1
|
Bellanca CM, Augello E, Mariottini A, Bonaventura G, La Cognata V, Di Benedetto G, Cantone AF, Attaguile G, Di Mauro R, Cantarella G, Massacesi L, Bernardini R. Disease Modifying Strategies in Multiple Sclerosis: New Rays of Hope to Combat Disability? Curr Neuropharmacol 2024; 22:1286-1326. [PMID: 38275058 PMCID: PMC11092922 DOI: 10.2174/1570159x22666240124114126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/21/2023] [Accepted: 09/22/2023] [Indexed: 01/27/2024] Open
Abstract
Multiple sclerosis (MS) is the most prevalent chronic autoimmune inflammatory- demyelinating disorder of the central nervous system (CNS). It usually begins in young adulthood, mainly between the second and fourth decades of life. Usually, the clinical course is characterized by the involvement of multiple CNS functional systems and by different, often overlapping phenotypes. In the last decades, remarkable results have been achieved in the treatment of MS, particularly in the relapsing- remitting (RRMS) form, thus improving the long-term outcome for many patients. As deeper knowledge of MS pathogenesis and respective molecular targets keeps growing, nowadays, several lines of disease-modifying treatments (DMT) are available, an impressive change compared to the relative poverty of options available in the past. Current MS management by DMTs is aimed at reducing relapse frequency, ameliorating symptoms, and preventing clinical disability and progression. Notwithstanding the relevant increase in pharmacological options for the management of RRMS, research is now increasingly pointing to identify new molecules with high efficacy, particularly in progressive forms. Hence, future efforts should be concentrated on achieving a more extensive, if not exhaustive, understanding of the pathogenetic mechanisms underlying this phase of the disease in order to characterize novel molecules for therapeutic intervention. The purpose of this review is to provide a compact overview of the numerous currently approved treatments and future innovative approaches, including neuroprotective treatments as anti-LINGO-1 monoclonal antibody and cell therapies, for effective and safe management of MS, potentially leading to a cure for this disease.
Collapse
Affiliation(s)
- Carlo Maria Bellanca
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, 95123 Catania, Italy
- Clinical Toxicology Unit, University Hospital, University of Catania, 95123 Catania, Italy
| | - Egle Augello
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, 95123 Catania, Italy
- Clinical Toxicology Unit, University Hospital, University of Catania, 95123 Catania, Italy
| | - Alice Mariottini
- Department of Neurosciences Drugs and Child Health, University of Florence, Florence, Italy
| | - Gabriele Bonaventura
- Institute for Biomedical Research and Innovation (IRIB), Italian National Research Council, 95126 Catania, Italy
| | - Valentina La Cognata
- Institute for Biomedical Research and Innovation (IRIB), Italian National Research Council, 95126 Catania, Italy
| | - Giulia Di Benedetto
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, 95123 Catania, Italy
- Clinical Toxicology Unit, University Hospital, University of Catania, 95123 Catania, Italy
| | - Anna Flavia Cantone
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, 95123 Catania, Italy
| | - Giuseppe Attaguile
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, 95123 Catania, Italy
| | - Rosaria Di Mauro
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, 95123 Catania, Italy
| | - Giuseppina Cantarella
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, 95123 Catania, Italy
| | - Luca Massacesi
- Department of Neurosciences Drugs and Child Health, University of Florence, Florence, Italy
| | - Renato Bernardini
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, 95123 Catania, Italy
- Clinical Toxicology Unit, University Hospital, University of Catania, 95123 Catania, Italy
| |
Collapse
|
2
|
Lee M, Lee SY, Bae YS. Functional roles of sphingolipids in immunity and their implication in disease. Exp Mol Med 2023; 55:1110-1130. [PMID: 37258585 PMCID: PMC10318102 DOI: 10.1038/s12276-023-01018-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 06/02/2023] Open
Abstract
Sphingolipids, which are components of cellular membranes and organ tissues, can be synthesized or degraded to modulate cellular responses according to environmental cues, and the balance among the different sphingolipids is important for directing immune responses, regardless of whether they originate, as intra- or extracellular immune events. Recent progress in multiomics-based analyses and methodological approaches has revealed that human health and diseases are closely related to the homeostasis of sphingolipid metabolism, and disease-specific alterations in sphingolipids and related enzymes can be prognostic markers of human disease progression. Accumulating human clinical data from genome-wide association studies and preclinical data from disease models provide support for the notion that sphingolipids are the missing pieces that supplement our understanding of immune responses and diseases in which the functions of the involved proteins and nucleotides have been established. In this review, we analyze sphingolipid-related enzymes and reported human diseases to understand the important roles of sphingolipid metabolism. We discuss the defects and alterations in sphingolipid metabolism in human disease, along with functional roles in immune cells. We also introduce several methodological approaches and provide summaries of research on sphingolipid modulators in this review that should be helpful in studying the roles of sphingolipids in preclinical studies for the investigation of experimental and molecular medicines.
Collapse
Affiliation(s)
- Mingyu Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06355, Republic of Korea
| | - Suh Yeon Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yoe-Sik Bae
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06355, Republic of Korea.
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
3
|
Ogasawara A, Takeuchi H, Komiya H, Ogawa Y, Nishimura K, Kubota S, Hashiguchi S, Takahashi K, Kunii M, Tanaka K, Tada M, Doi H, Tanaka F. Anti-inflammatory effects of siponimod on astrocytes. Neurosci Res 2022; 184:38-46. [DOI: 10.1016/j.neures.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/27/2022] [Accepted: 08/04/2022] [Indexed: 10/31/2022]
|
4
|
Cohan SL, Benedict RHB, Cree BAC, DeLuca J, Hua LH, Chun J. The Two Sides of Siponimod: Evidence for Brain and Immune Mechanisms in Multiple Sclerosis. CNS Drugs 2022; 36:703-719. [PMID: 35725892 PMCID: PMC9259525 DOI: 10.1007/s40263-022-00927-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/12/2022] [Indexed: 12/13/2022]
Abstract
Siponimod is a selective sphingosine 1-phosphate receptor subtype 1 (S1P1) and 5 (S1P5) modulator approved in the United States and the European Union as an oral treatment for adults with relapsing forms of multiple sclerosis (RMS), including active secondary progressive multiple sclerosis (SPMS). Preclinical and clinical studies provide support for a dual mechanism of action of siponimod, targeting peripherally mediated inflammation and exerting direct central effects. As an S1P1 receptor modulator, siponimod reduces lymphocyte egress from lymph nodes, thus inhibiting their migration from the periphery to the central nervous system. As a result of its peripheral immunomodulatory effects, siponimod reduces both magnetic resonance imaging (MRI) lesion (gadolinium-enhancing and new/enlarging T2 hyperintense) and relapse activity compared with placebo. Independent of these effects, siponimod can penetrate the blood-brain barrier and, by binding to S1P1 and S1P5 receptors on a variety of brain cells, including astrocytes, oligodendrocytes, neurons, and microglia, exert effects to modulate neural inflammation and neurodegeneration. Clinical data in patients with SPMS have shown that, compared with placebo, siponimod treatment is associated with reductions in levels of neurofilament light chain (a marker of neuroaxonal damage) and thalamic and cortical gray matter atrophy, with smaller reductions in MRI magnetization transfer ratio and reduced confirmed disability progression. This review examines the preclinical and clinical data supporting the dual mechanism of action of siponimod in RMS.
Collapse
Affiliation(s)
- Stanley L Cohan
- Providence Multiple Sclerosis Center, Providence Brain Institute, 9135 SW Barnes Rd Suite 461, Portland, OR, 97225, USA.
