1
|
Gurajala S. Unveiling the rise of Candida auris: Latest developments and healthcare implications. IP INTERNATIONAL JOURNAL OF MEDICAL MICROBIOLOGY AND TROPICAL DISEASES 2024; 10:196-205. [DOI: 10.18231/j.ijmmtd.2024.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Indexed: 01/02/2025]
Abstract
, a fungus that is resistant to multiple drugs, has become a major global healthcare concern in recent years. The pathogen quickly disseminates within healthcare facilities, colonizes many surfaces, and leads to recurrent infections despite frequent disinfection measures. Automated systems frequently misidentify it, resulting in a delayed diagnosis. Inadequate hand hygiene, the use of multiple antibiotics, and contaminated medical equipment are the main causes of infections that primarily target critically ill patients in hospital intensive care units (ICUs). isolates are resistant to commonly used antifungal drugs like fluconazole, amphotericin, and echinocandins. This review article thoroughly examines the current understanding of infections, encompassing its epidemiology, clinical symptoms, diagnosis, treatment options, and prevention measures. It additionally summarizes a recent literature review on emerging diagnostic techniques and treatment options. Gaining a comprehensive understanding of the difficulties presented by this pathogen and staying informed of the most recent developments is essential for healthcare providers and policymakers in order to efficiently counteract its transmission and limit its detrimental impact on patient health
Collapse
Affiliation(s)
- Swathi Gurajala
- College of Applied Medical Sciences in Jubail, , Kingdom of Saudi Arabia
| |
Collapse
|
2
|
Borgio JF, Alhujaily R, Alfaraj AS, Alabdullah MJ, Alaqeel RK, Kaabi A, Alquwaie R, Alhur NF, AlJindan R, Almofty S, Almohazey D, Natarajan A, Dhas TS, AbdulAzeez S, Almandil NB. Genome-Guided Identification of Surfactin-Producing Bacillus halotolerans AQ11M9 with Anti- Candida auris Potential. Int J Mol Sci 2024; 25:10408. [PMID: 39408762 PMCID: PMC11476397 DOI: 10.3390/ijms251910408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
The emergence of multidrug-resistant fungi Candida auris is a worldwide health crisis connected with high rates of mortality. There is a critical need to find novel and unique antifungal compounds for treating infections of multidrug-resistant fungi such as C. auris. This study aimed to illustrate that biosynthetic gene clusters in native bacterial isolates are able to produce antifungal compounds against the multidrug-resistant fungus C. auris. It was successfully achieved using large-scale antifungal activity screening, cytotoxicity analysis, and whole genome sequencing integrated with genome mining-guided analysis and liquid chromatography-mass spectrometry (LC/MS). A list of possible gene candidates was initially identified with genome mining methods to predict secondary metabolite gene clusters of antifungal-compound-producing bacteria. Then, gene clusters present in the antifungal-compound-producing bacteria were identified and aligned with the reference genome using comparative genomic approaches. Bacillus halotolerans AQ11M9 was identified through large-scale antifungal activity screening as a natural compound-producer against multidrug-resistant C. auris, while it was nontoxic to normal human skin fibroblast cells (confirmed using a cell viability assay). The genome (4,197,347 bp) of B. halotolerans AQ11M9 with 2931 predicted genes was first mined for detecting and characterizing biosynthetic gene clusters, which revealed 10 candidate regions with antifungal activity. Clusters of AQ11M9 encoded non-ribosomal peptide synthase (NRPS) (bacilysin, bacillibactin, paenibactin, surfactin, plipastin, and fengycin) and polyketide (macrobrevin). The presence of gene clusters with anti-C. auris activity, and surfactin identified through LC/MS, from AQ11M9 suggests the potential of utilizing it as a source for a novel and powerful anti-C. auris compound.
