1
|
Monteiro R, Yu C, Dolatabadi S, Hagen F, Sandoval-Denis M, Crous P, Fisher M, Gonçalves S, de Camargo Z, Hofling-Lima A, Rodrigues A. Novel amplified fragment length polymorphism (AFLP) markers for typing medically relevant Fusarium and allied fusarioid genera. Fungal Syst Evol 2025; 15:79-96. [PMID: 40170763 PMCID: PMC11959234 DOI: 10.3114/fuse.2025.15.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 08/25/2024] [Indexed: 01/05/2025] Open
Abstract
Fusariosis is an emerging mycosis caused by diverse Fusarium and allied fusarioid genera that are characterized by spindle-shaped macroconidia. These fungi possess a broad ecological distribution, causing infections in a wide diversity of hosts, spanning the animal and plant kingdoms. The spectrum of human fusariosis encompasses superficial lesions like keratitis and onychomycosis to invasive fungal diseases. Notable genera within the medically relevant fusarioid group include Neocosmospora, Fusarium s. str., and Bisifusarium. While Neocosmospora species (formerly F. solani species complex) are primary causative agents of human fusariosis, instances involving Fusarium s. str. and Bisifusarium (formerly F. dimerum species complex) have been reported. There is an urgent need for DNA-based markers to explore the epidemiology of these emerging fusarioid pathogens using molecular methods. We took advantage of fusarioid genomes available in NCBI (n = 20) to optimize the development of novel amplified fragment length polymorphism (AFLP) markers by conducting in-depth in silico analyses to refine their applicability for studies on these pathogens' genetic epidemiology. In-silico screening highlighted eight primer pair combinations (C1-C8) to be tested in vitro. The AFLP protocol was used for genotyping 40 medically relevant fusarioid fungi. Based on the overall scored AFLP markers (77-93 fragments), the values of polymorphism information content (PIC = 0.3474-0.3725), marker index (MI = 0.0038-0.0056), effective multiplex ratio (E = 26.3750-40.4750), resolving power (Rp = 40.1500-54.6000), discriminating power (D = 0.7978-0.8857), expected heterozygosity (H = 0.4476-0.4949), and mean heterozygosity (H avp = 0.0001) demonstrated the utility of these primer combinations for discriminating Neocosmospora, Fusarium s. str., and Bisifusarium species. Of relevance, some AFLP panels were better than others at studying genetic trends in Neocosmospora (#2 EcoRI-AT/MseI-TA, #3 EcoRI-AA/MseI-TT, and #5 EcoRI-AT/MseI-AG) or Fusarium s. str. (mainly #2 EcoRI-AT/MseI-TA and #6 EcoRI-GA/MseI-TT) and Bisifusarium (#1 EcoRI-GA/MseI-AG and #6 EcoRI-GA/MseI-TT), and these combinations will better resolve disease transmission routes. Our DNA fingerprint assay has proven effective by exhibiting rapidity, reproducibility, and high discriminatory capabilities, which represents a valuable asset in the ongoing efforts to combat fusariosis and enhance our scientific understanding of medically relevant Fusarium and allied fusarioid genera. Citation: Monteiro RC, Yu CZ, Dolatabadi S, Hagen F, Sandoval-Denis M, Crous PW, Fisher MC, Gonçalves SS, de Camargo ZP, Hofling-Lima AL, Rodrigues AM (2025). Novel amplified fragment length polymorphism (AFLP) markers for typing medically relevant Fusarium and allied fusarioid genera. Fungal Systematics and Evolution 15: 79-96. doi: 10.3114/fuse.2025.15.03.
