1
|
Liu XH, Lin W, Xu HL, Cui ML, Huang ZY, Li Y, Zhang NN, Wang N, Wang ZY, Gan SR. Assessment of Peripheral Neuropathy Using Current Perception Threshold Measurement in Patients with Spinocerebellar Ataxia Type 3. CEREBELLUM (LONDON, ENGLAND) 2025; 24:37. [PMID: 39856266 DOI: 10.1007/s12311-024-01769-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/12/2024] [Indexed: 01/27/2025]
Abstract
Peripheral neuropathy (PN) identified as a significant contributor to disability in Spinocerebellar ataxia type 3 (SCA3) patients. This study seeks to assess the utility of current perception threshold (CPT) measurements in evaluating PN in individuals with SCA3 and aims to identify factors influencing CPT values in SCA3 and ascertain whether these values correlate with the severity of ataxia. Ninety-four patients diagnosed with SCA3 and 44 healthy controls were recruited for this investigation. All participants were performed standard CPT assessments. Comparative analysis was conducted on CPT variables between the groups. Multivariable linear regression models were employed to identify potential risk factors influencing CPT values, and to investigate the association between CPT values and the severity of ataxia in SCA3. The case group exhibited significantly higher values across all CPT variables compared to the control group (P < 0.01). Peripheral neuropathy was prevalent among SCA3 patients, with lower limb nerves demonstrating greater susceptibility than upper limb nerves. Increasing age (β = 1.813, P = 0.012) and heightened ataxia severity (β = 3.763, P = 0.013) as predictors of poorer CPT values. Gender also emerged as a predictor of CPT values. Furthermore, CPT values (β = 0.003, P = 0.013) and disease duration (β = 0.118, P < 0.001) were associated with more severe ataxia. Our findings suggest that the CPT test holds promise for assessing peripheral neuropathy in SCA3 patients and that CPT values may serve as indicators of disease severity in this population.
Collapse
Affiliation(s)
- Xia-Hua Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, China
- Department of Rehabilitation Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Wei Lin
- Department of Neurology, Fujian Key Laboratory of Molecular Neurology, Fujian Institute of Neurology, The First Affiliated Hospital, Fujian Medical University, Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Institute of Clinical Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Hao-Ling Xu
- Fujian Key Laboratory of Molecular Neurology, Institute of Clinical Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Mao-Lin Cui
- School of Special Education and Rehabilitation, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - Zhuo-Ying Huang
- Department of Neurology, Fujian Key Laboratory of Molecular Neurology, Fujian Institute of Neurology, The First Affiliated Hospital, Fujian Medical University, Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Institute of Clinical Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Ying Li
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, China
| | - Nan-Nan Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, China
- Department of Rehabilitation Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Ning Wang
- Department of Neurology, Fujian Key Laboratory of Molecular Neurology, Fujian Institute of Neurology, The First Affiliated Hospital, Fujian Medical University, Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China.
- Department of Neurology, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
- Fujian Key Laboratory of Molecular Neurology, Institute of Clinical Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, China.
| | - Zhi-Yong Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, China.
- Department of Rehabilitation Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
| | - Shi-Rui Gan
- Department of Neurology, Fujian Key Laboratory of Molecular Neurology, Fujian Institute of Neurology, The First Affiliated Hospital, Fujian Medical University, Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China.
- Department of Neurology, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
- Fujian Key Laboratory of Molecular Neurology, Institute of Clinical Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
2
|
Hostler AC, Hahn WW, Hu MS, Rennert R, Fischer KS, Barrera JA, Duscher D, Januszyk M, Henn D, Sivaraj D, Yasmeh JP, Kussie HC, Granoski MB, Padmanabhan J, Vial IN, Riegler J, Wu JC, Longaker MT, Chen K, Maan ZN, Gurtner GC. Endothelial-specific CXCL12 regulates neovascularization during tissue repair and tumor progression. FASEB J 2024; 38:e70210. [PMID: 39698751 DOI: 10.1096/fj.202401307r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/08/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024]
Abstract
C-X-C motif chemokine ligand 12 (CXCL12; Stromal Cell-Derived Factor 1 [SDF-1]), most notably known for its role in embryogenesis and hematopoiesis, has been implicated in tumor pathophysiology and neovascularization. However, its cell-specific role and mechanism of action have not been well characterized. Previous work by our group has demonstrated that hypoxia-inducible factor (HIF)-1 modulates downstream CXCL12 expression following ischemic tissue injury. By utilizing a conditional CXCL12 knockout murine model, we demonstrate that endothelial-specific deletion of CXCL12 (eKO) modulates ischemic tissue survival, altering tissue repair and tumor progression without affecting embryogenesis and morphogenesis. Loss of endothelial-specific CXCL12 disrupts critical endothelial-fibroblast crosstalk necessary for stromal growth and vascularization. Using murine parabiosis with novel transcriptomic technologies, we demonstrate that endothelial-specific CXCL12 signaling results in downstream recruitment of non-inflammatory circulating cells, defined by neovascularization modulating genes. These findings indicate an essential role for endothelial-specific CXCL12 expression during the neovascular response in tissue injury and tumor progression.