Collapse
Affiliation(s)
- J Francis Borgio
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
- Department of Epidemic Diseases Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Rahaf Alhujaily
- Summer Research Program, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Aqeelah Salman Alfaraj
- Summer Research Program, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Maryam Jawad Alabdullah
- Summer Research Program, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Rawan Khalid Alaqeel
- Summer Research Program, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Ayidah Kaabi
- Summer Research Program, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Rahaf Alquwaie
- Master Program of Biotechnology, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Norah F Alhur
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Reem AlJindan
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 40017, Saudi Arabia
| | - Sarah Almofty
- Department of Stem Cell Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Dana Almohazey
- Department of Stem Cell Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Anandakumar Natarajan
- Department of Education, The Gandhigram Rural Institute (Deemed to be University), Dindigul 624302, India
| | - Tharmathass Stalin Dhas
- Centre for Ocean Research (DST-FIST Sponsored Centre), MoES-Earth Science & Technology Cell, Sathyabama Institute of Science and Technology, Chennai 600119, India
| | - Sayed AbdulAzeez
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Noor B Almandil
- Department of Clinical Pharmacy Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| |
Collapse
|
3
|
Dakalbab S, Hamdy R, Holigová P, Abuzaid EJ, Abu-Qiyas A, Lashine Y, Mohammad MG, Soliman SSM. Uniqueness of Candida auris cell wall in morphogenesis, virulence, resistance, and immune evasion. Microbiol Res 2024; 286:127797. [PMID: 38851008 DOI: 10.1016/j.micres.2024.127797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Candida auris has drawn global attention due to its alarming multidrug resistance and the emergence of pan resistant strains. C. auris poses a significant risk in nosocomial candidemia especially among immunocompromised patients. C. auris showed unique virulence characteristics associated with cell wall including cell polymorphism, adaptation, endurance on inanimate surfaces, tolerance to external conditions, and immune evasion. Notably, it possesses a distinctive cell wall composition, with an outer mannan layer shielding the inner 1,3-β glucan from immune recognition, thereby enabling immune evasion and drug resistance. This review aimed to comprehend the association between unique characteristics of C. auris's cell wall and virulence, resistance mechanisms, and immune evasion. This is particularly relevant since the fungal cell wall has no human homology, providing a potential therapeutic target. Understanding the complex interactions between the cell wall and the host immune system is essential for devising effective treatment strategies, such as the use of repurposed medications, novel therapeutic agents, and immunotherapy like monoclonal antibodies. This therapeutic targeting strategy of C. auris holds promise for effective eradication of this resilient pathogen.
Collapse
Affiliation(s)
- Salam Dakalbab
- Research Institute for Medical and Health sciences, University of Sharjah, P.O. Box, Sharjah 27272, United Arab Emirates; College of Medicine, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Rania Hamdy
- Research Institute for Science and Engineering (RISE), University of Sharjah, Sharjah 27272, United Arab Emirates; Faculty of Pharmacy, Zagazig University, P.O. Box 44519, Egypt
| | | | - Eman J Abuzaid
- Research Institute for Medical and Health sciences, University of Sharjah, P.O. Box, Sharjah 27272, United Arab Emirates
| | - Ameera Abu-Qiyas
- Research Institute for Medical and Health sciences, University of Sharjah, P.O. Box, Sharjah 27272, United Arab Emirates
| | - Yasmina Lashine
- Research Institute for Medical and Health sciences, University of Sharjah, P.O. Box, Sharjah 27272, United Arab Emirates; Faculty of Pharmacy, Zagazig University, P.O. Box 44519, Egypt
| | - Mohammad G Mohammad
- Research Institute for Medical and Health sciences, University of Sharjah, P.O. Box, Sharjah 27272, United Arab Emirates; Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Sameh S M Soliman
- Research Institute for Medical and Health sciences, University of Sharjah, P.O. Box, Sharjah 27272, United Arab Emirates; Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates.
