the expression of MicroRNAs occur after chemotherapy, and these changes play a crucial role in regulating the growth of cancer cells. Identifying these MicroRNAs can be helpful in predicting the efficacy of the chemotherapy or introducing it as combination therapy. Our research has been shown that hsa-MiR-320a can serve as a biomarker of PMX efficacy and also has the potential to be used in combination therapy.
Collapse
Affiliation(s)
- Akbar Ghorbani Alvanegh
- Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | | | - Shahla Mohammad Ganji
- Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
2
|
Marcial-Quino J, Fierro F, Fernández FJ, Montiel-Gonzalez AM, Sierra-Palacios E, Tomasini A. Silencing of Amylomyces rouxii aspartic II protease by siRNA to increase tyrosinase activity. Fungal Biol 2023; 127:1415-1425. [PMID: 37993253 DOI: 10.1016/j.funbio.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/20/2023] [Accepted: 10/20/2023] [Indexed: 11/24/2023]
Abstract
Amylomyces rouxii is a zygomycete that produces extracellular protease and tyrosinase. The tyrosinase activity is negatively regulated by the proteases and, which attempts to purify the tyrosinase (tyr) enzyme that has been hampered by the presence of a protease that co-purified with it. In this work we identified genes encoding aspartic protease II (aspII) and VI of A. rouxii. Using an RNAi strategy based on the generation of a siRNA by transcription from two opposite-orientated promoters, the expression of these two proteases was silenced, showing that this molecular tool is suitable for gene silencing in Amylomyces. The transformant strains showed a significant attenuation of the transcripts (determined by RT-qPCR), with respective inhibition of the protease activity. In the case of aspII, inhibition was in the range of 43-90 % in different transformants, which correlated well with up to a five-fold increase in tyr activity with respect to the wild type and control strains. In contrast, silencing of aspVI caused a 43-65 % decrease in protease activity but had no significant effect on the tyr activity. The results show that aspII has a negative effect on tyr activity, and that the silencing of this protease is important to obtain strains with high levels of tyr activity.
Collapse
Affiliation(s)
- Jaime Marcial-Quino
- Laboratorio de Biología Molecular, Centro de Investigación en Genética y Ambiente, Universidad Autónoma de Tlaxcala, Tlaxcala, 90120, Mexico
| | - Francisco Fierro
- Depto. de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Apdo, Postal 55-535, C.P. 09340, Mexico City, Mexico
| | - Francisco José Fernández
- Depto. de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Apdo, Postal 55-535, C.P. 09340, Mexico City, Mexico
| | - Alba Mónica Montiel-Gonzalez
- Laboratorio de Biología Molecular, Centro de Investigación en Genética y Ambiente, Universidad Autónoma de Tlaxcala, Tlaxcala, 90120, Mexico
| | - Edgar Sierra-Palacios
- Colegio de Ciencias y Humanidades, Plantel Casa Libertad, Universidad Autónoma de la Ciudad de México, Ciudad de Mexico, 09620, Mexico
| | - Araceli Tomasini
- Depto. de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Apdo, Postal 55-535, C.P. 09340, Mexico City, Mexico.
| |
Collapse
|
3
|
Bendary MM, Abd El-Hamid MI, Abousaty AI, Elmanakhly AR, Alshareef WA, Mosbah RA, Alhomrani M, Ghoneim MM, Elkelish A, Hashim N, Alamri AS, Al-Harthi HF, Safwat NA. Therapeutic Switching of Rafoxanide: a New Approach To Fighting Drug-Resistant Bacteria and Fungi. Microbiol Spectr 2023; 11:e0267922. [PMID: 37458598 PMCID: PMC10433953 DOI: 10.1128/spectrum.02679-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 06/05/2023] [Indexed: 08/19/2023] Open
Abstract
Control and management of life-threatening bacterial and fungal infections are a global health challenge. Despite advances in antimicrobial therapies, treatment failures for resistant bacterial and fungal infections continue to increase. We aimed to repurpose the anthelmintic drug rafoxanide for use with existing therapeutic drugs to increase the possibility of better managing infection and decrease treatment failures. For this purpose, we evaluated the antibacterial and antifungal potential of rafoxanide. Notably, 70% (70/100) of bacterial isolates showed multidrug resistance (MDR) patterns, with higher prevalence among human isolates (73.5% [50/68]) than animal ones (62.5% [20/32]). Moreover, 22 fungal isolates (88%) were MDR and were more prevalent among animal (88.9%) than human (87.5%) sources. We observed alarming MDR patterns among bacterial isolates, i.e., Klebsiella pneumoniae (75% [30/40; 8 animal and 22 human]) and Escherichia coli (66% [40/60; 12 animal and 28 human]), and fungal isolates, i.e., Candida albicans (86.7% [13/15; 4 animal and 9 human]) and Aspergillus fumigatus (90% [9/10; 4 animal and 5 human]), that