Collapse
Affiliation(s)
- Andrew C Hostler
- Department of Surgery, The University of Arizona College of Medicine, Tucson, Arizona, USA
| | - William W Hahn
- Department of Surgery, The University of Arizona College of Medicine, Tucson, Arizona, USA
| | - Michael S Hu
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Palo Alto, California, USA
| | - Robert Rennert
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Palo Alto, California, USA
| | - Katharina S Fischer
- Department of Surgery, The University of Arizona College of Medicine, Tucson, Arizona, USA
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Palo Alto, California, USA
| | - Janos A Barrera
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Palo Alto, California, USA
| | - Dominik Duscher
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Palo Alto, California, USA
| | - Michael Januszyk
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Palo Alto, California, USA
| | - Dominic Henn
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Palo Alto, California, USA
| | - Dharshan Sivaraj
- Department of Surgery, The University of Arizona College of Medicine, Tucson, Arizona, USA
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Palo Alto, California, USA
| | - Jonathan P Yasmeh
- Department of Surgery, The University of Arizona College of Medicine, Tucson, Arizona, USA
| | - Hudson C Kussie
- Department of Surgery, The University of Arizona College of Medicine, Tucson, Arizona, USA
| | - Maia B Granoski
- Department of Surgery, The University of Arizona College of Medicine, Tucson, Arizona, USA
| | - Jagannath Padmanabhan
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Palo Alto, California, USA
| | - Ivan N Vial
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Palo Alto, California, USA
| | - Johannes Riegler
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Michael T Longaker
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Palo Alto, California, USA
| | - Kellen Chen
- Department of Surgery, The University of Arizona College of Medicine, Tucson, Arizona, USA
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Palo Alto, California, USA
| | - Zeshaan N Maan
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Palo Alto, California, USA
| | - Geoffrey C Gurtner
- Department of Surgery, The University of Arizona College of Medicine, Tucson, Arizona, USA
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Palo Alto, California, USA
| |
Collapse
|
3
|
Putka AF, Mato JP, McLoughlin HS. Myelinating Glia: Potential Therapeutic Targets in Polyglutamine Spinocerebellar Ataxias. Cells 2023; 12:601. [PMID: 36831268 PMCID: PMC9953858 DOI: 10.3390/cells12040601] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 02/15/2023] Open
Abstract
Human studies, in combination with animal and cellular models, support glial cells as both major contributors to neurodegenerative diseases and promising therapeutic targets. Among glial cells, oligodendrocytes and Schwann cells are the myelinating glial cells of the central and peripheral nervous system, respectively. In this review, we discuss the contributions of these central and peripheral myelinating glia to the pathomechanisms of polyglutamine (polyQ) spinocerebellar ataxia (SCA) types 1, 2, 3, 6, 7, and 17. First, we highlight the function of oligodendrocytes in healthy conditions and how they are disrupted in polyQ SCA patients and diseased model systems. We then cover the role of Schwann cells in peripheral nerve function and repair as well as their possible role in peripheral neuropathy in polyQ SCAs. Finally, we discuss potential polyQ SCA therapeutic interventions in myelinating glial.