| |
Collapse
|
4
|
Borgio JF, Almandil NB, Selvaraj P, John JS, Alquwaie R, AlHasani E, Alhur NF, Aldahhan R, AlJindan R, Almohazey D, Almofty S, Dhas TS, AbdulAzeez S. The Potential of Dutasteride for Treating Multidrug-Resistant Candida auris Infection. Pharmaceutics 2024; 16:810. [PMID: 38931930 PMCID: PMC11207579 DOI: 10.3390/pharmaceutics16060810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/28/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Novel antifungal drugs are urgently needed to treat candidiasis caused by the emerging fungal multidrug-resistant pathogen Candida auris. In this study, the most cost-effective drug repurposing technology was adopted to identify an appropriate option among the 1615 clinically approved drugs with anti-C. auris activity. High-throughput virtual screening of 1,3-beta-glucanosyltransferase inhibitors was conducted, followed by an analysis of the stability of 1,3-beta-glucanosyltransferase drug complexes and 1,3-beta-glucanosyltransferase-dutasteride metabolite interactions and the confirmation of their activity in biofilm formation and planktonic growth. The analysis identified dutasteride, a drug with no prior antifungal indications, as a potential medication for anti-auris activity in seven clinical C. auris isolates from Saudi Arabian patients. Dutasteride was effective at inhibiting biofilm formation by C. auris while also causing a significant reduction in planktonic growth. Dutasteride treatment resulted in disruption of the cell membrane, the lysis of cells, and crushed surfaces on C. auris, and significant (p-value = 0.0057) shrinkage in the length of C. auris was noted at 100,000×. In conclusion, the use of repurposed dutasteride with anti-C. auris potential can enable rapid recovery in patients with difficult-to-treat candidiasis caused by C. auris and reduce the transmission of nosocomial infection.
Collapse
Affiliation(s)
- J. Francis Borgio
- Department of Genetic Research, Institute for Research and Medical Consultation (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (J.F.B.); (N.F.A.); (R.A.)
| | - Noor B. Almandil
- Department of Clinical Pharmacy Research, Institute for Research and Medical Consultation (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Prathas Selvaraj
- Entomology Research Unit (ERU), Department of Zoology, St. Xavier’s College (Autonomous), Palayamkottai, Affiliated to Manonmaniam Sundaranar University, Tirunelveli 627002, Tamil Nadu, India; (P.S.); (J.S.J.)
| | - J. Sherlin John
- Entomology Research Unit (ERU), Department of Zoology, St. Xavier’s College (Autonomous), Palayamkottai, Affiliated to Manonmaniam Sundaranar University, Tirunelveli 627002, Tamil Nadu, India; (P.S.); (J.S.J.)
| | - Rahaf Alquwaie
- Master Program of Biotechnology, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia or (R.A.); or (E.A.)
| | - Eman AlHasani
- Master Program of Biotechnology, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia or (R.A.); or (E.A.)
| | - Norah F. Alhur
- Department of Genetic Research, Institute for Research and Medical Consultation (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (J.F.B.); (N.F.A.); (R.A.)
| | - Razan Aldahhan
- Department of Genetic Research, Institute for Research and Medical Consultation (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (J.F.B.); (N.F.A.); (R.A.)
| | - Reem AlJindan
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 40017, Saudi Arabia;
| | - Dana Almohazey
- Department of Stem Cell Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (D.A.); (S.A.)
| | - Sarah Almofty
- Department of Stem Cell Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (D.A.); (S.A.)
| | - T. Stalin Dhas
- Centre for Ocean Research (DST—FIST Sponsored Centre), MoES-Earth Science & Technology Cell, Sathyabama Institute of Science and Technology, Chennai 600119, India;
| | - Sayed AbdulAzeez
- Department of Genetic Research, Institute for Research and Medical Consultation (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (J.F.B.); (N.F.A.); (R.A.)
| |
Collapse
|
5
|
Walsh TJ. Meeting the Therapeutic Challenges of Emergent and Rare Invasive Fungal Diseases Through Novel Clinical Trial Designs. Open Forum Infect Dis 2024; 11:ofae257. [PMID: 38887484 PMCID: PMC11181194 DOI: 10.1093/ofid/ofae257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Indexed: 06/20/2024] Open
Abstract
Treatments for emerging and rare invasive fungal diseases (IFDs) represent a critical unmet medical need. For IFDs that occur less frequently than invasive aspergillosis, such as mucormycosis, hyalohyphomycosis, and phaeohyphomycosis, randomized controlled clinical trials are impractical and unlikely to meet urgent public health needs. Understanding regulatory approaches for approval of drugs for rare cancers and rare metabolic diseases could help meet the challenges of studying drugs for rare IFDs. A single-arm, controlled clinical trial with a high-quality external control(s), with confirmatory evidence from nonclinical studies, including pharmacokinetic/pharmacodynamic data in predictive animal models of the disease may support findings of effectiveness of new drugs and biologics. Control populations may include historical controls from published literature, patient registries, and/or contemporaneous external control groups. Continuous engagement among clinicians, industrial sponsors, and regulatory agencies to develop consensus on trial design and innovative development pathways for emergent and rare invasive fungal diseases is important.