were resistant to at least one agent in three or more different antimicrobial classes. Rafoxanide had antibacterial and antifungal activities, with minimal inhibitory concentration (MICs) ranging from 2 to 128 μg/mL. Rafoxanide at sub-MICs downregulated the mRNA expression of resistance genes, including E. coli and K. pneumoniae blaCTX-M-1, blaTEM-1, blaSHV, MOX, and DHA, C. albicans ERG11, and A. fumigatus cyp51A. We noted the improvement in the activity of β-lactam and antifungal drugs upon combination with rafoxanide. This was apparent in the reduction in the MICs of cefotaxime and fluconazole when these drugs were combined with sub-MIC levels of rafoxanide. There was obvious synergism between rafoxanide and cefotaxime against all E. coli and K. pneumoniae isolates (fractional inhibitory concentration index [FICI] values ≤ 0.5). Accordingly, there was a shift in the patterns of resistance of 16.7% of E. coli and 22.5% of K. pneumoniae isolates to cefotaxime and those of 63.2% of C. albicans and A. fumigatus isolates to fluconazole when the isolates were treated with sub-MICs of rafoxanide. These results were confirmed by in silico and mouse protection assays. Based on the in silico study, one possible explanation for how rafoxanide reduced bacterial resistance is through its inhibitory effects on bacterial and fungal histidine kinase enzymes. In short, rafoxanide exhibited promising results in overcoming bacterial and fungal drug resistance. IMPORTANCE The drug repurposing strategy is an alternative approach to reducing drug development timelines with low cost, especially during outbreaks of disease caused by drug-resistant pathogens. Rafoxanide can disrupt the abilities of bacterial and fungal cells to adapt to stress conditions. The coadministration of antibiotics with rafoxanide can prevent the failure of treatment of both resistant bacteria and fungi, as the resistant pathogens could be made sensitive upon treatment with rafoxanide. From our findings, we anticipate that pharmaceutical companies will be able to utilize new combinations against resistant pathogens.
Collapse
Affiliation(s)
- Mahmoud M. Bendary
- Department of Microbiology and Immunology, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Marwa I. Abd El-Hamid
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Amira I. Abousaty
- Department of Microbiology, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Arwa R. Elmanakhly
- Department of Microbiology and Immunology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Walaa A. Alshareef
- Department of Microbiology and Immunology, Faculty of Pharmacy, October 6 University, 6th of October, Egypt
| | - Rasha A. Mosbah
- Infection Control Unit, Zagazig University Hospital, Zagazig, Egypt
| | - Majid Alhomrani
- Department of Clinical Laboratories Sciences, The Faculty of Applied Medical Science, Taif University, Taif, Saudi Arabia
- Centre of Biomedical Science Research, Deanship of Scientific Research, Taif University, Taif, Saudi Arabia
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, Al Maarefa University, Ad Diriyah, Saudi Arabia
| | - Amr Elkelish
- Biology Department, College of Science, Imam Mohammad ibn Saud Islamic University, Riyadh, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Nada Hashim
- Faculty of Medicine, University of Gezira, Wad Medani, Sudan
| | - Abdulhakeem S. Alamri
- Department of Clinical Laboratories Sciences, The Faculty of Applied Medical Science, Taif University, Taif, Saudi Arabia
- Centre of Biomedical Science Research, Deanship of Scientific Research, Taif University, Taif, Saudi Arabia
| | - Helal F. Al-Harthi
- Biology Department, Turabah University College, Taif University, Taif, Saudi Arabia
| | - Nesreen A. Safwat
- Department of Microbiology and Immunology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| |
Collapse
|
4
|
Kelani AA, Bruch A, Rivieccio F, Visser C, Krüger T, Weaver D, Pan X, Schäuble S, Panagiotou G, Kniemeyer O, Bromley MJ, Bowyer P, Barber AE, Brakhage AA, Blango MG. Disruption of the Aspergillus fumigatus RNA interference machinery alters the conidial transcriptome. RNA (NEW YORK, N.Y.) 2023; 29:1033-1050. [PMID: 37019633 PMCID: PMC10275271 DOI: 10.1261/rna.079350.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 03/23/2023] [Indexed: 06/18/2023]
Abstract