Collapse
Affiliation(s)
- Alexandra F. Putka
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Juan P. Mato
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
4
|
Haas E, Incebacak RD, Hentrich T, Huridou C, Schmidt T, Casadei N, Maringer Y, Bahl C, Zimmermann F, Mills JD, Aronica E, Riess O, Schulze-Hentrich JM, Hübener-Schmid J. A Novel SCA3 Knock-in Mouse Model Mimics the Human SCA3 Disease Phenotype Including Neuropathological, Behavioral, and Transcriptional Abnormalities Especially in Oligodendrocytes. Mol Neurobiol 2022; 59:495-522. [PMID: 34716557 PMCID: PMC8786755 DOI: 10.1007/s12035-021-02610-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/19/2021] [Indexed: 12/28/2022]
Abstract
Spinocerebellar ataxia type 3 is the most common autosomal dominant inherited ataxia worldwide, caused by a CAG repeat expansion in the Ataxin-3 gene resulting in a polyglutamine (polyQ)-expansion in the corresponding protein. The disease is characterized by neuropathological, phenotypical, and specific transcriptional changes in affected brain regions. So far, there is no mouse model available representing all the different aspects of the disease, yet highly needed for a better understanding of the disease pathomechanisms. Here, we characterized a novel Ataxin-3 knock-in mouse model, expressing a heterozygous or homozygous expansion of 304 CAACAGs in the murine Ataxin-3 locus using biochemical, behavioral, and transcriptomic approaches. We compared neuropathological, and behavioral features of the new knock-in model with the in SCA3 research mostly used YAC84Q mouse model. Further, we compared transcriptional changes found in cerebellar samples of the SCA3 knock-in mice and post-mortem human SCA3 patients. The novel knock-in mouse is characterized by the expression of a polyQ-expansion in the murine Ataxin-3 protein, leading to aggregate formation, especially in brain regions known to be vulnerable in SCA3 patients, and impairment of Purkinje cells. Along these neuropathological changes, the mice showed a reduction in body weight accompanied by gait and balance instability. Transcriptomic analysis of cerebellar tissue revealed age-dependent differential expression, enriched for genes attributed to myelinating oligodendrocytes. Comparing these changes with those found in cerebellar tissue of SCA3 patients, we discovered an overlap of differentially expressed genes pointing towards similar gene expression perturbances in several genes linked to myelin sheaths and myelinating oligodendrocytes.
Collapse
Affiliation(s)
- Eva Haas
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- Centre for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Rana D Incebacak
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- Centre for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Thomas Hentrich
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- Centre for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Chrisovalantou Huridou
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- Centre for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Thorsten Schmidt
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- Centre for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Nicolas Casadei
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- Centre for Rare Diseases, University of Tübingen, Tübingen, Germany
- DFG NGS Competence Center Tübingen, Tübingen, Germany
| | - Yacine Maringer
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- Centre for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Carola Bahl
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- Centre for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Frank Zimmermann
- Interfaculty Biomedical Facility (IBF) Biotechnology lab, University of Heidelberg, Heidelberg, Germany
| | - James D Mills
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- Centre for Rare Diseases, University of Tübingen, Tübingen, Germany
- DFG NGS Competence Center Tübingen, Tübingen, Germany
| | - Julia M Schulze-Hentrich
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- Centre for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Jeannette Hübener-Schmid
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.
- Centre for Rare Diseases, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
5
|
Costa MDC, Radzwion M, McLoughlin HS, Ashraf NS, Fischer S, Shakkottai VG, Maciel P, Paulson HL, Öz G. In Vivo Molecular Signatures of Cerebellar Pathology in Spinocerebellar Ataxia Type 3. Mov Disord 2020; 35:1774-1786. [PMID: 32621646 PMCID: PMC7572607 DOI: 10.1002/mds.28140] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 05/06/2020] [Accepted: 05/18/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND No treatment exists for the most common dominantly inherited ataxia Machado-Joseph disease, or spinocerebellar ataxia type 3 (SCA3). Successful evaluation of candidate therapeutics will be facilitated by validated noninvasive biomarkers of disease pathology recapitulated by animal models. OBJECTIVE We sought to identify shared in vivo neurochemical signatures in two mouse models of SCA3 that reflect the human disease pathology. METHODS Cerebellar neurochemical concentrations in homozygous YACMJD84.2 (Q84/Q84) and hemizygous CMVMJD135 (Q135) mice were measured by in vivo magnetic resonance spectroscopy at 9.4 tesla. To validate the neurochemical biomarkers, levels of neurofilament medium (NFL; indicator of neuroaxonal integrity) and myelin basic protein (MBP; indicator