| | | | - Bruce A C Cree
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | | | - Le H Hua
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| |
Collapse
|
5
|
Abstract
BACKGROUND Multiple sclerosis (MS) is a chronic immune-mediated disease of the central nervous system, with an unpredictable course. Current MS therapies such as disease-modifying therapies focus on treating exacerbations, preventing new exacerbations and avoiding the progression of disability. Siponimod (BAF312) is an oral treatment, a selective sphingosine-1-phosphate (S1P) receptor modulator, for the treatment of adults with relapsing forms of MS including active, secondary progressive MS with relapses. OBJECTIVES To assess the benefits and adverse effects of siponimod as monotherapy or combination therapy versus placebo or any active comparator for people diagnosed with MS. SEARCH METHODS On 18 June 2020, we searched the Cochrane Multiple Sclerosis and Rare Diseases of the CNS Trials Register, which contains studies from CENTRAL, MEDLINE and Embase, and the trials registry databases ClinicalTrials.gov and WHO International Clinical Trials Registry Platform (ICTRP). We also handsearched relevant journals and screened the reference lists of published reviews and retrieved articles and searched reports (2004 to June 2020) from the MS societies in Europe and America. SELECTION CRITERIA We included randomised parallel controlled clinical trials (RCTs) that evaluated siponimod, as monotherapy or combination therapy, versus placebo or any active comparator in people with MS. There were no restrictions on dose or administration frequency. DATA COLLECTION AND ANALYSIS We used standard methodological procedures expected by Cochrane. We discussed disagreements and resolved them by consensus among the review authors. Our primary outcomes wereworsening disability , relapse and adverse events, and secondary outcomes were annualised relapse rate, gadolinium-enhancing lesions, new lesions or enlarged pre-existing lesions and mean change of brain volume. We independently evaluated the certainty of evidence using the GRADE approach. We contacted principal investigators of included studies for additional data or confirmation of data. MAIN RESULTS Two studies (1948 participants) met our selection criteria, 608 controls and 1334 treated with siponimod. The included studies compared siponimod with placebo. Overall, all studies had a high risk of bias due to selective reporting and attrition bias. Comparing siponimod administered at a dose of 2 mg to placebo, we found that siponimod may reduce the number of participants with disability progression at six months (56 fewer people per 1000; risk ratio (RR) 0.78, 95% confidence interval (CI) 0.65 to 0.94; 1 study, 1641 participants; low-certainty evidence) and annualised relapse rate (RR 0.43, 95% CI 0.34 to 0.56; 2 studies, 1739 participants; low-certainty evidence). But it might lead to little reduction in the number of participants with new relapse (166 fewer people per 1000; RR 0.38, 95% CI 0.15 to 1.00; 1 study, 94 participants; very low-certainty evidence). We observed no evidence of a difference due to adverse events for siponimod at 2 mg compared to placebo (14 more people per 1000; RR 1.52, 95% CI 0.85 to 2.71; 2 studies, 1739 participants, low-certainty evidence). In addition, due to the high risk of inaccurate magnetic resonance imaging (MRI) data in the two included studies, we could not combine data for active lesions on MRI scans. Both studies had high attrition bias resulting from the unbalanced reasons for dropouts among groups and high risk of bias due to conflicts of interest. Siponimod may reduce the number of gadolinium-enhancing T1-weighted lesions at two years of follow-up (RR 0.14, 95% CI 0.10 to 0.19; P < 0.0001; 1 study, 1641 participants; very low-certainty evidence). There may be no evidence of a difference between groups in the number of participants with at least one serious adverse event excluding relapses (113 more people per 1000; RR 1.80, 95% CI 0.37 to 8.77; 2 studies, 1739 participants; low-certainty evidence) at six months. No data were available regarding cardiac adverse events. In terms of safety profile, the most common adverse events associated with siponimod were headache, back pain, bradycardia, dizziness, fatigue, influenza, urinary tract infection, lymphopenia, nausea, alanine amino transferase increase and upper respiratory tract infection. These adverse events have dose-related effects and rarely led to discontinuation of treatment. AUTHORS' CONCLUSIONS Based on the findings of the RCTs included in this review, we are uncertain whether siponimod interventions are beneficial for people with MS. There was low-certainty evidence to support that siponimod at a dose of 2 mg orally once daily as monotherapy compared with placebo may reduce the annualised relapse rate and the number of participants who experienced disability worsening, at 6 months. However, the certainty of the evidence to support the benefit in reducing the number of people with a relapse is very low. The risk of withdrawals due to adverse events requires careful monitoring of participants over time. The duration of all studies was less than 24 months, so the efficacy and safety of siponimod over 24 months are still uncertain, and further exploration is needed in the future. There is no high-certainty data available to evaluate the benefit on MRI outcomes. We assessed the certainty of the body of evidence for all outcomes was low to very low, downgraded due to serious study limitations, imprecision and indirectness. We are uncertain whether siponimod is beneficial for people with MS. More new studies with robust methodology and longer follow-up are needed to evaluate the benefit of siponimod for the management of MS and to observe long-term adverse effects. Also, in addition to comparing with placebo, more new studies are needed to evaluate siponimod versus other therapeutic options.
Collapse
Affiliation(s)
- Liujiao Cao
- West China School of Nursing/West China Hospital, Sichuan University, Chengdu, China
- School of Public Health, Evidence-Based Social Science Research Center, Lanzhou University, Lanzhou , China
| | - Meixuan Li
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Liang Yao
- Department of Health Research Methodology, Evidence and Impact, McMaster University, Hamilton, Canada
| | - Peijing Yan
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Xiaoqin Wang
- The Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, Canada
| | - Zhen Yang
- Department of Rheumatology, Tung Wah Group of Hospitals, Hong Kong, China
| | - Yongfeng Lao
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Huijuan Li
- School of Public Health, Evidence-Based Social Science Research Center, Lanzhou University, Lanzhou City, China
| | - Kehu Yang
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- Lanzhou University Institute of Health Data Science, Lanzhou University, Lanzhou, China
| | - Ka Li
- West China School of Nursing /West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Colombo E, Farina C. Lessons from S1P receptor targeting in multiple sclerosis. Pharmacol Ther 2021; 230:107971. [PMID: 34450231 DOI: 10.1016/j.pharmthera.2021.107971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/06/2021] [Accepted: 07/21/2021] [Indexed: 12/18/2022]
Abstract
Sphingosine 1-phosphate (S1P) is a potent bioactive sphingolipid binding to specific G protein-coupled receptors expressed in several organs. The relevance of S1P-S1P receptor axis in the pathophysiology of immune and nervous systems has encouraged the development of S1P receptor modulators for the treatment of neurological, autoimmune and/or inflammatory disorders. Currently, four S1P receptor modulators are approved drugs for multiple sclerosis (MS), an inflammatory disorder of the central nervous system. As main pharmacologic effect, these treatments induce lymphopenia due to the loss of responsiveness to S1P gradients guiding lymphocyte egress from lymphoid organs into the bloodstream. Recent data point to immunological effects of the S1P modulators beyond the inhibition of lymphocyte trafficking. Further, these drugs may cross the blood-brain barrier and directly target CNS resident cells expressing S1P receptors. Here we review the role of S1P signalling in neuroimmunology at the light of the evidences generated from the study of the mechanism of action of S1P receptor modulators in MS and integrate this information with findings derived from neuroinflammatory animal models and in vitro observations. These insights can direct the application of therapeutic approaches targeting S1P receptors in other disease areas.
Collapse
Affiliation(s)
- Emanuela Colombo
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, IRCCS San Raffaele Hospital, 20132 Milan, Italy
| | - Cinthia Farina
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, IRCCS San Raffaele Hospital, 20132 Milan, Italy.
| |
Collapse
|
7
|
Viejo L, Noori A, Merrill E, Das S, Hyman BT, Serrano-Pozo A. Systematic review of human post-mortem immunohistochemical studies and bioinformatics analyses unveil the complexity of astrocyte reaction in Alzheimer's disease. Neuropathol Appl Neurobiol 2021; 48:e12753. [PMID: 34297416 PMCID: PMC8766893 DOI: 10.1111/nan.12753] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/29/2021] [Accepted: 07/12/2021] [Indexed: 12/24/2022]
Abstract
AIMS Reactive astrocytes in Alzheimer's disease (AD) have traditionally been demonstrated by increased glial fibrillary acidic protein (GFAP) immunoreactivity; however, astrocyte reaction is a complex and heterogeneous phenomenon involving multiple astrocyte functions beyond cytoskeletal remodelling. To better understand astrocyte reaction in AD, we conducted a systematic review of astrocyte immunohistochemical studies in post-mortem AD brains followed by bioinformatics analyses on the extracted reactive astrocyte markers. METHODS NCBI PubMed, APA PsycInfo and WoS-SCIE databases were interrogated for original English research articles with the search terms 'Alzheimer's disease' AND 'astrocytes.' Bioinformatics analyses included protein-protein interaction network analysis, pathway enrichment, and transcription factor enrichment, as well as comparison with public human -omics datasets. RESULTS A total of 306 articles meeting eligibility criteria rendered 196 proteins, most of which were reported to be upregulated in AD vs control brains. Besides cytoskeletal remodelling (e.g., GFAP), bioinformatics analyses revealed a wide range of functional alterations including neuroinflammation (e.g., IL6, MAPK1/3/8 and TNF), oxidative stress and antioxidant defence (e.g., MT1A/2A, NFE2L2, NOS1/2/3, PRDX6 and SOD1/2), lipid metabolism (e.g., APOE, CLU and LRP1), proteostasis (e.g., cathepsins, CRYAB and HSPB1/2/6/8), extracellular matrix organisation (e.g., CD44, MMP1/3 and SERPINA3), and neurotransmission (e.g., CHRNA7, GABA, GLUL, GRM5, MAOB and SLC1A2), among others. CTCF and ESR1 emerged as potential transcription factors driving these changes. Comparison with published -omics datasets validated our results, demonstrating a significant overlap with reported transcriptomic and proteomic changes in AD brains and/or CSF. CONCLUSIONS Our systematic review of the neuropathological literature reveals the complexity of AD reactive astrogliosis. We have shared these findings as an online resource available at www.astrocyteatlas.org.
Collapse
Affiliation(s)
- Lucía Viejo
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,MassGeneral Institute for Neurodegenerative Disease (MIND), Charlestown, MA, USA.,Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ayush Noori
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,MassGeneral Institute for Neurodegenerative Disease (MIND), Charlestown, MA, USA.,Harvard College, Cambridge, MA, USA.,MIND Data Science Lab, Cambridge, MA, USA.,Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA
| | - Emily Merrill
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,MassGeneral Institute for Neurodegenerative Disease (MIND), Charlestown, MA, USA.,MIND Data Science Lab, Cambridge, MA, USA
| | - Sudeshna Das
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,MassGeneral Institute for Neurodegenerative Disease (MIND), Charlestown, MA, USA.,MIND Data Science Lab, Cambridge, MA, USA.,Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA.,Harvard Medical School, Harvard University, Boston, MA, USA
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,MassGeneral Institute for Neurodegenerative Disease (MIND), Charlestown, MA, USA.,Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA.,Harvard Medical School, Harvard University, Boston, MA, USA
| | - Alberto Serrano-Pozo
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,MassGeneral Institute for Neurodegenerative Disease (MIND), Charlestown, MA, USA.,Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA.,Harvard Medical School, Harvard University, Boston, MA, USA
| |
Collapse
|
8
|
Critical Roles of Lysophospholipid Receptors in Activation of Neuroglia and Their Neuroinflammatory Responses. Int J Mol Sci 2021; 22:ijms22157864. [PMID: 34360625 PMCID: PMC8346064 DOI: 10.3390/ijms22157864] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 12/12/2022] Open
Abstract
Activation of microglia and/or astrocytes often releases proinflammatory molecules as critical pathogenic mediators that can promote neuroinflammation and secondary brain damages in diverse diseases of the central nervous system (CNS). Therefore, controlling the activation of glial cells and their neuroinflammatory responses has been considered as a potential therapeutic strategy for treating neuroinflammatory diseases. Recently, receptor-mediated lysophospholipid signaling, sphingosine 1-phosphate (S1P) receptor- and lysophosphatidic acid (LPA) receptor-mediated signaling in particular, has drawn scientific interest because of its critical roles in pathogenies of diverse neurological diseases such as neuropathic pain, systemic sclerosis, spinal cord injury, multiple sclerosis, cerebral ischemia, traumatic brain injury, hypoxia, hydrocephalus, and neuropsychiatric disorders. Activation of microglia and/or astrocytes is a common pathogenic event shared by most of these CNS disorders, indicating that lysophospholipid receptors could influence glial activation. In fact, many studies have reported that several S1P and LPA receptors can influence glial activation during the pathogenesis of cerebral ischemia and multiple sclerosis. This review aims to provide a comprehensive framework about the roles of S1P and LPA receptors in the activation of microglia and/or astrocytes and their neuroinflammatory responses in CNS diseases.