The RNA interference (RNAi) pathway has evolved numerous functionalities in eukaryotes, with many on display in Kingdom Fungi. RNAi can regulate gene expression, facilitate drug resistance, or even be altogether lost to improve growth potential in some fungal pathogens. In the WHO fungal priority pathogen, Aspergillus fumigatus, the RNAi system is known to be intact and functional. To extend our limited understanding of A. fumigatus RNAi, we first investigated the genetic variation in RNAi-associated genes in a collection of 217 environmental and 83 clinical genomes, where we found that RNAi components are conserved even in clinical strains. Using endogenously expressed inverted-repeat transgenes complementary to a conditionally essential gene (pabA) or a nonessential gene (pksP), we determined that a subset of the RNAi componentry is active in inverted-repeat transgene silencing in conidia and mycelium. Analysis of mRNA-seq data from RNAi double-knockout strains linked the A. fumigatus dicer-like enzymes (DclA/B) and RNA-dependent RNA polymerases (RrpA/B) to regulation of conidial ribosome biogenesis genes; however, surprisingly few endogenous small RNAs were identified in conidia that could explain this broad change. Although RNAi was not clearly linked to growth or stress response defects in the RNAi knockouts, serial passaging of RNAi knockout strains for six generations resulted in lineages with diminished spore production over time, indicating that loss of RNAi can exert a fitness cost on the fungus. Cumulatively, A. fumigatus RNAi appears to play an active role in defense against double-stranded RNA species alongside a previously unappreciated housekeeping function in regulation of conidial ribosomal biogenesis genes.
Collapse
Affiliation(s)
- Abdulrahman A Kelani
- Junior Research Group RNA Biology of Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), 07745 Jena, Germany
| | - Alexander Bruch
- Junior Research Group RNA Biology of Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), 07745 Jena, Germany
| | - Flora Rivieccio
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), 07745 Jena, Germany
- Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University, 07743 Jena, Germany
| | - Corissa Visser
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), 07745 Jena, Germany
- Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University, 07743 Jena, Germany
| | - Thomas Krüger
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), 07745 Jena, Germany
| | - Danielle Weaver
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, United Kingdom
| | - Xiaoqing Pan
- Junior Research Group RNA Biology of Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), 07745 Jena, Germany
| | - Sascha Schäuble
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), 07745 Jena, Germany
| | - Gianni Panagiotou
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), 07745 Jena, Germany
- Department of Medicine and State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, Hong Kong, China
| | - Olaf Kniemeyer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), 07745 Jena, Germany
| | - Michael J Bromley
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, United Kingdom
| | - Paul Bowyer
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, United Kingdom
| | - Amelia E Barber
- Junior Research Group Fungal Informatics, Friedrich Schiller University, 07745 Jena, Germany
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), 07745 Jena, Germany
- Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University, 07743 Jena, Germany
| | - Matthew G Blango
- Junior Research Group RNA Biology of Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), 07745 Jena, Germany
| |
Collapse
|
5
|
Analysis of the cyp51 genes contribution to azole resistance in Aspergillus section Nigri with the CRISPR-Cas9 technique. Antimicrob Agents Chemother 2021; 65:AAC.01996-20. [PMID: 33685892 PMCID: PMC8092891 DOI: 10.1128/aac.01996-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyp51 contribution to azole resistance has been broadly studied and characterized in Aspergillus fumigatus, whereas it remains poorly investigated in other clinically relevant species of the genus, such as those of section Nigri In this work, we aimed to analyze the impact of cyp51 genes (cyp51A and cyp51B) on the voriconazole (VRC) response and resistance of Aspergillus niger and Aspergillus tubingensis We generated CRISPR-Cas9 cyp51A and cyp51B knock-out mutants from strains with different genetic backgrounds and diverse patterns of azole susceptibility. Single gene deletions of cyp51 genes resulted in 2 to 16-fold decrease of the VRC Minimum Inhibitory Concentration (MIC) values, which were below the VRC Epidemiological Cutoff Value (ECV) established by the Clinical and Laboratory Standards Institute (CLSI) irrespective of their parental strains susceptibilities. Gene expression studies in the tested species confirmed that cyp51A participates more actively than cyp51B in the transcriptional response of azole stress. However, ergosterol quantification revealed that both enzymes comparably impact the total ergosterol content within the cell, as basal and VRC-induced changes to ergosterol content was similar in all cases. These data contribute to our understanding on Aspergillus azole resistance, especially in non-fumigatus species.