Collapse
Affiliation(s)
- Thomas J Walsh
- Center for Innovative Therapeutics and Diagnostics, Office of the Director (citdx.org), Richmond, Virginia, USA
- Departments of Medicine and of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Izadi A, Paknia F, Roostaee M, Mousavi SAA, Barani M. Advancements in nanoparticle-based therapies for multidrug-resistant candidiasis infections: a comprehensive review. NANOTECHNOLOGY 2024; 35:332001. [PMID: 38749415 DOI: 10.1088/1361-6528/ad4bed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 05/15/2024] [Indexed: 05/31/2024]
Abstract
Candida auris, a rapidly emerging multidrug-resistant fungal pathogen, poses a global health threat, with cases reported in over 47 countries. Conventional detection methods struggle, and the increasing resistance ofC. auristo antifungal agents has limited treatment options. Nanoparticle-based therapies, utilizing materials like silver, carbon, zinc oxide, titanium dioxide, polymer, and gold, show promise in effectively treating cutaneous candidiasis. This review explores recent advancements in nanoparticle-based therapies, emphasizing their potential to revolutionize antifungal therapy, particularly in combatingC. aurisinfections. The discussion delves into mechanisms of action, combinations of nanomaterials, and their application against multidrug-resistant fungal pathogens, offering exciting prospects for improved clinical outcomes and reduced mortality rates. The aim is to inspire further research, ushering in a new era in the fight against multidrug-resistant fungal infections, paving the way for more effective and targeted therapeutic interventions.
Collapse
Affiliation(s)
- Alireza Izadi
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Paknia
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14115-154, Iran
| | - Maryam Roostaee
- Department of Chemistry, Faculty of Sciences, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Seyed Amin Ayatollahi Mousavi
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahmood Barani
- Department of Chemistry, Faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr 75168, Iran
| |
Collapse
|
7
|
Ettadili H, Vural C. Current global status of Candida auris an emerging multidrug-resistant fungal pathogen: bibliometric analysis and network visualization. Braz J Microbiol 2024; 55:391-402. [PMID: 38261261 PMCID: PMC10920528 DOI: 10.1007/s42770-023-01239-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Candida auris is an emerging multidrug-resistant fungal pathogen associated with nosocomial infections and hospital outbreaks worldwide, presenting a serious global health threat. There has been a rapid emergence of scientific research publications focusing on therapeutic compounds, diagnostic techniques, control strategies, prevention, and understanding the epidemiology related to C. auris. OBJECTIVE This study aims to provide the most up-to-date comprehensive and integrated examination of C. auris research subject and demonstrate that C. auris is indeed a topic of increasing interest. METHODS The search query "candida-auris" was used as a topic term to find and retrieve relevant data published between 2009 and 15 June 2023, from the Web of Science Core Collection (WoSCC) database. In this work, the bibliometric analysis and network visualization were conducted using VOSviewer software, and Biblioshiny interface accessible through the Bibliometrix R-package on RStudio software. RESULTS The yearly growth rate percentage (37.91%), along with the strong positive correlations between publications and citations (r = 0.981; p < 0.001), suggests heightened scholarly engagement in this topic. The USA, India, China, and the UK have emerged as pivotal contributors, with the Centers for Disease Control and Prevention (CDC) in the USA being the most productive institution. Current research hotspots in this field mainly focused on identifying and limiting transmission of the clonal strains, epidemiology, antifungal resistance, and in vitro antifungal susceptibility testing. CONCLUSION This detailed bibliometric analysis in C. auris topic shows that this fungal pathogen has garnered growing attention and attracted progressively more scholars. This paper will help researchers to find without difficulty the relevant articles, research hotspots, influential authors, institutions, and countries related to the topic.