Collapse
|
9
|
Fransen NL, Hsiao CC, van der Poel M, Engelenburg HJ, Verdaasdonk K, Vincenten MCJ, Remmerswaal EBM, Kuhlmann T, Mason MRJ, Hamann J, Smolders J, Huitinga I. Tissue-resident memory T cells invade the brain parenchyma in multiple sclerosis white matter lesions. Brain 2021; 143:1714-1730. [PMID: 32400866 DOI: 10.1093/brain/awaa117] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/10/2020] [Accepted: 02/28/2020] [Indexed: 12/14/2022] Open
Abstract
Multiple sclerosis is a chronic inflammatory, demyelinating disease, although it has been suggested that in the progressive late phase, inflammatory lesion activity declines. We recently showed in the Netherlands Brain Bank multiple sclerosis-autopsy cohort considerable ongoing inflammatory lesion activity also at the end stage of the disease, based on microglia/macrophage activity. We have now studied the role of T cells in this ongoing inflammatory lesion activity in chronic multiple sclerosis autopsy cases. We quantified T cells and perivascular T-cell cuffing at a standardized location in the medulla oblongata in 146 multiple sclerosis, 20 neurodegenerative control and 20 non-neurological control brain donors. In addition, we quantified CD3+, CD4+, and CD8+ T cells in 140 subcortical white matter lesions. The location of CD8+ T cells in either the perivascular space or the brain parenchyma was determined using CD8/laminin staining and confocal imaging. Finally, we analysed CD8+ T cells, isolated from fresh autopsy tissues from subcortical multiple sclerosis white matter lesions (n = 8), multiple sclerosis normal-appearing white matter (n = 7), and control white matter (n = 10), by flow cytometry. In normal-appearing white matter, the number of T cells was increased compared to control white matter. In active and mixed active/inactive lesions, the number of T cells was further augmented compared to normal-appearing white matter. Active and mixed active/inactive lesions were enriched for both CD4+ and CD8+ T cells, the latter being more abundant in all lesion types. Perivascular clustering of T cells in the medulla oblongata was only found in cases with a progressive disease course and correlated with a higher percentage of mixed active/inactive lesions and a higher lesion load compared to cases without perivascular clusters in the medulla oblongata. In all white matter samples, CD8+ T cells were located mostly in the perivascular space, whereas in mixed active/inactive lesions, 16.3% of the CD8+ T cells were encountered in the brain parenchyma. CD8+ T cells from mixed active/inactive lesions showed a tissue-resident memory phenotype with expression of CD69, CD103, CD44, CD49a, and PD-1 and absence of S1P1. They upregulated markers for homing (CXCR6), reactivation (Ki-67), and cytotoxicity (GPR56), yet lacked the cytolytic enzyme granzyme B. These data show that in chronic progressive multiple sclerosis cases, inflammatory lesion activity and demyelinated lesion load is associated with an increased number of T cells clustering in the perivascular space. Inflammatory active multiple sclerosis lesions are populated by CD8+ tissue-resident memory T cells, which show signs of reactivation and infiltration of the brain parenchyma.
Collapse
Affiliation(s)
- Nina L Fransen
- Department of Neuroimmunology, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Cheng-Chih Hsiao
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Marlijn van der Poel
- Department of Neuroimmunology, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Hendrik J Engelenburg
- Department of Neuroimmunology, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Kim Verdaasdonk
- Department of Neuroimmunology, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Maria C J Vincenten
- Department of Neuroimmunology, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Ester B M Remmerswaal
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centers, Amsterdam, The Netherlands.,Renal Transplant Unit, Department of Internal Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Tanja Kuhlmann
- Institute for Neuropathology, University Hospital Münster, Münster, Germany
| | - Matthew R J Mason
- Department of Neuroimmunology, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Jörg Hamann
- Department of Neuroimmunology, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands.,Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Joost Smolders
- Department of Neuroimmunology, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands.,MS center ErasMS, Departments of Neurology and Immunology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Inge Huitinga
- Department of Neuroimmunology, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands.,Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Das S, Li Z, Noori A, Hyman BT, Serrano-Pozo A. Meta-analysis of mouse transcriptomic studies supports a context-dependent astrocyte reaction in acute CNS injury versus neurodegeneration. J Neuroinflammation 2020; 17:227. [PMID: 32736565 PMCID: PMC7393869 DOI: 10.1186/s12974-020-01898-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022] Open
Abstract
Background Neuronal damage in acute CNS injuries and chronic neurodegenerative diseases is invariably accompanied by an astrocyte reaction in both mice and humans. However, whether and how the nature of the CNS insult—acute versus chronic—influences the astrocyte response, and whether astrocyte transcriptomic changes in these mouse models faithfully recapitulate the astrocyte reaction in human diseases remains to be elucidated. We hypothesized that astrocytes set off different transcriptomic programs in response to acute versus chronic insults, besides a shared “pan-injury” signature common to both types of conditions, and investigated the presence of these mouse astrocyte signatures in transcriptomic studies from human neurodegenerative diseases. Methods We performed a meta-analysis of 15 published astrocyte transcriptomic datasets from mouse models of acute injury (n = 6) and chronic neurodegeneration (n = 9) and identified pan-injury, acute, and chronic signatures, with both upregulated (UP) and downregulated (DOWN) genes. Next, we investigated these signatures in 7 transcriptomic datasets from various human neurodegenerative diseases. Results In mouse models, the number of UP/DOWN genes per signature was 64/21 for pan-injury and 109/79 for acute injury, whereas only 13/27 for chronic neurodegeneration. The pan-injury-UP signature was represented by the classic cytoskeletal hallmarks of astrocyte reaction (Gfap and Vim), plus extracellular matrix (i.e., Cd44, Lgals1, Lgals3, Timp1), and immune response (i.e., C3, Serping1, Fas, Stat1, Stat2, Stat3). The acute injury-UP signature was enriched in protein synthesis and degradation (both ubiquitin-proteasome and autophagy systems), intracellular trafficking, and anti-oxidant defense genes, whereas the acute injury-DOWN signature included genes that regulate chromatin structure and transcriptional activity, many of which are transcriptional repressors. The chronic neurodegeneration-UP signature was further enriched in astrocyte-secreted extracellular matrix proteins (Lama4, Cyr61, Thbs4), while the DOWN signature included relevant genes such as Agl (glycogenolysis), S1pr1 (immune modulation), and Sod2 (anti-oxidant). Only the pan-injury-UP mouse signature was clearly present in some human neurodegenerative transcriptomic datasets. Conclusions Acute and chronic CNS injuries lead to distinct astrocyte gene expression programs beyond their common astrocyte reaction signature. However, caution should be taken when extrapolating astrocyte transcriptomic findings from mouse models to human diseases.
Collapse
Affiliation(s)
- Sudeshna Das
- MGH BioMedical Informatics Core (BMIC), Cambridge, MA, 02139, USA.,Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA.,Massachusetts Alzheimer's Disease Research Center, 114 16th street, Suite 2012, Charlestown, MA, 02129, USA.,Harvard Medical School, Boston, MA, 02116, USA
| | - Zhaozhi Li
- MGH BioMedical Informatics Core (BMIC), Cambridge, MA, 02139, USA.,Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Ayush Noori
- MGH BioMedical Informatics Core (BMIC), Cambridge, MA, 02139, USA.,Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA.,Massachusetts Alzheimer's Disease Research Center, 114 16th street, Suite 2012, Charlestown, MA, 02129, USA.,Harvard Medical School, Boston, MA, 02116, USA
| | - Alberto Serrano-Pozo
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA. .,Massachusetts Alzheimer's Disease Research Center, 114 16th street, Suite 2012, Charlestown, MA, 02129, USA. .,Harvard Medical School, Boston, MA, 02116, USA.
| |
Collapse
|
11
|
Kipp M. Does Siponimod Exert Direct Effects in the Central Nervous System? Cells 2020; 9:cells9081771. [PMID: 32722245 PMCID: PMC7463861 DOI: 10.3390/cells9081771] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 12/11/2022] Open
Abstract
The modulation of the sphingosine 1-phosphate receptor is an approved treatment for relapsing multiple sclerosis because of its anti-inflammatory effect of retaining lymphocytes in lymph nodes. Different sphingosine 1-phosphate receptor subtypes are expressed in the brain and spinal cord, and their pharmacological effects may improve disease development and neuropathology. Siponimod (BAF312) is a novel sphingosine 1-phosphate receptor modulator that has recently been approved for the treatment of active secondary progressive multiple sclerosis (MS). In this review article, we summarize recent evidence suggesting that the active role of siponimod in patients with progressive MS may be due to direct interaction with central nervous system cells. Additionally, we tried to summarize our current understanding of the function of siponimod and discuss the effects observed in the case of MS.