Collapse
|
6
|
Recent Advances in Genome Editing Tools in Medical Mycology Research. J Fungi (Basel) 2021; 7:jof7040257. [PMID: 33808382 PMCID: PMC8067129 DOI: 10.3390/jof7040257] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022] Open
Abstract
Manipulating fungal genomes is an important tool to understand the function of target genes, pathobiology of fungal infections, virulence potential, and pathogenicity of medically important fungi, and to develop novel diagnostics and therapeutic targets. Here, we provide an overview of recent advances in genetic manipulation techniques used in the field of medical mycology. Fungi use several strategies to cope with stress and adapt themselves against environmental effectors. For instance, mutations in the 14 alpha-demethylase gene may result in azole resistance in Aspergillusfumigatus strains and shield them against fungicide's effects. Over the past few decades, several genome editing methods have been introduced for genetic manipulations in pathogenic fungi. Application of restriction enzymes to target and cut a double-stranded DNA in a pre-defined sequence was the first technique used for cloning in Aspergillus and Candida. Genome editing technologies, including zinc-finger nucleases (ZFNs) and transcriptional activator-like effector nucleases (TALENs), have been also used to engineer a double-stranded DNA molecule. As a result, TALENs were considered more practical to identify single nucleotide polymorphisms. Recently, Class 2 type II Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)/Cas9 technology has emerged as a more useful tool for genome manipulation in fungal research.
Collapse
|
7
|
Azole resistance mechanisms in Aspergillus: update and recent advances. Int J Antimicrob Agents 2020; 55:105807. [DOI: 10.1016/j.ijantimicag.2019.09.011] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 09/05/2019] [Accepted: 09/15/2019] [Indexed: 12/11/2022]
|
8
|
Pakshir K, Badali H, Nami S, Mirzaei H, Ebrahimzadeh V, Morovati H. Interactions between immune response to fungal infection and microRNAs: The pioneer tuners. Mycoses 2019; 63:4-20. [PMID: 31597205 DOI: 10.1111/myc.13017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 12/12/2022]
Abstract
Due to their physiological and biological characteristics, numerous fungi are potentially emerging pathogens. Active dynamicity of fungal pathogens causes life-threatening infections annually impose high costs to the health systems. Although immune responses play crucial roles in controlling the fate of fungal infections, immunocompromised patients are at high risk with high mortality. Tuning the immune response against fungal infections might be an effective strategy for controlling and reducing the pathological damages. MicroRNAs (miRNAs) are known as the master regulators of immune response. These single-stranded tuners (18-23 bp non-coding RNAs) are endogenously expressed by all metazoan eukaryotes and have emerged as the master gene expression controllers of at least 30% human genes. In this review article, following the review of biology and physiology (biogenesis and mechanism of actions) of miRNAs and immune response against fungal infections, the interactions between them were scrutinised. In conclusion, miRNAs might be considered as one of the potential goals in immunotherapy for fungal infections. Undoubtedly, advanced studies in this field, further identifying of miRNA roles in governing the immune response, pave the way for inclusion of miRNA-related immunotherapeutic in the treatment of life-threatening fungal infections.
Collapse
Affiliation(s)
- Keyvan Pakshir
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Badali
- Invasive Fungi Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Fungus Testing Laboratory, Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Sanam Nami
- Department of Medical Mycology and Parasitology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Veghar Ebrahimzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Morovati
- Department of Medical Mycology and Parasitology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
Nazemi L, Hashemi SJ, Daie Ghazvini R, Saeedi M, Khodavaisy S, Barac A, Modiri M, Akbari Dana M, Zare shahrabadi Z, Rezaie S. Investigation of cgrA and cyp51A gene alternations in Aspergillus fumigatus strains exposed to kombucha fermented tea. Curr Med Mycol 2019; 5:36-42. [PMID: 31850395 PMCID: PMC6910712 DOI: 10.18502/cmm.5.3.1745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/28/2019] [Accepted: 08/26/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE Aspergillus fumigatus is one of the most common opportunistic fungus, which causes infection in immunocompromised and neutropenic patients. The current guidelines recommend voriconazole as the initial therapeutic and prophylactic agent for almost all cases, especially in patients with organ transplants, which leads to increased medication resistance in A. fumigatus. The aim of the present study was to evaluate the antifungal activity and effect of kombucha as a natural compound on A. fumigatus growth, as well as on the expression of cgrA and cyp51A genes. MATERIALS AND METHODS A panel of 15 A. fumigatus strains with two quality controls of CM237 and CM2627 as susceptible and resistant strains were obtained from Tehran Medical Mycology Laboratory, Tehran,Iran(TMML).Antifungal susceptibility testing assay was performed according to the Clinical and Laboratory Standards Institute (CLSI) M38-A2 document. Moreover, the mycelial dry weight of the fungus was calculated before and after being treated with kombucha. In addition, the quantitative changes in the expression of cgrA and cyp51A genes were analyzed by real-time polymerase chain reaction (real-time PCR) technique. RESULTS In the present study, the minimum inhibitory concentration ranges of kombucha were measured at 6,170 and 12,300 μg/mL for ten A. fumigatus azole-susceptible strains and 24,700 μg/mL for five A. fumigatus resistant strains. Moreover, changes in mycelial dry weight under kombucha treatment conditions underwent a significant reduction (P≤0.05). A coordinate down-regulation of expression in cgrA and cyp51A genes was observed in all azole-susceptible and -resistant A. fumigatus strains, after treating the fungus with different concentrations of kombucha (P≤0.05). CONCLUSION According to the obtained results, kombucha as a natural antioxidant , can exert inhibitory effects against the growth and expression of some genes in A. fumigatusstrains.