Collapse
Affiliation(s)
- R.C. Monteiro
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil
| | - C.Z. Yu
- Laboratory of Ophthalmology (LOFT), Department of Ophthalmology and Visual Sciences, Escola Paulista de Medicina (EPM), Federal University of São Paulo (UNIFESP), Sao Paulo 04023-062, Brazil
| | - S. Dolatabadi
- Department of Biology, Hakim Sabzevari University, Sabzevar, Iran
| | - F. Hagen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- Department of Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - M. Sandoval-Denis
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - P.W. Crous
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Department of Biochemistry, Genetics & Microbiology, Forestry & Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| | - M.C. Fisher
- Medical Research Council Center for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London W2 1PG, UK
| | - S.S. Gonçalves
- Infectious Diseases Postgraduate Program, Center for Research in Medical Mycology, Federal University of Espírito Santo (UFES), Espírito Santo, 29043900, Brazil
| | - Z.P. de Camargo
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil
| | - A.L. Hofling-Lima
- Laboratory of Ophthalmology (LOFT), Department of Ophthalmology and Visual Sciences, Escola Paulista de Medicina (EPM), Federal University of São Paulo (UNIFESP), Sao Paulo 04023-062, Brazil
| | - A.M. Rodrigues
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil
- National Institute of Science and Technology in Human Pathogenic Fungi, Brazil
| |
Collapse
|
2
|
Barbosa LSDP, Souza YRCD, Sasaki CS, Santos DWD, Rossato L. Chromoblastomycosis in Brazil: A review of 450 published cases. Rev Soc Bras Med Trop 2024; 57:S0037-86822024000100205. [PMID: 39570152 DOI: 10.1590/0037-8682-0132-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/07/2024] [Indexed: 11/22/2024] Open
Abstract
Chromoblastomycosis is a skin infection caused by melanized fungi that primarily affects rural workers. This study aimed to analyze the clinical and epidemiological manifestations of chromoblastomycosis in Brazil through an extensive literature review. A review of case reports or series of cases in English and Portuguese was conducted using the SciELO, LILACS, SCOPUS, PubMed, and Web of Science databases from 1963 to 2022. A total of 46 articles involving 450 patients were identified, among which, 83.1% were male rural workers with a mean age of 52.2 years. The clinical manifestations were most commonly observed in the lower extremities (78.7%). The most frequent clinical presentations of the disease were verrucous lesions and plaques. Fonsecaea and Rhinocladiella spp. were the most common agents responsible for chromoblastomycosis. Most cured cases were treated with itraconazole, either as monotherapy or in combination with other antifungals, surgery, or cryosurgery. Chromoblastomycosis affects hundreds of rural workers in Brazil, leading to financial disabilities as well as personal and family losses. It is essential to prioritize epidemiological surveillance and ensure the early diagnosis of this disease to reveal its true prevalence, guide resource allocation, improve diagnosis, ensure early treatment, and implement preventive measures.
Collapse
Affiliation(s)
| | | | - Caroline Suemi Sasaki
- Universidade Federal da Grande Dourados, Faculdade de Ciências da Saúde, Dourados, MS, Brasil
| | - Daniel Wagner Dos Santos
- Instituto D'Or de Pesquisa e Ensino - IDOR, São Luís, MA, Brasil
- Universidade Federal do Maranhão, Hospital Universitário - Ebserh, São Luís, MA, Brasil
| | - Luana Rossato
- Universidade Federal da Grande Dourados, Faculdade de Ciências da Saúde, Dourados, MS, Brasil
| |
Collapse
|
3
|
de Oliveira PRF, de Carvalho JA, Costa TR, Silva BPE, da Silva GG, Rodrigues AM, Mota RA. Emerging Cases of Cat-Transmitted Sporotrichosis Driven by Sporothrix brasiliensis in Northeast Brazil. Mycopathologia 2024; 189:66. [PMID: 39003373 DOI: 10.1007/s11046-024-00873-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/24/2024] [Indexed: 07/15/2024]
Abstract
Cat-transmitted sporotrichosis is caused by the emerging fungal pathogen Sporothrix brasiliensis and constitutes a significant public health issue that affects people living in resource-poor urban centers in Brazil. The lack of knowledge about transmission dynamics makes it difficult to propose public health policies to contain the advance of sporotrichosis. We describe the recent emergence of 1,176 cases of sporotrichosis in cats (2016 to 2021) in the metropolitan region of Recife, Brazil, leading to significant zoonotic transmission and an overwhelming occurrence of S. brasiliensis as the etiological agent. Most cases were from cats in the cities of Olinda (408/1,176; 34.70%), Jaboatão dos Guararapes (332/1,176; 28.23%), and Recife (237/1,176; 20.15%). Molecular typing using amplified fragment length polymorphism (EcoRI-GA/MseI-AG) revealed low polymorphic information content (PIC = 0.2499) and heterozygosity (H = 0.2928), typical of an outbreak scenario. Dendrogram and multivariate cluster analysis revealed that isolates from Pernambuco are closely related to Rio de Janeiro isolates. We report a substantial occurrence of MAT1-2 idiomorphs in the metropolitan region of Recife (0:60 ratio; χ2 = 60.000, P < 0.0001). The limited population differentiation and genetic diversity of the isolates from Pernambuco suggest a recent introduction, possibly via a founder effect, from the parental population in Rio de Janeiro. Our findings emphasize the critical importance of molecular surveillance of S. brasiliensis for outbreak response. A comprehensive one-health strategy is mandatory to control the spread of cat-transmitted sporotrichosis driven by S. brasiliensis, encompassing sanitary barriers, quick diagnosis, and treatment.