Collapse
Affiliation(s)
- Hamza Ettadili
- Faculty of Science, Department of Biology, Molecular Biology Section, Pamukkale University, 20160, Denizli, Turkey
| | - Caner Vural
- Faculty of Science, Department of Biology, Molecular Biology Section, Pamukkale University, 20160, Denizli, Turkey.
| |
Collapse
|
8
|
Ajetunmobi OH, Badali H, Romo JA, Ramage G, Lopez-Ribot JL. Antifungal therapy of Candida biofilms: Past, present and future. Biofilm 2023; 5:100126. [PMID: 37193227 PMCID: PMC10182175 DOI: 10.1016/j.bioflm.2023.100126] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/18/2023] Open
Abstract
Virtually all Candida species linked to clinical candidiasis are capable of forming highly resistant biofilms on different types of surfaces, which poses an additional significant threat and further complicates therapy of these infections. There is a scarcity of antifungal agents, and their effectiveness, particularly against biofilms, is limited. Here we provide a historical perspective on antifungal agents and therapy of Candida biofilms. As we reflect upon the past, consider the present, and look towards the future of antifungal therapy of Candida biofilms, we believe that there are reasons to remain optimistic, and that the major challenges of Candida biofilm therapy can be conquered within a reasonable timeframe.
Collapse
Affiliation(s)
- Olabayo H. Ajetunmobi
- Department of Molecular Microbiology & Immunology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Hamid Badali
- Department of Molecular Microbiology & Immunology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Jesus A. Romo
- Department of Molecular Microbiology & Immunology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Gordon Ramage
- Glasgow Biofilm Research Network, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Jose L. Lopez-Ribot
- Department of Molecular Microbiology & Immunology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, USA
- Corresponding author. Department of Molecular Microbiology & Immunology, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA.
| |
Collapse
|
9
|
Mehta D, Saini V, Bajaj A. Recent developments in membrane targeting antifungal agents to mitigate antifungal resistance. RSC Med Chem 2023; 14:1603-1628. [PMID: 37731690 PMCID: PMC10507810 DOI: 10.1039/d3md00151b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/22/2023] [Indexed: 09/22/2023] Open
Abstract
Fungal infections cause severe and life-threatening complications especially in immunocompromised individuals. Antifungals targeting cellular machinery and cell membranes including azoles are used in clinical practice to manage topical to systemic fungal infections. However, continuous exposure to clinically used antifungal agents in managing the fungal infections results in the development of multi-drug resistance via adapting different kinds of intrinsic and extrinsic mechanisms. The unique chemical composition of fungal membranes presents attractive targets for antifungal drug discovery as it is difficult for fungal cells to modify the membrane targets for emergence of drug resistance. Here, we discussed available antifungal drugs with their detailed mechanism of action and described different antifungal resistance mechanisms. We further emphasized structure-activity relationship studies of membrane-targeting antifungal agents, and classified membrane-targeting antifungal agents on the basis of their core scaffold with detailed pharmacological properties. This review aims to pique the interest of potential researchers who could explore this interesting and intricate fungal realm.
Collapse
Affiliation(s)
- Devashish Mehta
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology Faridabad-121001 Haryana India
| | - Varsha Saini
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology Faridabad-121001 Haryana India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology Faridabad-121001 Haryana India
| |
Collapse
|
10
|
Borgio JF, Alhujaily R, Alquwaie R, Alabdullah MJ, AlHasani E, Alothman W, Alaqeel RK, Alfaraj AS, Kaabi A, Alhur NF, Akhtar S, AlJindan R, Almofty S, Almandil NB, AbdulAzeez S. Mining the nanotube-forming Bacillus amyloliquefaciens MR14M3 genome for determining anti- Candida auris and anti- Candida albicans potential by pathogenicity and comparative genomics analysis. Comput Struct Biotechnol J 2023; 21:4261-4276. [PMID: 37701018 PMCID: PMC10493893 DOI: 10.1016/j.csbj.2023.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