Collapse
Affiliation(s)
- Markus Kipp
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, 18057 Rostock, Germany
| |
Collapse
|
12
|
Cohan S, Lucassen E, Smoot K, Brink J, Chen C. Sphingosine-1-Phosphate: Its Pharmacological Regulation and the Treatment of Multiple Sclerosis: A Review Article. Biomedicines 2020; 8:biomedicines8070227. [PMID: 32708516 PMCID: PMC7400006 DOI: 10.3390/biomedicines8070227] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/11/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022] Open
Abstract
Sphingosine-1-phosphate (S1P), via its G-protein-coupled receptors, is a signaling molecule with important regulatory properties on numerous, widely varied cell types. Five S1P receptors (S1PR1-5) have been identified, each with effects determined by their unique G-protein-driven downstream pathways. The discovery that lymphocyte egress from peripheral lymphoid organs is promoted by S1P via S1PR-1 stimulation led to the development of pharmacological agents which are S1PR antagonists. These agents promote lymphocyte sequestration and reduce lymphocyte-driven inflammatory damage of the central nervous system (CNS) in animal models, encouraging their examination of efficacy in the treatment of multiple sclerosis (MS). Preclinical research has also demonstrated direct protective effects of S1PR antagonists within the CNS, by modulation of S1PRs, particularly S1PR-1 and S1PR-5, and possibly S1PR-2, independent of effects upon lymphocytes. Three of these agents, fingolimod, siponimod and ozanimod have been approved, and ponesimod has been submitted for regulatory approval. In patients with MS, these agents reduce relapse risk, sustained disability progression, magnetic resonance imaging markers of disease activity, and whole brain and/or cortical and deep gray matter atrophy. Future opportunities in the development of more selective and intracellular S1PR-driven downstream pathway modulators may expand the breadth of agents to treat MS.
Collapse
|
13
|
Werkman IL, Lentferink DH, Baron W. Macroglial diversity: white and grey areas and relevance to remyelination. Cell Mol Life Sci 2020; 78:143-171. [PMID: 32648004 PMCID: PMC7867526 DOI: 10.1007/s00018-020-03586-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 02/06/2023]
Abstract
Macroglia, comprising astrocytes and oligodendroglial lineage cells, have long been regarded as uniform cell types of the central nervous system (CNS). Although regional morphological differences between these cell types were initially described after their identification a century ago, these differences were largely ignored. Recently, accumulating evidence suggests that macroglial cells form distinct populations throughout the CNS, based on both functional and morphological features. Moreover, with the use of refined techniques including single-cell and single-nucleus RNA sequencing, additional evidence is emerging for regional macroglial heterogeneity at the transcriptional level. In parallel, several studies revealed the existence of regional differences in remyelination capacity between CNS grey and white matter areas, both in experimental models for successful remyelination as well as in the chronic demyelinating disease multiple sclerosis (MS). In this review, we provide an overview of the diversity in oligodendroglial lineage cells and astrocytes from the grey and white matter, as well as their interplay in health and upon demyelination and successful remyelination. In addition, we discuss the implications of regional macroglial diversity for remyelination in light of its failure in MS. Since the etiology of MS remains unknown and only disease-modifying treatments altering the immune response are available for MS, the elucidation of macroglial diversity in grey and white matter and its putative contribution to the observed difference in remyelination efficiency between these regions may open therapeutic avenues aimed at enhancing endogenous remyelination in either area.
Collapse
Affiliation(s)
- Inge L Werkman
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV, Groningen, the Netherlands
- Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA
| | - Dennis H Lentferink
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Wia Baron
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV, Groningen, the Netherlands.
| |
Collapse
|
14
|
Cao L, Lao Y, Yao L, Yan P, Wang X, Yang Z, Li M, Li H, Yang K. Siponimod for multiple sclerosis. Cochrane Database Syst Rev 2020. [DOI: 10.1002/14651858.cd013647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Liujiao Cao
- School of Public Health, Evidence-Based Social Science Research Center; Lanzhou University; Lanzhou City China
| | - Yongfeng Lao
- The Second Clinical Medical College; Lanzhou University; Lanzhou China
| | - Liang Yao
- Department of Health Research Methodology, Evidence and Impact; McMaster University; Hamilton Canada
| | - Peijing Yan
- Department of Clinical Research Management; West China Hospital, Sichuan University; Chengdu China
| | - Xiaoqin Wang
- The Michael G. DeGroote Institute for Pain Research and Care; McMaster University; Hamilton Canada
| | - Zhen Yang
- Department of Rheumatology; Tung Wah Group of Hospitals; Hong Kong China
| | - Meixuan Li
- Evidence-Based Medicine Center, School of Basic Medical Sciences; Lanzhou University; Lanzhou China
| | - Huijuan Li
- School of Public Health, Evidence-Based Social Science Research Center; Lanzhou University; Lanzhou City China
| | - Kehu Yang
- School of Public Health, Evidence-Based Social Science Research Center; Lanzhou University; Lanzhou City China
| |
Collapse
|
15
|
Central Modulation of Selective Sphingosine-1-Phosphate Receptor 1 Ameliorates Experimental Multiple Sclerosis. Cells 2020; 9:cells9051290. [PMID: 32455907 PMCID: PMC7291065 DOI: 10.3390/cells9051290] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 01/10/2023] Open
Abstract
Future treatments of multiple sclerosis (MS), a chronic autoimmune neurodegenerative disease of the central nervous system (CNS), aim for simultaneous early targeting of peripheral immune function and neuroinflammation. Sphingosine-1-phosphate (S1P) receptor modulators are among the most promising drugs with both “immunological” and “non-immunological” actions. Selective S1P receptor modulators have been recently approved for MS and shown clinical efficacy in its mouse model, the experimental autoimmune encephalomyelitis (EAE). Here, we investigated the anti-inflammatory/neuroprotective effects of ozanimod (RPC1063), a S1P1/5 modulator recently approved in the United States for the treatment of MS, by performing ex vivo studies in EAE brain. Electrophysiological experiments, supported by molecular and immunofluorescence analysis, revealed that ozanimod was able to dampen the EAE glutamatergic synaptic alterations, through attenuation of local inflammatory response driven by activated microglia and infiltrating T cells, the main CNS-cellular players of EAE synaptopathy. Electrophysiological studies with selective S1P1 (AUY954) and S1P5 (A971432) agonists suggested that S1P1 modulation is the main driver of the anti-excitotoxic activity mediated by ozanimod. Accordingly, in vivo intra-cerebroventricular treatment of EAE mice with AUY954 ameliorated clinical disability. Altogether these results strengthened the relevance of S1P1 agonists as immunomodulatory and neuroprotective drugs for MS therapy.
Collapse
|
16
|
Potential sphingosine-1-phosphate-related therapeutic targets in the treatment of cerebral ischemia reperfusion injury. Life Sci 2020; 249:117542. [PMID: 32169519 DOI: 10.1016/j.lfs.2020.117542] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/29/2020] [Accepted: 03/09/2020] [Indexed: 12/17/2022]
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid that regulates lymphocyte trafficking, glial cell activation, vasoconstriction, endothelial barrier function, and neuronal death pathways in the brain. Research has increasingly implicated S1P in the pathology of cerebral ischemia reperfusion (IR) injury. As a high-affinity agonist of S1P receptor, fingolimod exhibits excellent neuroprotective effects against ischemic challenge both in vivo and in vitro. By summarizing recent progress on how S1P participates in the development of brain IR injury, this review identifies potential therapeutic targets for the treatment of brain IR injury.
Collapse
|
17
|
Ma W, Zhang M, Liu S, Wang M, Shi Y, Yang T, Li X, Zhu L. Matrine alleviates astrogliosis through sphingosine 1-phosphate signaling in experimental autoimmune encephalomyelitis. Neurosci Lett 2019; 715:134599. [PMID: 31722234 DOI: 10.1016/j.neulet.2019.134599] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 10/20/2019] [Accepted: 10/28/2019] [Indexed: 01/07/2023]
Abstract
Expression of sphingosine/sphingosine 1-phosphate (SPH/S1P) in resident cells of the central nervous system plays an important role in the pathogenesis of multiple sclerosis (MS). Accumulated evidence has shown the protective effects of S1P receptor modulators on MS and its animal model, experimental autoimmune encephalomyelitis (EAE). However, effective therapies to regulate SPH/S1P molecules themselves have not been well addressed. Our previous studies showed that matrine (MAT), a natural alkaloid component extracted from the Sophora root, has beneficial effects in EAE through immunomodulation. Here we demonstrate that MAT alleviated astrogliosis in the CNS of EAE rats, and downregulated levels of SPH, S1P and S1P1 expression in CNS tissues and astrocytes. Expression of SPH kinases (SPHK) 1 and 2, which splice SPH into S1P, was also inhibited by MAT treatment. In vitro studies showed a direct inhibitory effect of MAT on S1P1 expression of activated astrocytes, suggesting that MAT could function as an S1PRs antagonist. Moreover, MAT upregulated the expression of plasma gelsolin, which combines with S1P to reduce its concentration. These findings indicate that MAT could alleviate astrogliosis in EAE through diminishing the SPH/SPHK/S1P1 pathway.
Collapse
Affiliation(s)
- Wendi Ma
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Mingliang Zhang
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Shuqing Liu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Mengru Wang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yamin Shi
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Ting Yang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Xing Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Lin Zhu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| |
Collapse
|
18
|
Li Y, Zhao Y, Wang Y. 2',3'-Cyclic-nucleotide 3'-phosphodiesterase contributes to epithelial-mesenchymal transition of lens epithelial cells through the notch signalling pathway. Cell Prolif 2019; 52:e12707. [PMID: 31617266 PMCID: PMC6869463 DOI: 10.1111/cpr.12707] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/23/2019] [Accepted: 09/20/2019] [Indexed: 12/12/2022] Open
Abstract
Objectives Fibrosis is a complex process involved in multiple diseases that result in organ injury and failure. Cataract, one common form of ocular fibrosis, is a main cause of blindness worldwide, and surgery may be the only cure. In this regard, epithelial‐mesenchymal transition (EMT) of lens epithelial cells (LECs) is the primary cause of anterior subcapsular cataract (ASC). This study aimed to investigate the mechanism by which 2',3'‐cyclic‐nucleotide 3'‐phosphodiesterase (CNPase) regulates the function of EMT in LECs. Materials and Methods A mouse model of ASC was used to observe the expression of CNPase in the lens and correlate its expression changes with lens EMT. Furthermore, the effects of CNPase on cell migration and cell proliferation were evaluated by transwell migration, wound healing and EdU staining assays. Finally, Western blotting and immunofluorescence were used to assess the mechanical properties potentially involved in the regulation of EMT by CNPase. Results The expression of CNPase was upregulated in LECs during the EMT process in mice with ASC. Notably, CNPase significantly promoted the proliferation, migration and EMT of LECs in vitro. Interestingly, the EMT‐promoting mechanism of CNPase may be achieved by targeting the Notch signalling pathway. Conclusions Considering the involvement of EMT in ASC, both CNPase and the Notch signalling pathway may be therapeutic targets for the treatment of cataracts.