Collapse
Affiliation(s)
| | - Jamile Ambrósio de Carvalho
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo, 04023062, Brazil
| | - Taizi Rodrigues Costa
- Laboratory of Infectious Diseases, Department of Veterinary Medicine, University Federal Rural of Pernambuco (UFRPE), Recife, Brazil
| | | | - Gabriela Gonçalves da Silva
- Laboratory of Infectious Diseases, Department of Veterinary Medicine, University Federal Rural of Pernambuco (UFRPE), Recife, Brazil
| | - Anderson Messias Rodrigues
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo, 04023062, Brazil.
- National Institute of Science and Technology in Human Pathogenic Fungi, São Paulo, Brazil.
| | - Rinaldo Aparecido Mota
- Laboratory of Infectious Diseases, Department of Veterinary Medicine, University Federal Rural of Pernambuco (UFRPE), Recife, Brazil
| |
Collapse
|
4
|
Rodríguez-Cerdeira C, Hernández-Castro R, Arenas R, Sandoval-Tress C, Gutiérrez-Murillo F, Martínez-Chavarría LC, Xicohtencatl-Cortes J, Fida M, Martinez-Herrera E. From Child to Old Man: A Slowly Evolving Case of Chromoblastomycosis Caused by Cladosporium cladosporioides. Antibiotics (Basel) 2023; 12:1713. [PMID: 38136747 PMCID: PMC10741158 DOI: 10.3390/antibiotics12121713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Chromoblastomycosis is a chronic granulomatous mycosis of the skin and subcutaneous tissue caused by traumatic inoculation with dematiaceous fungi. This disease primarily affects agricultural workers, who are mostly men. We present a case of chromoblastomycosis in a 63-year-old male farmer patient with dermatosis over 50 years of evolution, with warty, erythematous, and scaly plaques that predominate on the left hemithorax. Direct examination with potassium hydroxide (KOH) revealed numerous fumagoid cells. Amplification and sequencing of the internal transcribed spacer (ITS) and translation elongation factor 1-alpha (TEF-1a) gene revealed that chromoblastomycosis was caused by Cladosporium cladosporioides. The chromoblastomycosis was treated with itraconazole and fluconazole without any improvement, and amphotericin B was administered with partial improvement.
Collapse
Affiliation(s)
- Carmen Rodríguez-Cerdeira
- Fundación Vithas, Grupo Hospitalario Vithas, 28043 Madrid, Spain;
- Dermatology Department, Hospital do Vithas, 36206 Vigo, Spain
- European Women’s Dermatologic and Venereologic Society, 36700 Tui, Spain;
- Psychodermatology Task Force of the Ibero-Latin American College of Dermatology (CILAD), Buenos Aires C1091, Argentina
| | - Rigoberto Hernández-Castro
- Departamento de Ecología y Agentes Patógenos, Hospital General Dr. Manuel Gea González, Tlalpan 14080, Mexico;
| | - Roberto Arenas
- Fundación Vithas, Grupo Hospitalario Vithas, 28043 Madrid, Spain;
- European Women’s Dermatologic and Venereologic Society, 36700 Tui, Spain;
- Psychodermatology Task Force of the Ibero-Latin American College of Dermatology (CILAD), Buenos Aires C1091, Argentina
- Sección de Micología, Hospital General “Dr. Manuel Gea González”, Tlalpan 14080, Mexico
| | - Cecilia Sandoval-Tress
- Departamento de Dermatología, Hospital General de Zona # 42 Instituto Mexicano del Seguro Social, Puerto Vallarta 48310, Mexico;
| | | | - Luary Carolina Martínez-Chavarría
- Departamento de Patología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Coyoacán 04510, Mexico;
| | - Juan Xicohtencatl-Cortes
- Laboratorio de Bacteriología Intestinal, Hospital Infantil de México Dr. Federico Gómez, Cuauhtémoc 06720, Mexico;