There is a global health concern associated with the emergence of the multidrug-resistant (MDR) fungus Candida auris, which has significant mortality rates. Finding innovative and distinctive anti-Candida compounds is essential for treating infections caused by MDR C. auris. A bacterial strain with anti-Candida activity was isolated and identified using 16 S rRNA gene sequencing. The whole genome was sequenced to identify biosynthesis-related gene clusters. The pathogenicity and cytotoxicity of the isolate were analyzed in Candida and HFF-1 cell lines, respectively. This study set out to show that whole-genome sequencing, cytotoxicity testing, and pathogenicity analysis combined with genome mining and comparative genomics can successfully identify biosynthesis-related gene clusters in native bacterial isolates that encode antifungal natural compounds active against Candida albicans and C. auris. The native isolate MR14M3 has the ability to inhibit C. auris (zone of inhibition 25 mm) and C. albicans (zone of inhibition 25 mm). The 16 S rRNA gene sequence of MR14M3 aligned with Bacillus amyloliquefaciens with similarity (100%). Bacillus amyloliquefaciens MR14M3 establishes bridges of intercellular nanotubes (L 258.56 ± 35.83 nm; W 25.32 ± 6.09 nm) connecting neighboring cells. Candida cell size was reduced significantly, and crushed phenotypes were observed upon treatment with the defused metabolites of B. amyloliquefaciens MR14M3. Furthermore, the pathogenicity of B. amyloliquefaciens MR14M3 on Candida cells was observed through cell membrane disruption and lysed yeast cells. The whole-genome alignment of the MR14M3 genome (3981,643 bp) using 100 genes confirmed its affiliation with Bacillus amyloliquefaciens. Genome mining analysis revealed that MR14M3-coded secondary metabolites are involved in the biosynthesis of polyketides (PKs) and nonribosomal peptide synthases (NRPSs), including 11 biosynthesis-related gene clusters with one hundred percent similarity. Highly conserved biosynthesis-related gene clusters with anti-C. albicans and anti-C. auris potentials and cytotoxic-free activity of B. amyloliquefaciens MR14M3 proposes the utilization of Bacillus amyloliquefaciens MR14M3 as a biofactory for an anti-Candida auris and anti-C. albicans compound synthesizer.
Collapse
Affiliation(s)
- J. Francis Borgio
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
- Department of Epidemic Diseases Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Rahaf Alhujaily
- Summer Research Program, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Rahaf Alquwaie
- Master Program of Biotechnology, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Maryam Jawad Alabdullah
- Summer Research Program, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Eman AlHasani
- Master Program of Biotechnology, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Wojod Alothman
- Summer Research Program, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Rawan Khalid Alaqeel
- Summer Research Program, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Aqeelah Salman Alfaraj
- Summer Research Program, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Ayidah Kaabi
- Summer Research Program, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Norah F. Alhur
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Sultan Akhtar
- Department of Biophysics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Reem AlJindan
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 40017, Saudi Arabia)
| | - Sarah Almofty
- Department of Stem Cell Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Noor B. Almandil
- Department of Clinical Pharmacy Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Sayed AbdulAzeez
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| |
Collapse
|
11
|
Sharma C, Kadosh D. Perspective on the origin, resistance, and spread of the emerging human fungal pathogen Candida auris. PLoS Pathog 2023; 19:e1011190. [PMID: 36952448 PMCID: PMC10035752 DOI: 10.1371/journal.ppat.1011190] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023] Open
Affiliation(s)
- Cheshta Sharma
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - David Kadosh
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| |
Collapse
|
12
|
Sticchi C, Raso R, Ferrara L, Vecchi E, Ferrero L, Filippi D, Finotto G, Frassinelli E, Silvestre C, Zozzoli S, Ambretti S, Diegoli G, Gagliotti C, Moro ML, Ricchizzi E, Tumietto F, Russo F, Tonon M, Maraglino F, Rezza G, Sabbatucci M. Increasing Number of Cases Due to Candida auris in North Italy, July 2019-December 2022. J Clin Med 2023; 12:jcm12051912. [PMID: 36902700 PMCID: PMC10003924 DOI: 10.3390/jcm12051912] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/01/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Candida auris is an emerging fungus that represents a serious health threat globally. In Italy, the first case was detected in July 2019. Then, one case was reported to the Ministry of Health (MoH) on January 2020. Nine months later, a huge number of cases were reported in northern Italy. Overall, 361 cases were detected in 17 healthcare facilities between July 2019 and December 2022 in the Liguria, Piedmont, Emilia-Romagna, and Veneto regions, including 146 (40.4%) deaths. The majority of cases (91.8%) were considered as colonised. Only one had a history of travel abroad. Microbiological data on seven isolates showed that all but one strain (85.7%) were resistant to fluconazole. All the environmental samples tested negative. Weekly screening of contacts was performed by the healthcare facilities. Infection prevention and control (IPC) measures were applied locally. The MoH nominated a National Reference Laboratory to characterise C. auris isolates and store the strains. In 2021, Italy posted two messages through the Epidemic Intelligence Information System (EPIS) to inform on the cases. On February 2022, a rapid risk assessment indicated a high risk for further spread within Italy, but a low risk of spread to other countries.