Collapse
Affiliation(s)
- Ladan Nazemi
- Division of Molecular Biology, Department of Medical Mycology and Parasitology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Jamal Hashemi
- Division of Molecular Biology, Department of Medical Mycology and Parasitology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Roshanak Daie Ghazvini
- Division of Molecular Biology, Department of Medical Mycology and Parasitology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Saeedi
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Persian Medicine and Pharmacy Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sadegh Khodavaisy
- Division of Molecular Biology, Department of Medical Mycology and Parasitology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Aleksandra Barac
- Clinic for Infectious and Tropical Diseases, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Mona Modiri
- Division of Molecular Biology, Department of Medical Mycology and Parasitology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Akbari Dana
- Division of Molecular Biology, Department of Medical Mycology and Parasitology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Zare shahrabadi
- Division of Molecular Biology, Department of Medical Mycology and Parasitology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sassan Rezaie
- Division of Molecular Biology, Department of Medical Mycology and Parasitology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Jia HL, Zhou DS. Retracted: Downregulation of microRNA-367 promotes osteoblasts growth and proliferation of mice during fracture by activating the PANX3-mediated Wnt/β-catenin pathway. J Cell Biochem 2019; 120:8247-8258. [PMID: 30556206 DOI: 10.1002/jcb.28108] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/29/2018] [Indexed: 02/02/2023]
Abstract
A majority of people suffering from bone fractures fail to heal and develop a nonunion, which is a challenging orthopedic complication requiring complex and expensive treatment. Previous data showed the inhibition of some microRNAs (miRNAs or miRs) can enhance fracture healing. The objective of the present study is to explore effects of miR-367 on the osteoblasts growth and proliferation of mouse during fracture via the Wnt/β-catenin pathway by targeting PANX3. Primarily, the femur fracture model was successfully established in 66 (C57BL/6) 6-week-old male mice. To verify whether miR-367 target PANX3, we used the target prediction program and performed luciferase activity determination. Subsequently, to figure out the underlying regulatory roles of miR-367 in fracture, osteoblasts were elucidated by treatment with miR-367 mimic, miR-367 inhibitor, or siRNA against PANX3 to determine the expression of miR-367, siPANX3, β-catenin, and Wnt5b as well as cell proliferation and apoptosis. The results demonstrated that PANX3 was verified as a target gene of miR-367. MiR-367 was found to highly expressed but PANX3, β-catenin, and Wnt5b were observed poorly expressed in fracture mice. downregulated miR-367 increased the mRNA and protein expression of PANX3, β-catenin, and Wnt5b, increased cell growth, proliferation, and migration, while decreased cell apoptosis in osteoblasts. Altogether, our study demonstrates that the downregulation of miR-367 may promote osteoblasts growth and proliferation in fracture through the activation of the PANX3-dependent Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Hong-Lei Jia
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Dong-Sheng Zhou
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
11
|
Yao CJ, Lv Y, Zhang CJ, Jin JX, Xu LH, Jiang J, Geng B, Li H, Xia YY, Wu M. MicroRNA-185 inhibits the growth and proliferation of osteoblasts in fracture healing by targeting PTH gene through down-regulating Wnt/β -catenin axis: In an animal experiment. Biochem Biophys Res Commun 2018; 501:55-63. [PMID: 29678580 DOI: 10.1016/j.bbrc.2018.04.138] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 04/17/2018] [Indexed: 01/05/2023]
Abstract
Fracture healing is a repair process of a mechanical discontinuity loss of force transmission, and pathological mobility of bone. Increasing evidence suggests that microRNA (miRNA) could regulate chondrocyte, osteoblast, and osteoclast differentiation and function, indicating miRNA as key regulators of bone formation, resorption, remodeling, and repair. Hence, during this study, we established a right femur fracture mouse model to explore the effect microRNA-185 (miR-185) has on osteoblasts in mice during fracture healing and its underlying mechanism. After successfully model establishment, osteoblasts were extracted and treated with a series of mimics or inhibitors of miR-185, or siRNA against PTH. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot analysis were performed to determine the levels of miR-185, PTH, β-catenin and Wnt5b. Cell viability, cycle distribution and apoptosis were detected by means of MTT and flow cytometry assays. Dual luciferase reporter gene assay verified that PTH is a target gene of miR-185. Osteoblasts transfected with miR-185 mimics or siRNA against PTH presented with decreased levels of PTH, β-catenin and Wnt5b which indicated that miR-185 blocks the Wnt/β -catenin axis by inhibiting PTH. Moreover, miR-185 inhibitors promoted the osteoblast viability and reduced apoptosis with more cells arrested at the G1 stage. MiR-185 mimics were observed to have inhibitory effects on osteoblasts as opposed to those induced by miR-185 inhibitors. Above key results indicated that suppression of miR-185 targeting PTH could promote osteoblast growth and proliferation in mice during fracture healing through activating Wnt/β -catenin axis.
Collapse
Affiliation(s)
- Chang-Jiang Yao
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, PR China; Department of Orthopaedics, The Second Hospital of Lanzhou University, Lanzhou, 730000, PR China
| | - Yang Lv
- Department of Ophthalmology, General Hospital of Lanzhou Military Command, Lanzhou, 730000, PR China; Department of Ophthalmology, Eye Institute of China PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, PR China
| | - Cheng-Jun Zhang
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, PR China; Department of Orthopaedics, The Second Hospital of Lanzhou University, Lanzhou, 730000, PR China
| | - Jia-Xin Jin
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, PR China; Department of Orthopaedics, The Second Hospital of Lanzhou University, Lanzhou, 730000, PR China
| | - Li-Hu Xu
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, PR China; Department of Orthopaedics, The Second Hospital of Lanzhou University, Lanzhou, 730000, PR China
| | - Jin Jiang
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, PR China; Department of Orthopaedics, The Second Hospital of Lanzhou University, Lanzhou, 730000, PR China
| | - Bin Geng
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, PR China; Department of Orthopaedics, The Second Hospital of Lanzhou University, Lanzhou, 730000, PR China
| | - Hong Li
- Department of Ophthalmology, General Hospital of Lanzhou Military Command, Lanzhou, 730000, PR China; Department of Ophthalmology, Eye Institute of China PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, PR China
| | - Ya-Yi Xia
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, PR China; Department of Orthopaedics, The Second Hospital of Lanzhou University, Lanzhou, 730000, PR China.
| | - Meng Wu
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, PR China; Department of Orthopaedics, The Second Hospital of Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
12
|
Calkins SS, Elledge NC, Mueller KE, Marek SM, Couger MB, Elshahed MS, Youssef NH. Development of an RNA interference (RNAi) gene knockdown protocol in the anaerobic gut fungus Pecoramyces ruminantium strain C1A. PeerJ 2018; 6:e4276. [PMID: 29404209 PMCID: PMC5796279 DOI: 10.7717/peerj.4276] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 12/29/2017] [Indexed: 12/25/2022] Open
Abstract
Members of the anaerobic gut fungi (AGF) reside in rumen, hindgut, and feces of ruminant and non-ruminant herbivorous mammals and reptilian herbivores. No protocols for gene insertion, deletion, silencing, or mutation are currently available for the AGF, rendering gene-targeted molecular biological manipulations unfeasible. Here, we developed and optimized an RNA interference (RNAi)-based protocol for targeted gene silencing in the anaerobic gut fungus Pecoramyces ruminantium strain C1A. Analysis of the C1A genome identified genes encoding enzymes required for RNA silencing in fungi (Dicer, Argonaute, Neurospora crassa QDE-3 homolog DNA helicase, Argonaute-interacting protein, and Neurospora crassa QIP homolog exonuclease); and the competency of C1A germinating spores for RNA uptake was confirmed using fluorescently labeled small interfering RNAs (siRNA). Addition of chemically-synthesized siRNAs targeting D-lactate dehydrogenase (ldhD) gene to C1A germinating spores resulted in marked target gene silencing; as evident by significantly lower ldhD transcriptional levels, a marked reduction in the D-LDH specific enzymatic activity in intracellular protein extracts, and a reduction in D-lactate levels accumulating in the culture supernatant. Comparative transcriptomic analysis of untreated versus siRNA-treated cultures identified a few off-target siRNA-mediated gene silencing effects. As well, significant differential up-regulation of the gene encoding NAD-dependent 2-hydroxyacid dehydrogenase (Pfam00389) in siRNA-treated C1A cultures was observed, which could possibly compensate for loss of D-LDH as an electron sink mechanism in C1A. The results demonstrate the feasibility of RNAi in anaerobic fungi, and opens the door for gene silencing-based studies in this fungal clade.