| | - Monika Fida
- European Women’s Dermatologic and Venereologic Society, 36700 Tui, Spain;
- Dermatology Department, Medical University of Tirana, U.M.T., 1001 Tirana, Albania
| | - Erick Martinez-Herrera
- Fundación Vithas, Grupo Hospitalario Vithas, 28043 Madrid, Spain;
- European Women’s Dermatologic and Venereologic Society, 36700 Tui, Spain;
- Psychodermatology Task Force of the Ibero-Latin American College of Dermatology (CILAD), Buenos Aires C1091, Argentina
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico
| |
Collapse
|
5
|
Belda W, Passero LFD, de Carvalho CHC, Mojica PCR, Vale PA. Chromoblastomycosis: New Perspective on Adjuvant Treatment with Acitretin. Diseases 2023; 11:162. [PMID: 37987273 PMCID: PMC10660773 DOI: 10.3390/diseases11040162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023] Open
Abstract
Chromoblastomycosis (CBM) is a neglected human disease, caused by different species of pigmented dematiaceous fungi that cause granulomatous and suppurative dermatosis. This infection is difficult to treat and there are limited therapeutic options, including terbinafine, itraconazole, and tioconazole. Classic treatment is administered for a long period of time, but some patients do not respond properly, and therefore, such therapeutic approaches possess low cure rates. Therefore, it is vital to develop new strategies for the treatment of CBM. In this regard, it has been observed that the association of immunomodulatory molecules such as glucan with therapy carried out with antifungal drugs improves cutaneous lesions in comparison to treatment with antifungal drugs alone, suggesting that drug association may be an interesting and significant approach to incorporate into CBM therapy. Thus, the aim of this work was to associate classical antifungal therapy with the adjuvants imiquimod and acitretin. In the present case, we reported a patient with extensive CBM caused by Fonsaecae pedrosoi, that affected an extensive area of the right leg, that was left without treatment for 11 years. He was treated with a classical combination of itraconazole and terbinafine via the oral route plus topical imiquimod and oral acitretin, as an adjuvant therapy. After five months of treatment, a significant regression of verrucous plaques was observed, suggesting that the use of these adjuvants combined with the classical antifungal drugs, intraconazole plus terbinafine, can reduce treatment time and rapidly improve the patient's quality of life. This result confirms that the use of coadjuvant drugs may be effective in the treatment of this infectious disease.
Collapse
Affiliation(s)
- Walter Belda
- Dermatology Department, Medical School, University of São Paulo, Sao Paulo 05403-000, Brazil; (C.H.C.d.C.); (P.C.R.M.); (P.A.V.)
- Laboratory of Pathology of Infectious Diseases, Medical School, University of São Paulo, Sao Paulo 01246-000, Brazil
| | - Luiz Felipe Domingues Passero
- Institute of Biosciences, São Paulo State University (UNESP), Sao Vicente 11330-900, Brazil;
- Institute for Advanced Studies of Ocean, São Paulo State University (UNESP), Sao Vicente 11350-011, Brazil
| | | | - Paula Celeste Rubiano Mojica
- Dermatology Department, Medical School, University of São Paulo, Sao Paulo 05403-000, Brazil; (C.H.C.d.C.); (P.C.R.M.); (P.A.V.)
| | - Pablo Andrade Vale
- Dermatology Department, Medical School, University of São Paulo, Sao Paulo 05403-000, Brazil; (C.H.C.d.C.); (P.C.R.M.); (P.A.V.)