Collapse
Affiliation(s)
- Yue Li
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, China
| | - Yu Zhao
- Technology Transfer Center, Kunming Medical University, Kunming, China
| | - Yan Wang
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, China
| |
Collapse
|
19
|
Behrangi N, Fischbach F, Kipp M. Mechanism of Siponimod: Anti-Inflammatory and Neuroprotective Mode of Action. Cells 2019; 8:cells8010024. [PMID: 30621015 PMCID: PMC6356776 DOI: 10.3390/cells8010024] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 12/28/2018] [Accepted: 12/28/2018] [Indexed: 12/29/2022] Open
Abstract
Multiple sclerosis (MS) is a neuroinflammatory disorder of the central nervous system (CNS), and represents one of the main causes of disability in young adults. On the histopathological level, the disease is characterized by inflammatory demyelination and diffuse neurodegeneration. Although on the surface the development of new inflammatory CNS lesions in MS may appear consistent with a primary recruitment of peripheral immune cells, questions have been raised as to whether lymphocyte and/or monocyte invasion into the brain are really at the root of inflammatory lesion development. In this review article, we discuss a less appreciated inflammation-neurodegeneration interplay, that is: Neurodegeneration can trigger the formation of new, focal inflammatory lesions. We summarize old and recent findings suggesting that new inflammatory lesions develop at sites of focal or diffuse degenerative processes within the CNS. Such a concept is discussed in the context of the EXPAND trial, showing that siponimod exerts anti-inflammatory and neuroprotective activities in secondary progressive MS patients. The verification or rejection of such a concept is vital for the development of new therapeutic strategies for progressive MS.
Collapse
Affiliation(s)
- Newshan Behrangi
- Department of Anatomy II, Ludwig-Maximilians-University of Munich, 80336 Munich, Germany.
- Department of Anatomy, University Medical Center, 39071 Rostock, Germany.
| | - Felix Fischbach
- Department of Anatomy II, Ludwig-Maximilians-University of Munich, 80336 Munich, Germany.
| | - Markus Kipp
- Department of Anatomy II, Ludwig-Maximilians-University of Munich, 80336 Munich, Germany.
- Department of Anatomy, University Medical Center, 39071 Rostock, Germany.
| |
Collapse
|
20
|
Glaenzel U, Jin Y, Nufer R, Li W, Schroer K, Adam-Stitah S, Peter van Marle S, Legangneux E, Borell H, James AD, Meissner A, Camenisch G, Gardin A. Metabolism and Disposition of Siponimod, a Novel Selective S1P 1/S1P 5 Agonist, in Healthy Volunteers and In Vitro Identification of Human Cytochrome P450 Enzymes Involved in Its Oxidative Metabolism. Drug Metab Dispos 2018; 46:1001-1013. [PMID: 29735753 DOI: 10.1124/dmd.117.079574] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 04/20/2018] [Indexed: 01/22/2023] Open
Abstract
Siponimod, a next-generation selective sphingosine-1-phosphate receptor modulator, is currently being investigated for the treatment of secondary progressive multiple sclerosis. We investigated the absorption, distribution, metabolism, and excretion (ADME) of a single 10-mg oral dose of [14C]siponimod in four healthy men. Mass balance, blood and plasma radioactivity, and plasma siponimod concentrations were measured. Metabolite profiles were determined in plasma, urine, and feces. Metabolite structures were elucidated using mass spectrometry and comparison with reference compounds. Unchanged siponimod accounted for 57% of the total plasma radioactivity (area under the concentration-time curve), indicating substantial exposure to metabolites. Siponimod showed medium to slow absorption (median Tmax: 4 hours) and moderate distribution (Vz/F: 291 l). Siponimod was mainly cleared through biotransformation, predominantly by oxidative metabolism. The mean apparent elimination half-life of siponimod in plasma was 56.6 hours. Siponimod was excreted mostly in feces in the form of oxidative metabolites. The excretion of radioactivity was close to complete after 13 days. Based on the metabolite patterns, a phase II metabolite (M3) formed by glucuronidation of hydroxylated siponimod was the main circulating metabolite in plasma. However, in subsequent mouse ADME and clinical pharmacokinetic studies, a long-lived nonpolar metabolite (M17, cholesterol ester of siponimod) was identified as the most prominent systemic metabolite. We further conducted in vitro experiments to investigate the enzymes responsible for the oxidative metabolism of siponimod. The selective inhibitor and recombinant enzyme results identified cytochrome P450 2C9 (CYP2C9) as the predominant contributor to the human liver microsomal biotransformation of siponimod, with minor contributions from CYP3A4 and other cytochrome P450 enzymes.
Collapse
Affiliation(s)
- Ulrike Glaenzel
- PK-Sciences, Novartis Pharma AG, Basel, Switzerland (U.G., Y.J., R.N., W.L., K.S., S.A.-S., E.L., H.B., A.D.J., A.M., G.C., A.G.), and PRA Health Sciences, Raleigh, North Carolina (S.P.M.)
| | - Yi Jin
- PK-Sciences, Novartis Pharma AG, Basel, Switzerland (U.G., Y.J., R.N., W.L., K.S., S.A.-S., E.L., H.B., A.D.J., A.M., G.C., A.G.), and PRA Health Sciences, Raleigh, North Carolina (S.P.M.)
| | - Robert Nufer
- PK-Sciences, Novartis Pharma AG, Basel, Switzerland (U.G., Y.J., R.N., W.L., K.S., S.A.-S., E.L., H.B., A.D.J., A.M., G.C., A.G.), and PRA Health Sciences, Raleigh, North Carolina (S.P.M.)
| | - Wenkui Li
- PK-Sciences, Novartis Pharma AG, Basel, Switzerland (U.G., Y.J., R.N., W.L., K.S., S.A.-S., E.L., H.B., A.D.J., A.M., G.C., A.G.), and PRA Health Sciences, Raleigh, North Carolina (S.P.M.)
| | - Kirsten Schroer
- PK-Sciences, Novartis Pharma AG, Basel, Switzerland (U.G., Y.J., R.N., W.L., K.S., S.A.-S., E.L., H.B., A.D.J., A.M., G.C., A.G.), and PRA Health Sciences, Raleigh, North Carolina (S.P.M.)
| | - Sylvie Adam-Stitah
- PK-Sciences, Novartis Pharma AG, Basel, Switzerland (U.G., Y.J., R.N., W.L., K.S., S.A.-S., E.L., H.B., A.D.J., A.M., G.C., A.G.), and PRA Health Sciences, Raleigh, North Carolina (S.P.M.)
| | - Sjoerd Peter van Marle
- PK-Sciences, Novartis Pharma AG, Basel, Switzerland (U.G., Y.J., R.N., W.L., K.S., S.A.-S., E.L., H.B., A.D.J., A.M., G.C., A.G.), and PRA Health Sciences, Raleigh, North Carolina (S.P.M.)
| | - Eric Legangneux
- PK-Sciences, Novartis Pharma AG, Basel, Switzerland (U.G., Y.J., R.N., W.L., K.S., S.A.-S., E.L., H.B., A.D.J., A.M., G.C., A.G.), and PRA Health Sciences, Raleigh, North Carolina (S.P.M.)
| | - Hubert Borell
- PK-Sciences, Novartis Pharma AG, Basel, Switzerland (U.G., Y.J., R.N., W.L., K.S., S.A.-S., E.L., H.B., A.D.J., A.M., G.C., A.G.), and PRA Health Sciences, Raleigh, North Carolina (S.P.M.)
| | - Alexander D James
- PK-Sciences, Novartis Pharma AG, Basel, Switzerland (U.G., Y.J., R.N., W.L., K.S., S.A.-S., E.L., H.B., A.D.J., A.M., G.C., A.G.), and PRA Health Sciences, Raleigh, North Carolina (S.P.M.)
| | - Axel Meissner
- PK-Sciences, Novartis Pharma AG, Basel, Switzerland (U.G., Y.J., R.N., W.L., K.S., S.A.-S., E.L., H.B., A.D.J., A.M., G.C., A.G.), and PRA Health Sciences, Raleigh, North Carolina (S.P.M.)
| | - Gian Camenisch
- PK-Sciences, Novartis Pharma AG, Basel, Switzerland (U.G., Y.J., R.N., W.L., K.S., S.A.-S., E.L., H.B., A.D.J., A.M., G.C., A.G.), and PRA Health Sciences, Raleigh, North Carolina (S.P.M.)
| | - Anne Gardin
- PK-Sciences, Novartis Pharma AG, Basel, Switzerland (U.G., Y.J., R.N., W.L., K.S., S.A.-S., E.L., H.B., A.D.J., A.M., G.C., A.G.), and PRA Health Sciences, Raleigh, North Carolina (S.P.M.)