Collapse
Affiliation(s)
- Shelby S Calkins
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Nicole C Elledge
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA.,Current affiliation: University of Texas A&M Corpus Christi, Department of Life Sciences, Marine Biology Program, USA
| | - Katherine E Mueller
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Stephen M Marek
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, USA
| | - M B Couger
- High Performance Computing Center, Oklahoma State University, Stillwater, OK, USA
| | - Mostafa S Elshahed
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Noha H Youssef
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
13
|
Tian Y, Jiang Y, Shang Y, Zhang YP, Geng CF, Wang LQ, Chang YQ. Establishment of lysozyme gene RNA interference systemand its involvement in salinity tolerance in sea cucumber (Apostichopus japonicus). FISH & SHELLFISH IMMUNOLOGY 2017; 65:71-79. [PMID: 28359949 DOI: 10.1016/j.fsi.2017.03.046] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/22/2017] [Accepted: 03/26/2017] [Indexed: 06/07/2023]
Abstract
The lysozyme gene was silenced using RNA interference (RNAi) to analyze the function of lysozyme in sea cucumber under salt stress. The interfering efficiency of four lysozyme RNAi oligos ranged from 0.55 to 0.70. From the four oligos, p-miR-L245 was used for further interfering experiments because it had the best silencing efficiency. Peristomial film injection of p-miR-L245 (10 μg) was used for further interfering experiments. The lowest gene expression, determined by RT-PCR assay, in muscle, coelomic fluid, and parapodium occurred 48 h after p-miR-L245 injection, while that of body wall and tube foot was 96 h and 24 h, respectively. Lysozyme activity in muscle and body wall was significantly lower than the controls. The lowest lysozyme activity in muscle, body wall and parapodium, was found at 48, 72, and 48 h, respectively, which was consistent with the transcription expression of lysozyme. The lowest point of lysozyme activity was at 96 h in coelomic fluid and tube foot, which was laid behind lysozyme expression in transcription level. The expression profile of the lysozyme transcription level and lysozyme activity in the body wall and tube foot increased at 12 h after p-miR-L245 injection before the interference effect appeared. NKA gene expression was expressed at a high level in the positive control (PC) and negative control (NC) groups at 12, 24, and 48 h, while NKA was expressed at low levels in the lysozyme RNAi injection group at 12 and 24 h. The level of NKA gene expression recovered to the level of the PC and NC group at 48, 72, and 96 h after the lysozyme RNAi injection. NKCC1 gene expression was high in the PC and NC groups at 96 h, while the NKCC1 was expressed at a low level 96 h after lysozyme RNAi injection. The results suggest that lysozyme decay involves NKA and NKCC1 gene expression under salinity 18 psμ. The K+ and Cl- concentration after lysozyme RNAi injection was lower than in the PC and NC group.
Collapse
Affiliation(s)
- Yi Tian
- Key Laboratory of Mariculture, Ministry of Agriculture, Dalian Ocean University, 116023, Dalian, China.
| | - Yanan Jiang
- Key Laboratory of Mariculture, Ministry of Agriculture, Dalian Ocean University, 116023, Dalian, China
| | - Yanpeng Shang
- Key Laboratory of Mariculture, Ministry of Agriculture, Dalian Ocean University, 116023, Dalian, China
| | - Yu-Peng Zhang
- Key Laboratory of Mariculture, Ministry of Agriculture, Dalian Ocean University, 116023, Dalian, China
| | - Chen-Fan Geng
- Key Laboratory of Mariculture, Ministry of Agriculture, Dalian Ocean University, 116023, Dalian, China
| | - Li-Qiang Wang
- Key Laboratory of Mariculture, Ministry of Agriculture, Dalian Ocean University, 116023, Dalian, China
| | - Ya-Qing Chang
- Key Laboratory of Mariculture, Ministry of Agriculture, Dalian Ocean University, 116023, Dalian, China
| |
Collapse
|
14
|
Nami S, Baradaran B, Mansoori B, Kordbacheh P, Rezaie S, Falahati M, Mohamed Khosroshahi L, Safara M, Zaini F. The Utilization of RNA Silencing Technology to Mitigate the Voriconazole Resistance of Aspergillus Flavus; Lipofectamine-Based Delivery. Adv Pharm Bull 2017; 7:53-59. [PMID: 28507937 PMCID: PMC5426734 DOI: 10.15171/apb.2017.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 12/25/2016] [Accepted: 12/28/2017] [Indexed: 02/01/2023] Open
Abstract
Purpose: Introducing the effect of RNAi in fungi to downregulate essential genes has made it a powerful tool to investigate gene function, with potential strategies for novel disease treatments. Thus, this study is an endeavor to delve into the silencing potentials of siRNA on cyp51A and MDR1 in voriconazole-resistant Aspergillus flavus as the target genes.