Collapse
Affiliation(s)
- Camilla Sticchi
- A.Li.Sa. Azienda Ligure Sanitaria, Ligurian Health Authority, 16121 Genova, Italy
| | - Roberto Raso
- Regional Epidemiology Reference Service for the Surveillance, Prevention and Control of Infectious Diseases—Local Health Unit of Alessandria, 15121 Alessandria, Italy
| | - Lorenza Ferrara
- Regional Epidemiology Reference Service for the Surveillance, Prevention and Control of Infectious Diseases—Local Health Unit of Alessandria, 15121 Alessandria, Italy
| | - Elena Vecchi
- Collective Prevention and Public Health Section—Directorate General for Personal Care, Health and Welfare—Emilia Romagna Region, 40100 Bologna, Italy
| | - Loredana Ferrero
- S.C. Health Directorate—P.O. Molinette—A.O.U. Città della Salute e della Scienza, 10126 Turin, Italy
| | - Daniela Filippi
- S.C. Health Directorate—P.O. Molinette—A.O.U. Città della Salute e della Scienza, 10126 Turin, Italy
| | - Giuseppe Finotto
- S.C. Health Directorate—P.O. Molinette—A.O.U. Città della Salute e della Scienza, 10126 Turin, Italy
| | - Elena Frassinelli
- S.C. Health Directorate—P.O. Molinette—A.O.U. Città della Salute e della Scienza, 10126 Turin, Italy
| | - Carlo Silvestre
- S.C. Health Directorate—P.O. Molinette—A.O.U. Città della Salute e della Scienza, 10126 Turin, Italy
| | - Susanna Zozzoli
- S.C. Health Directorate—P.O. Molinette—A.O.U. Città della Salute e della Scienza, 10126 Turin, Italy
| | - Simone Ambretti
- Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria Bologna, 40138 Bologna, Italy
- Section of Microbiology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy
| | - Giuseppe Diegoli
- Collective Prevention and Public Health Section—Directorate General for Personal Care, Health and Welfare—Emilia Romagna Region, 40100 Bologna, Italy
| | - Carlo Gagliotti
- Regional Health and Social Agency—Emilia Romagna Region, 40127 Bologna, Italy
| | - Maria Luisa Moro
- Regional Health and Social Agency—Emilia Romagna Region, 40127 Bologna, Italy
| | - Enrico Ricchizzi
- Regional Health and Social Agency—Emilia Romagna Region, 40127 Bologna, Italy
| | - Fabio Tumietto
- UO Antimicrobial Stewardship—AUSL Bologna, 40124 Bologna, Italy
| | - Francesca Russo
- Veneto Region, Directorate for Prevention, Veterinary Food Safety, 30123 Venice, Italy
| | - Michele Tonon
- Veneto Region, Directorate for Prevention, Veterinary Food Safety, 30123 Venice, Italy
| | - Francesco Maraglino
- Ministry of Health, Directorate General Health Prevention, Communicable Diseases and International Prophylaxis, 00144 Rome, Italy
| | - Giovanni Rezza
- Ministry of Health, Directorate General Health Prevention, Communicable Diseases and International Prophylaxis, 00144 Rome, Italy
| | - Michela Sabbatucci
- Ministry of Health, Directorate General Health Prevention, Communicable Diseases and International Prophylaxis, 00144 Rome, Italy
- Department Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy
- Correspondence:
| |
Collapse
|
13
|
Kovács R, Mahmoudi S. Editorial: Alternative approaches to antifungal drugs against drug-resistant fungi. Front Cell Infect Microbiol 2023; 13:1184922. [PMID: 37033484 PMCID: PMC10077058 DOI: 10.3389/fcimb.2023.1184922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 03/15/2023] [Indexed: 04/11/2023] Open
Affiliation(s)
- Renátó Kovács
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- *Correspondence: Renátó Kovács, ; Shahram Mahmoudi, ;;
| | - Shahram Mahmoudi
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- *Correspondence: Renátó Kovács, ; Shahram Mahmoudi, ;;
| |
Collapse
|