| |
Collapse
|
21
|
Machado-Santos J, Saji E, Tröscher AR, Paunovic M, Liblau R, Gabriely G, Bien CG, Bauer J, Lassmann H. The compartmentalized inflammatory response in the multiple sclerosis brain is composed of tissue-resident CD8+ T lymphocytes and B cells. Brain 2018; 141:2066-2082. [PMID: 29873694 PMCID: PMC6022681 DOI: 10.1093/brain/awy151] [Citation(s) in RCA: 369] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/22/2018] [Accepted: 04/15/2018] [Indexed: 12/15/2022] Open
Abstract
Multiple sclerosis is an inflammatory demyelinating disease in which active demyelination and neurodegeneration are associated with lymphocyte infiltrates in the brain. However, so far little is known regarding the phenotype and function of these infiltrating lymphocyte populations. In this study, we performed an in-depth phenotypic characterization of T and B cell infiltrates in a large set of multiple sclerosis cases with different disease and lesion stages and compared the findings with those seen in inflammatory, non-inflammatory and normal human controls. In multiple sclerosis lesions, we found a dominance of CD8+ T cells and a prominent contribution of CD20+ B cells in all disease courses and lesion stages, including acute multiple sclerosis cases with very short disease duration, while CD4+ T cells were sparse. A dominance of CD8+ T cells was also seen in other inflammatory controls, such as Rasmussen's encephalitis and viral encephalitis, but the contribution of B cells in these diseases was modest. Phenotypic analysis of the CD8+ T cells suggested that part of the infiltrating cells in active lesions proliferate, show an activated cytotoxic phenotype and are in part destroyed by apoptosis. Further characterization of the remaining cells suggest that CD8+ T cells acquire features of tissue-resident memory cells, which may be focally reactivated in active lesions of acute, relapsing and progressive multiple sclerosis, while B cells, at least in part, gradually transform into plasma cells. The loss of surface molecules involved in the egress of leucocytes from inflamed tissue, such as S1P1 or CCR7, and the upregulation of CD103 expression may be responsible for the compartmentalization of the inflammatory response in established lesions. Similar phenotypic changes of tissue-infiltrating CD8+ T cells were also seen in Rasmussen's encephalitis. Our data underline the potential importance of CD8+ T lymphocytes and B cells in the inflammatory response in established multiple sclerosis lesions. Tissue-resident T and B cells may represent guardians of previous inflammatory brain disease, which can be reactivated and sustain the inflammatory response, when they are re-exposed to their specific antigen.
Collapse
Affiliation(s)
- Joana Machado-Santos
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Etsuji Saji
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Anna R Tröscher
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Manuela Paunovic
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Roland Liblau
- INSERM U1043 - CNRS UMR 5282, Centre de Physiopathologie Toulouse-Purpan, Université Toulouse III, Toulouse, F-31000, France
| | - Galina Gabriely
- Department of Neurology, Anne Romney Center for Neurologic Disease, Harvard Medical School, Boston, USA
| | | | - Jan Bauer
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Hans Lassmann
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
22
|
Narayan RN, Forsthuber T, Stüve O. Emerging drugs for primary progressive multiple sclerosis. Expert Opin Emerg Drugs 2018; 23:97-110. [DOI: 10.1080/14728214.2018.1463370] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ram Narendra Narayan
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Olaf Stüve
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Neurology Section, VA North Texas Health Care System, Dallas VA Medical Center, Dallas, TX, USA
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| |
Collapse
|
23
|
Smith PA, Schmid C, Zurbruegg S, Jivkov M, Doelemeyer A, Theil D, Dubost V, Beckmann N. Fingolimod inhibits brain atrophy and promotes brain-derived neurotrophic factor in an animal model of multiple sclerosis. J Neuroimmunol 2018. [PMID: 29530550 DOI: 10.1016/j.jneuroim.2018.02.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Longitudinal brain atrophy quantification is a critical efficacy measurement in multiple sclerosis (MS) clinical trials and the determination of No Evidence of Disease Activity (NEDA). Utilising fingolimod as a clinically validated therapy we evaluated the use of repeated brain tissue volume measures during chronic experimental autoimmune encephalomyelitis (EAE) as a new preclinical efficacy measure. Brain volume changes were quantified using magnetic resonance imaging (MRI) at 7 Tesla and correlated to treatment-induced brain derived neurotrophic factor (BDNF) measured in blood, cerebrospinal fluid, spinal cord and brain. Serial brain MRI measurements revealed slow progressive brain volume loss in vehicle treated EAE mice despite a stable clinical score. Fingolimod (1 mg/kg) significantly ameliorated brain tissue atrophy in the cerebellum and striatum when administered from established EAE disease onwards. Fingolimod-dependent tissue preservation was associated with induction of BDNF specifically within the brain and co-localized with neuronal soma. In contrast, therapeutic teriflunomide (3 mg/kg) treatment failed to inhibit CNS autoimmune mediated brain degeneration. Finally, weekly anti-IL-17A antibody (15 mg/kg) treatment was highly efficacious and preserved whole brain, cerebellum and striatum volume. Fingolimod-mediated BDNF increases within the CNS may contribute to limiting progressive tissue loss during chronic neuroinflammation.
Collapse
Affiliation(s)
- Paul A Smith
- Autoimmunity, Transplantation and Inflammation, Novartis Institutes for Biomedical Research, CH-4056 Basel, Switzerland.
| | - Cindy Schmid
- Autoimmunity, Transplantation and Inflammation, Novartis Institutes for Biomedical Research, CH-4056 Basel, Switzerland.
| | - Stefan Zurbruegg
- Neurosciences, Novartis Institutes for Biomedical Research, CH-4056 Basel, Switzerland.
| | - Magali Jivkov
- Preclinical Safety, Novartis Institutes for Biomedical Research, CH-4056 Basel, Switzerland.
| | - Arno Doelemeyer
- Musculoskeletal Diseases, Novartis Institutes for Biomedical Research, CH-4056 Basel, Switzerland.
| | - Diethilde Theil
- Preclinical Safety, Novartis Institutes for Biomedical Research, CH-4056 Basel, Switzerland.
| | - Valérie Dubost
- Preclinical Safety, Novartis Institutes for Biomedical Research, CH-4056 Basel, Switzerland.
| | - Nicolau Beckmann
- Musculoskeletal Diseases, Novartis Institutes for Biomedical Research, CH-4056 Basel, Switzerland.
| |
Collapse
|
24
|
Kim S, Bielawski J, Yang H, Kong Y, Zhou B, Li J. Functional antagonism of sphingosine-1-phosphate receptor 1 prevents cuprizone-induced demyelination. Glia 2018; 66:654-669. [PMID: 29193293 PMCID: PMC5773114 DOI: 10.1002/glia.23272] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 11/07/2017] [Accepted: 11/15/2017] [Indexed: 11/08/2022]
Abstract
Recent evidence suggests that the oral drug Fingolimod (FTY720) for relapsing-remitting multiple sclerosis (MS) may act directly on the central nervous system (CNS) and modulate disease pathogenesis and progression in experimental models of MS. However, the specific subtype of sphingosine-1-phosphate (S1P) receptors that mediates the effect of FTY720 on the CNS cells has not been fully elucidated. Here, we report that S1P receptor 1 (S1PR1) is elevated in reactive astrocytes in an autoimmunity independent mouse model of MS and that selective S1PR1 modulation is sufficient to ameliorate the loss of oligodendrocytes and demyelination. The non-selective S1PR modulator, FTY720, or a short-lived S1PR1-specific modulator, CYM5442, was administered daily to mice while on cuprizone diet. Both FTY720- and CYM5422-treated mice displayed a significant reduction in oligodendrocyte apoptosis and astrocyte and microglial activation in comparison to vehicle-treated groups, which was associated with decreased production of proinflammatory mediators and down-regulation of astrocytic S1PR1 protein. Interestingly, S1PR1 modulation during the early phase of cuprizone intoxication was required to suppress oligodendrocyte death and consequent demyelination as drug treatment from 10 days after the initiation of cuprizone feeding was no longer effective. CYM5442 treatment during the brief cuprizone exposure significantly prevented Il-1β, Il-6, Cxcl10, and Cxcl3 induction, resulting in suppression of subsequent reactive gliosis and demyelination. Our study identifies functional antagonism of S1PR1 as a major mechanism for the protective effect of FTY720 in the cuprizone model and suggests pathogenic contributions of astrocyte S1PR1 signaling in primary demyelination and its potential as a therapeutic target for CNS inflammation.
Collapse
Affiliation(s)
- SunJa Kim
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843
| | - Jacek Bielawski
- Lipidomics Center, Medical University of South Carolina, Charleston, SC 29425
| | - Hyunmin Yang
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843
| | - Yu Kong
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843
| | - Beiyan Zhou
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843
| | - Jianrong Li
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843
- Institute for Neuroscience, Texas A&M University, College Station, Texas 77843
| |
Collapse
|
25
|
Chiricozzi E, Loberto N, Schiumarini D, Samarani M, Mancini G, Tamanini A, Lippi G, Dechecchi MC, Bassi R, Giussani P, Aureli M. Sphingolipids role in the regulation of inflammatory response: From leukocyte biology to bacterial infection. J Leukoc Biol 2018; 103:445-456. [PMID: 29345379 DOI: 10.1002/jlb.3mr0717-269r] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 10/13/2017] [Accepted: 11/07/2017] [Indexed: 12/14/2022] Open
Abstract
Sphingolipids (SLs) are amphiphilic molecules mainly associated with the external leaflet of eukaryotic plasma membrane, and are structural membrane components with key signaling properties. Since the beginning of the last century, a large number of papers described the involvement of these molecules in several aspects of cell physiology and pathology. Several lines of evidence support the critical role of SLs in inflammatory diseases, by acting as anti- or pro-inflammatory mediators. They are involved in control of leukocyte activation and migration, and are recognized as essential players in host response to pathogenic infection. We propose here a critical overview of current knowledge on involvement of different classes of SLs in inflammation, focusing on the role of simple and complex SLs in pathogen-mediated inflammatory response.