Methods: In this study, we designed three cyp51A-specific siRNAs and three MDR1-specific siRNAs and after the co-transfection of siRNA into Aspergillus flavus, using lipofectamine, we investigated the effect of different siRNA concentrations (5, 15, 25, 50nM) on cyp51A and MDR1 expressions by qRT-PCR. Finally, the Minimum Inhibitory Concentrations (MICs) of voriconazole for isolates were determined by broth dilution method.
Results: Cyp51A siRNA induced 9, 22, 33, 40-fold reductions in cyp51A mRNA expression in a voriconazole-resistant strain following the treatment of the cells with concentrations of 5, 15, 25, 50nM siRNA, respectively. Identically, the same procedure was applied to MDR1, even though it induced 2, 3, 4, 10-fold reductions. The results demonstrated a MIC for voriconazole in the untreated group (4µg per ml), when compared to the group treated with cyp51A-specific siRNA and MDR1-specific siRNA, both at concentrations of 25 and 50nM, yielding 2µg per ml and 1µg per ml when 25 nM was applied and 2µg per ml and 0.5µg per ml when the concentration doubled to 50 nM.
Conclusion: In this study, we suggested that siRNA-mediated specific inhibition of cyp51A and MDR1 genes play roles in voriconazole-resistant A.flavus strain and these could be apt target genes for inactivation. The current study promises a bright prospect for the treatment of invasive aspergillosis through the effective deployment of RNAi and gene therapy.
Collapse
Affiliation(s)
- Sanam Nami
- Department of Medical Mycology and Parasitology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parivash Kordbacheh
- Department of Medical Mycology and Parasitology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sasan Rezaie
- Department of Medical Mycology and Parasitology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehraban Falahati
- Department of Medical Mycology and Parasitology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mahin Safara
- Department of Medical Mycology and Parasitology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Farideh Zaini
- Department of Medical Mycology and Parasitology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
A fast and reliable procedure for spore collection from anaerobic fungi: Application for RNA uptake and long-term storage of isolates. J Microbiol Methods 2016; 127:206-213. [PMID: 27288952 DOI: 10.1016/j.mimet.2016.05.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 05/23/2016] [Accepted: 05/24/2016] [Indexed: 11/23/2022]
Abstract
Anaerobic gut fungi (AGF) represent a basal fungal lineage (phylum Neocallimastigomycota) that resides in the rumen and alimentary tracts of herbivores. The AGF reproduce asexually, with a life cycle that involves flagellated zoospores released from zoosporangia followed by encystment, germination and the subsequent development of rhizomycelia. A fast and reliable approach for AGF spore collection is critical not only for developmental biology studies, but also for molecular biological (e.g. AMT-transformation and RNAi) approaches. Here, we developed and optimized a simple and reliable procedure for the collection of viable, competent, and developmentally synchronized AGF spores under strict anaerobic conditions. The approach involves growing AGF on agar medium in serum bottles under anaerobic conditions, and flooding the observed aerial growth to promote spore release from sporangia into the flooding suspension. The released spores are gently collected using a wide bore sterile needle. Process optimization resulted in the recovery of up to 7×10(9) spores per serum bottle. Further, the released spores exhibited synchronized development from flagellated spores to encysted spores and finally to germinating spores within 90min from the onset of flooding. At the germinating spore stage, the obtained spores were competent, and readily uptook small interfering RNA (siRNA) oligonucleotides. Finally, using multiple monocentric and polycentric AGF isolates, we demonstrate that AGF grown on agar surface could retain viability for up to 16weeks at 39°C, and hence this solid surface growth procedure represents a simple, cryopreservative- and freezing temperature-free approach for AGF storage.
Collapse
|