| |
Collapse
|
6
|
Losada LCDML, Monteiro RC, de Carvalho JA, Hagen F, Fisher MC, Spruijtenburg B, Meis JF, de Groot T, Gonçalves SS, Negroni R, Kano R, Bonifaz A, de Camargo ZP, Rodrigues AM. High-Throughput Microsatellite Markers Development for Genetic Characterization of Emerging Sporothrix Species. J Fungi (Basel) 2023; 9:354. [PMID: 36983522 PMCID: PMC10054832 DOI: 10.3390/jof9030354] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Sporotrichosis is the main subcutaneous mycosis worldwide transmitted by animal or plant vectors and often escalates to outbreaks or epidemics. The current cat-transmitted sporotrichosis driven by Sporothrix brasiliensis has become a significant public health issue in South America. Transmission dynamics remain enigmatic due to the lack of development of polymorphic markers for molecular epidemiological analysis. This study used a high-throughput mining strategy to characterize simple sequence repeat (SSR) markers from Sporothrix genomes. A total of 118,140-143,912 SSR loci were identified (82,841-98,369 unique markers), with a 3651.55-3804.65 SSR/Mb density and a majority of dinucleotides motifs (GC/CG). We developed a panel of 15 highly polymorphic SSR markers suitable for genotyping S. brasiliensis, S. schenckii, and S. globosa. PCR amplification revealed 240 alleles in 180 Sporothrix isolates with excellent polymorphic information content (PIC = 0.9101), expected heterozygosity (H = 0.9159), and discriminating power (D = 0.7127), supporting the effectiveness of SSR markers in uncovering cryptic genetic diversity. A systematic population genetic study estimated three clusters, corresponding to S. brasiliensis (population 1, n = 97), S. schenckii (population 2, n = 49), and S. globosa (population 3, n = 34), with a weak signature of mixed ancestry between populations 1 and 2 or 3 and 2. Partitioning of genetic variation via AMOVA revealed highly structured populations (ΦPT = 0.539; Nm = 0.213; p < 0.0001), with approximately equivalent genetic variability within (46%) and between (54%) populations. Analysis of SSR diversity supports Rio de Janeiro (RJ) as the center of origin for contemporary S. brasiliensis infections. The recent emergence of cat-transmitted sporotrichosis in northeastern Brazil indicates an RJ-Northeast migration resulting in founder effects during the introduction of diseased animals into sporotrichosis-free areas. Our results demonstrated high cross-species transferability, reproducibility, and informativeness of SSR genetic markers, helping dissect deep and fine-scale genetic structures and guiding decision making to mitigate the harmful effects of the expansion of cat-transmitted sporotrichosis.
Collapse
Affiliation(s)
- Luiza Chaves de Miranda Leonhardt Losada
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil
- Department of Medicine, Discipline of Infectious Diseases, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil
| | - Ruan Campos Monteiro
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil
| | - Jamile Ambrósio de Carvalho
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil
| | - Ferry Hagen
- Department of Medical Mycology, Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Sciencepark 904, 1098 XH Amsterdam, The Netherlands
- Department of Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Matthew C. Fisher
- Medical Research Council Center for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London W2 1PG, UK
| | - Bram Spruijtenburg
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, 6532 SZ Nijmegen, The Netherlands
- Center of Expertise in Mycology Radboud University Medical Center/Canisius-Wilhelmina Hospital, 6532 SZ Nijmegen, The Netherlands
| | - Jacques F. Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, 6532 SZ Nijmegen, The Netherlands
- Center of Expertise in Mycology Radboud University Medical Center/Canisius-Wilhelmina Hospital, 6532 SZ Nijmegen, The Netherlands
- Department I of Internal Medicine, Faculty of Medicine, University of Cologne, and Excellence Center for Medical Mycology, University Hospital Cologne, 50931 Cologne, Germany
| | - Theun de Groot
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, 6532 SZ Nijmegen, The Netherlands
- Center of Expertise in Mycology Radboud University Medical Center/Canisius-Wilhelmina Hospital, 6532 SZ Nijmegen, The Netherlands
| | - Sarah Santos Gonçalves
- Infectious Diseases Postgraduate Program, Center for Research in Medical Mycology, Federal University of Espírito Santo (UFES), Vitória 29043900, Brazil
| | - Ricardo Negroni
- Mycology Unit of the Infectious Diseases Hospital Francisco Javier Muñiz, Reference Center of Mycology of Buenos Aires City, Uspallata, Buenos Aires 2272, Argentina
| | - Rui Kano
- Teikyo University Institute of Medical Mycology (TIMM), 359 Otsuka, Tokyo 192-0395, Japan
| | - Alexandro Bonifaz
- Dermatology Service, Mycology Department, Hospital General de México, “Dr. Eduardo Liceaga”, Balmis 148, Colonia Doctores, Mexico City 03020, Mexico
| | - Zoilo Pires de Camargo
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil
- Department of Medicine, Discipline of Infectious Diseases, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil
| | - Anderson Messias Rodrigues
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil
- Department of Medicine, Discipline of Infectious Diseases, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil
| |
Collapse
|