Collapse
Affiliation(s)
- Elena Chiricozzi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Nicoletta Loberto
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Domitilla Schiumarini
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Maura Samarani
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Giulia Mancini
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Anna Tamanini
- Laboratorio di Patologia Molecolare-Laboratorio Analisi, Dipartimento di Patologia e Diagnostica, Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy
| | - Giuseppe Lippi
- Sezione di Biochimica Clinica, Università degli Studi di Verona, Verona, Italy
| | - Maria Cristina Dechecchi
- Laboratorio di Patologia Molecolare-Laboratorio Analisi, Dipartimento di Patologia e Diagnostica, Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy
| | - Rosaria Bassi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Paola Giussani
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Massimo Aureli
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
26
|
Dash RP, Srinivas NR, Rais R. A review of bioanalytical quantitative methods for selected sphingosine 1-phosphate receptor modulators. Biomed Chromatogr 2017; 32. [DOI: 10.1002/bmc.4109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/18/2017] [Accepted: 09/28/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Ranjeet Prasad Dash
- Drug Metabolism and Pharmacokinetics, Johns Hopkins Drug Discovery Program; Johns Hopkins University; Baltimore Maryland USA
- Department of Neurology; Johns Hopkins University; Baltimore Maryland USA
| | | | - Rana Rais
- Drug Metabolism and Pharmacokinetics, Johns Hopkins Drug Discovery Program; Johns Hopkins University; Baltimore Maryland USA
- Department of Neurology; Johns Hopkins University; Baltimore Maryland USA
| |
Collapse
|
27
|
Sphingosine-1-phosphate receptor therapies: Advances in clinical trials for CNS-related diseases. Neuropharmacology 2017; 113:597-607. [DOI: 10.1016/j.neuropharm.2016.11.006] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 10/25/2016] [Accepted: 11/02/2016] [Indexed: 12/31/2022]
|
28
|
Weth-Malsch D, Langeslag M, Beroukas D, Zangrandi L, Kastenberger I, Quarta S, Malsch P, Kalpachidou T, Schwarzer C, Proia RL, Haberberger RV, Kress M. Ablation of Sphingosine 1-Phosphate Receptor Subtype 3 Impairs Hippocampal Neuron Excitability In vitro and Spatial Working Memory In vivo. Front Cell Neurosci 2016; 10:258. [PMID: 27872583 PMCID: PMC5097928 DOI: 10.3389/fncel.2016.00258] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/21/2016] [Indexed: 01/01/2023] Open
Abstract
Understanding the role of the bioactive lipid mediator sphingosine 1-phosphate (S1P) within the central nervous system has recently gained more and more attention, as it has been connected to major diseases such as multiple sclerosis and Alzheimer's disease. Even though much data about the functions of the five S1P receptors has been collected for other organ systems, we still lack a complete understanding for their specific roles, in particular within the brain. Therefore, it was the aim of this study to further elucidate the role of S1P receptor subtype 3 (S1P3) in vivo and in vitro with a special focus on the hippocampus. Using an S1P3 knock-out mouse model we applied a range of behavioral tests, performed expression studies, and whole cell patch clamp recordings in acute hippocampal slices. We were able to show that S1P3 deficient mice display a significant spatial working memory deficit within the T-maze test, but not in anxiety related tests. Furthermore, S1p3 mRNA was expressed throughout the hippocampal formation. Principal neurons in area CA3 lacking S1P3 showed significantly increased interspike intervals and a significantly decreased input resistance. Upon stimulation with S1P CA3 principal neurons from both wildtype and S1P3−/− mice displayed significantly increased evoked EPSC amplitudes and decay times, whereas rise times remained unchanged. These results suggest a specific involvement of S1P3 for the establishment of spatial working memory and neuronal excitability within the hippocampus.
Collapse
Affiliation(s)
- Daniela Weth-Malsch
- Division of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck Innsbruck, Austria
| | - Michiel Langeslag
- Division of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck Innsbruck, Austria
| | - Dimitra Beroukas
- Anatomy and Histology and Centre for Neuroscience, Flinders University Adelaide, SA, Australia
| | - Luca Zangrandi
- Department of Pharmacology, Medical University of Innsbruck Innsbruck, Austria
| | - Iris Kastenberger
- Department of Pharmacology, Medical University of Innsbruck Innsbruck, Austria
| | - Serena Quarta
- Division of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck Innsbruck, Austria
| | - Philipp Malsch
- Division of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck Innsbruck, Austria
| | - Theodora Kalpachidou
- Division of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck Innsbruck, Austria
| | - Christoph Schwarzer
- Department of Pharmacology, Medical University of Innsbruck Innsbruck, Austria
| | - Richard L Proia
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases Bethesda, MD, USA
| | - Rainer V Haberberger
- Anatomy and Histology and Centre for Neuroscience, Flinders University Adelaide, SA, Australia
| | - Michaela Kress
- Division of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck Innsbruck, Austria
| |
Collapse
|
29
|
A Personalized Approach in Progressive Multiple Sclerosis: The Current Status of Disease Modifying Therapies (DMTs) and Future Perspectives. Int J Mol Sci 2016; 17:ijms17101725. [PMID: 27763513 PMCID: PMC5085756 DOI: 10.3390/ijms17101725] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/29/2016] [Accepted: 10/02/2016] [Indexed: 12/20/2022] Open
Abstract
Using the term of progressive multiple sclerosis (PMS), we considered a combined population of persons with secondary progressive MS (SPMS) and primary progressive MS (PPMS). These forms of MS cannot be challenged with efficacy by the licensed therapy. In the last years, several measures of risk estimation were developed for predicting clinical course in MS, but none is specific for the PMS forms. Personalized medicine is a therapeutic approach, based on identifying what might be the best therapy for an individual patient, taking into account the risk profile. We need to achieve more accurate estimates of useful predictors in PMS, including unconventional and qualitative markers which are not yet currently available or practicable routine diagnostics. The evaluation of an individual patient is based on the profile of disease activity.Within the neurology field, PMS is one of the fastest-moving going into the future.
Collapse
|
30
|
Sphingosine-1-Phosphate (S1P) and S1P Signaling Pathway: Therapeutic Targets in Autoimmunity and Inflammation. Drugs 2016; 76:1067-79. [DOI: 10.1007/s40265-016-0603-2] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
31
|
Hunter SF, Bowen JD, Reder AT. The Direct Effects of Fingolimod in the Central Nervous System: Implications for Relapsing Multiple Sclerosis. CNS Drugs 2016; 30:135-47. [PMID: 26715391 PMCID: PMC4781895 DOI: 10.1007/s40263-015-0297-0] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Fingolimod, a structural analog of sphingosine derived from fungal metabolites, is a functional antagonist of the G-protein-coupled sphingosine 1-phosphate (S1P) receptors S1P(1,3,4,5). In the treatment of relapsing forms of multiple sclerosis (RMS), fingolimod acts by reversibly retaining central memory T cells and naïve T cells in lymph nodes, thereby reducing the recirculation of autoreactive lymphocytes to the central nervous system (CNS). Fingolimod also has differential effects on the trafficking and function of B-cell subtypes and natural killer (NK) cells in peripheral blood and the CNS. Fingolimod also crosses the blood-brain barrier (BBB) and accumulates in the CNS. Experimental evidence increasingly supports a direct action of fingolimod within the CNS on brain cells, providing protection against the neurodegenerative component of RMS. We review the direct influence of this compound on CNS pathogenesis in RMS, including the central effects of fingolimod in animal models of MS and on neural cell types that express S1P receptors, such as astrocytes, BBB endothelial cells, microglia, neurones, and oligodendrocytes, which are all involved in RMS pathology.
Collapse
Affiliation(s)
- Samuel F Hunter
- Advanced Neurosciences Institute, 101 Forrest Crossing Blvd, Suite 103, Franklin, TN, 37064-5430, USA.
| | - James D Bowen
- Multiple Sclerosis Center, Swedish Neuroscience Institute, Seattle, WA, USA.
| | - Anthony T Reder
- Department of Neurology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
32
|
Regulation of human cerebro-microvascular endothelial baso-lateral adhesion and barrier function by S1P through dual involvement of S1P1 and S1P2 receptors. Sci Rep 2016; 6:19814. [PMID: 26813587 PMCID: PMC4728386 DOI: 10.1038/srep19814] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 11/30/2015] [Indexed: 01/07/2023] Open
Abstract
Herein we show that S1P rapidly and acutely reduces the focal adhesion strength and barrier tightness of brain endothelial cells. xCELLigence biosensor technology was used to measure focal adhesion, which was reduced by S1P acutely and this response was mediated through both S1P1 and S1P2 receptors. S1P increased secretion of several pro-inflammatory mediators from brain endothelial cells. However, the magnitude of this response was small in comparison to that mediated by TNFα or IL-1β. Furthermore, S1P did not significantly increase cell-surface expression of any key cell adhesion molecules involved in leukocyte recruitment, included ICAM-1 and VCAM-1. Finally, we reveal that S1P acutely and dynamically regulates microvascular endothelial barrier tightness in a manner consistent with regulated rapid opening followed by closing and strengthening of the barrier. We hypothesise that the role of the S1P receptors in this process is not to cause barrier dysfunction, but is related to controlled opening of the endothelial junctions. This was revealed using real-time measurement of barrier integrity using ECIS ZΘ TEER technology and endothelial viability using xCELLigence technology. Finally, we show that these responses do not occur simply though the pharmacology of a single S1P receptor but involves coordinated action of S1P1 and S1P2 receptors.
Collapse
|
33
|
Shirani A, Okuda DT, Stüve O. Therapeutic Advances and Future Prospects in Progressive Forms of Multiple Sclerosis. Neurotherapeutics 2016; 13:58-69. [PMID: 26729332 PMCID: PMC4720678 DOI: 10.1007/s13311-015-0409-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Identifying effective therapies for the treatment of progressive forms of multiple sclerosis (MS) is a highly relevant priority and one of the greatest challenges for the global MS community. Better understanding of the mechanisms involved in progression of the disease, novel trial designs, drug repurposing strategies, and new models of collaboration may assist in identifying effective therapies. In this review, we discuss various therapies under study in phase II or III trials, including antioxidants (idebenone); tyrosine kinase inhibitors (masitinib); sphingosine receptor modulators (siponimod); monoclonal antibodies (anti-leucine-rich repeat and immunoglobulin-like domain containing neurite outgrowth inhibitor receptor-interacting protein-1, natalizumab, ocrelizumab, intrathecal rituximab); hematopoetic stem cell therapy; statins and other possible neuroprotective agents (amiloride, riluzole, fluoxetine, oxcarbazepine); lithium; phosphodiesterase inhibitors (ibudilast); hormone-based therapies (adrenocorticotrophic hormone and erythropoietin); T-cell receptor peptide vaccine (NeuroVax); autologous T-cell immunotherapy (Tcelna); MIS416 (a microparticulate immune response modifier); dopamine antagonists (domperidone); and nutritional supplements, including lipoic acid, biotin, and sunphenon epigallocatechin-3-gallate (green tea extract). Given ongoing and planned clinical trial initiatives, and the largest ever focus of the global research community on progressive MS, future prospects for developing targeted therapeutics aimed at reducing disability in progressive forms of MS appear promising.
Collapse
Affiliation(s)
- Afsaneh Shirani
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Darin T Okuda
- Department of Neurology and Neurotherapeutics, Clinical Center for Multiple Sclerosis, Multiple Sclerosis and Neuroimmunology Imaging Program, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Olaf Stüve
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Neurology Section, VA North Texas Health Care System, Medical Service, Dallas VA Medical Center, Dallas, TX, 75216, USA.
| |
Collapse
|
34
|
Spampinato SF, Obermeier B, Cotleur A, Love A, Takeshita Y, Sano Y, Kanda T, Ransohoff RM. Sphingosine 1 Phosphate at the Blood Brain Barrier: Can the Modulation of S1P Receptor 1 Influence the Response of Endothelial Cells and Astrocytes to Inflammatory Stimuli? PLoS One 2015. [PMID: 26197437 PMCID: PMC4511229 DOI: 10.1371/journal.pone.0133392] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The ability of the Blood Brain Barrier (BBB) to maintain proper barrier functions, keeping an optimal environment for central nervous system (CNS) activity and regulating leukocytes’ access, can be affected in CNS diseases. Endothelial cells and astrocytes are the principal BBB cellular constituents and their interaction is essential to maintain its function. Both endothelial cells and astrocytes express the receptors for the bioactive sphingolipid S1P. Fingolimod, an immune modulatory drug whose structure is similar to S1P, has been approved for treatment in multiple sclerosis (MS): fingolimod reduces the rate of MS relapses by preventing leukocyte egress from the lymph nodes. Here, we examined the ability of S1P and fingolimod to act on the BBB, using an in vitro co-culture model that allowed us to investigate the effects of S1P on endothelial cells, astrocytes, and interactions between the two. Acting selectively on endothelial cells, S1P receptor signaling reduced cell death induced by inflammatory cytokines. When acting on astrocytes, fingolimod treatment induced the release of a factor, granulocyte macrophage colony-stimulating factor (GM-CSF) that reduced the effects of cytokines on endothelium. In an in vitro BBB model incorporating shear stress, S1P receptor modulation reduced leukocyte migration across the endothelial barrier, indicating a novel mechanism that might contribute to fingolimod efficacy in MS treatment.
Collapse
Affiliation(s)
- Simona F. Spampinato
- Neuroinflammation Research Center, Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Birgit Obermeier
- Neuroinflammation Research Center, Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Anne Cotleur
- Neuroinflammation Research Center, Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Anna Love
- Neuroinflammation Research Center, Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Yukio Takeshita
- Neuroinflammation Research Center, Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Yasuteru Sano
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Takashi Kanda
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Richard M. Ransohoff
- Neuroinflammation Research Center, Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
35
|
Prager B, Spampinato SF, Ransohoff RM. Sphingosine 1-phosphate signaling at the blood–brain barrier. Trends Mol Med 2015; 21:354-63. [DOI: 10.1016/j.molmed.2015.03.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 03/24/2015] [Accepted: 03/27/2015] [Indexed: 12/20/2022]
|
36
|
Slowik A, Schmidt T, Beyer C, Amor S, Clarner T, Kipp M. The sphingosine 1-phosphate receptor agonist FTY720 is neuroprotective after cuprizone-induced CNS demyelination. Br J Pharmacol 2014; 172:80-92. [PMID: 25220526 DOI: 10.1111/bph.12938] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/28/2014] [Accepted: 08/23/2014] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND AND PURPOSE Modulation of the sphingosine 1-phosphate receptor is an approved treatment for relapsing multiple sclerosis because of its anti-inflammatory effect of retaining lymphocytes within the lymph nodes. Here, we evaluated the potential of an agonist at this receptor, FTY720 (fingolimod), to activate the promyelinating pathways within the brain to encourage remyelination and neuroprotection. EXPERIMENTAL APPROACH In this study, we used the cuprizone model in male C57BL/6 mice and tested the promyelinating and neuroprotective effects of FTY720 after acute and chronic toxin-induced experimental demyelination. We used histological, immunohistochemical and gene expression methods. KEY RESULTS The midline of the corpus callosum was severely demyelinated after acute and chronic cuprizone-induced demyelination. Robust endogenous remyelination was evident after acute, but impaired after chronic, demyelination. FTY720 treatment modestly accelerated myelin recovery after acute but not chronic cuprizone exposure. Markers of gliosis (astrocyte and microglia activation) were not affected by FTY720 treatment. Remarkably, the accumulation of amyloid precursor protein-positive spheroids in axons was less distinct in FTY720-treated animals, indicating that this compound alleviated ongoing axonal damage. CONCLUSIONS AND IMPLICATIONS We show that even during endogenous remyelination, axonal degeneration continued at a low level, accumulating over time. This continuous neurodegenerative process was ameliorated by FTY720 treatment. FTY720 preserved CNS integrity by direct interaction with brain resident cells, the actions of which are still to be defined.
Collapse
Affiliation(s)
- A Slowik
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
Multiple sclerosis (MS) is a life-long, potentially debilitating disease of the central nervous system (CNS). MS is considered to be an immune-mediated disease, and the presence of autoreactive peripheral lymphocytes in CNS compartments is believed to be critical in the process of demyelination and tissue damage in MS. Although MS is not currently a curable disease, several disease-modifying therapies (DMTs) are now available, or are in development. These DMTs are all thought to primarily suppress autoimmune activity within the CNS. Each therapy has its own mechanism of action (MoA) and, as a consequence, each has a different efficacy and safety profile. Neurologists can now select therapies on a more individual, patient-tailored basis, with the aim of maximizing potential for long-term efficacy without interruptions in treatment. The MoA and clinical profile of MS therapies are important considerations when making that choice or when switching therapies due to suboptimal disease response. This article therefore reviews the known and putative immunological MoAs alongside a summary of the clinical profile of therapies approved for relapsing forms of MS, and those in late-stage development, based on published data from pivotal randomized, controlled trials.
Collapse
|
38
|
Abstract
The development of fingolimod, an unselective functional antagonist of the interactions between sphingosine 1 phosphate (S1P) and sphingosine 1 phosphate receptors (S1PRs), as the first oral therapy for multiple sclerosis (MS) has been a milestone. The parallel intensive research on the role of S1P, sphingosine kinases, and the five known S1PRs, their tissue distribution and expression in physiological and pathological conditions have led to a wide range of interesting findings. The initial focus of this research in the context of developing fingolimod as a treatment of MS has been on its immunological effects. The wide distribution and important roles of sphingosine, its metabolites, and their receptors in the central nervous system (CNS) in general, in myelin, and in all cell types of this organ have spurred interest to examine S1P and its five receptors in the brain as well. The present review will concentrate on the latter area and give a brief overview of what is known about S1P/S1PR interactions in the CNS in physiological and pathological conditions.
Collapse
|
39
|
Bigaud M, Guerini D, Billich A, Bassilana F, Brinkmann V. Second generation S1P pathway modulators: research strategies and clinical developments. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:745-58. [PMID: 24239768 DOI: 10.1016/j.bbalip.2013.11.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/30/2013] [Accepted: 11/04/2013] [Indexed: 11/17/2022]
Abstract
Multiple Sclerosis (MS) is a chronic autoimmune disorder affecting the central nervous system (CNS) through demyelination and neurodegeneration. Until recently, major therapeutic treatments have relied on agents requiring injection delivery. In September 2010, fingolimod/FTY720 (Gilenya, Novartis) was approved as the first oral treatment for relapsing forms of MS. Fingolimod causes down-modulation of S1P1 receptors on lymphocytes which prevents the invasion of autoaggressive T cells into the CNS. In astrocytes, down-modulation of S1P1 by the drug reduces astrogliosis, a hallmark of MS, thereby allowing restoration of productive astrocyte communication with other neural cells and the blood brain barrier. Animal data further suggest that the drug directly supports the recovery of nerve conduction and remyelination. In human MS, such mechanisms may explain the significant decrease in the number of inflammatory markers on brain magnetic resonance imaging in recent clinical trials, and the reduction of brain atrophy by the drug. Fingolimod binds to 4 of the 5 known S1P receptor subtypes, and significant efforts were made over the past 5 years to develop next generation S1P receptor modulators and determine the minimal receptor selectivity needed for maximal therapeutic efficacy in MS patients. Other approaches considered were competitive antagonists of the S1P1 receptor, inhibitors of the S1P lyase to prevent S1P degradation, and anti-S1P antibodies. Below we discuss the current status of the field, and the functional properties of the most advanced compounds. This article is part of a Special Issue entitled New Frontiers in Sphingolipid Biology.
Collapse
Affiliation(s)
- Marc Bigaud
- Novartis Institutes for Biomedical Research, CH-4056 Basel, Switzerland.
| | - Danilo Guerini
- Novartis Institutes for Biomedical Research, CH-4056 Basel, Switzerland
| | - Andreas Billich
- Novartis Institutes for Biomedical Research, CH-4056 Basel, Switzerland
| | | | - Volker Brinkmann
- Novartis Institutes for Biomedical Research, CH-4056 Basel, Switzerland.
| |
Collapse
|