of myelination) were measured in cerebellar lysates from a subset of mice and patients with SCA3. Finally, NFL and MBP levels were measured in the cerebellar extracts of Q84/Q84 mice upon silencing of the mutant ATXN3 gene. RESULTS Both Q84/Q84 and Q135 mice displayed lower N-acetylaspartate than wild-type littermates, indicating neuroaxonal loss/dysfunction, and lower myo-inositol and total choline, indicating disturbances in phospholipid membrane metabolism and demyelination. Cerebellar NFL and MBP levels were accordingly lower in both models as well as in the cerebellar cortex of patients with SCA3 than controls. Importantly, N-acetylaspartate and total choline correlated with NFL and MPB, respectively, in Q135 mice. Long-term sustained RNA interference (RNAi)-mediated reduction of ATXN3 levels increased NFL and MBP in Q84/Q84 cerebella. CONCLUSIONS N-acetylaspartate, myo-inositol, and total choline levels in the cerebellum are candidate biomarkers of neuroaxonal and oligodendrocyte pathology in SCA3, aspects of pathology that are reversible by RNAi therapy. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
| | - Maria Radzwion
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | | | - Naila S. Ashraf
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Svetlana Fischer
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Vikram G. Shakkottai
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- Departments of Molecular & Integrative Physiology and of Medicine, University of Michigan, Ann Arbor, MI
| | - Patrícia Maciel
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Portugal
| | - Henry L. Paulson
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Gülin Öz
- Center for Magnetic Resonance Research, Department of Radiology, Medical School, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
6
|
Mesenchymal stem cell-derived exosomes improve motor function and attenuate neuropathology in a mouse model of Machado-Joseph disease. Stem Cell Res Ther 2020; 11:222. [PMID: 32513306 PMCID: PMC7278177 DOI: 10.1186/s13287-020-01727-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 04/19/2020] [Accepted: 05/12/2020] [Indexed: 12/12/2022] Open
Abstract
Background Machado-Joseph disease is the most common autosomal dominant hereditary ataxia worldwide without effective treatment. Mesenchymal stem cells (MSCs) could slow the disease progression, but side effects limited their clinical application. Besides, MSC-derived exosomes exerted similar efficacy and have many advantages over MSCs. The aim of this study was to examine the efficacy of MSC-derived exosomes in YACMJD84.2 mice. Methods Rotarod performance was evaluated every 2 weeks after a presymptomatic administration of intravenous MSC-derived exosomes twice in YACMJD84.2 mice. Loss of Purkinje cells, relative expression level of Bcl-2/Bax, cerebellar myelin loss, and neuroinflammation were assessed 8 weeks following treatment. Results MSC-derived exosomes were isolated and purified through anion exchange chromatography. Better coordination in rotarod performance was maintained for 6 weeks in YACMJD84.2 mice with exosomal treatment, compared with those without exosomal treatment. Neuropathological changes including loss of Purkinje cells, cerebellar myelin loss, and neuroinflammation were also attenuated 8 weeks after exosomal treatment. The higher relative ratio of Bcl-2/Bax was consistent with the attenuation of loss of Purkinje cells. Conclusions MSC-derived exosomes could promote rotarod performance and attenuate neuropathology, including loss of Purkinje cells, cerebellar myelin loss, and neuroinflammation. Therefore, MSC-derived exosomes have a great potential in the treatment of Machado-Joseph disease.
Collapse
|
7
|
McLoughlin HS, Moore LR, Paulson HL. Pathogenesis of SCA3 and implications for other polyglutamine diseases. Neurobiol Dis 2020; 134:104635. [PMID: 31669734 PMCID: PMC6980715 DOI: 10.1016/j.nbd.2019.104635] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/30/2019] [Accepted: 10/03/2019] [Indexed: 12/14/2022] Open
Abstract
Tandem repeat diseases include the neurodegenerative disorders known as polyglutamine (polyQ) diseases, caused by CAG repeat expansions in the coding regions of the respective disease genes. The nine known polyQ disease include Huntington's disease (HD), dentatorubral-pallidoluysian atrophy (DRPLA), spinal bulbar muscular atrophy (SBMA), and six spinocerebellar ataxias (SCA1, SCA2, SCA3, SCA6, SCA7, and SCA17). The underlying disease mechanism in the polyQ diseases is thought principally to reflect dominant toxic properties of the disease proteins which, when harboring a polyQ expansion, differentially interact with protein partners and are prone to aggregate. Among the polyQ diseases, SCA3 is the most common SCA, and second to HD in prevalence worldwide. Here we summarize current understanding of SCA3 disease mechanisms within the broader context of the broader polyQ disease field. We emphasize properties of the disease protein, ATXN3, and new discoveries regarding three potential pathogenic mechanisms: 1) altered protein homeostasis; 2) DNA damage and dysfunctional DNA repair; and 3) nonneuronal contributions to disease. We conclude with an overview of the therapeutic implications of recent mechanistic insights.
Collapse
Affiliation(s)
| | - Lauren R Moore
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Henry L Paulson
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
8
|
Furtado GV, Oliveira CMD, Bolzan G, Saute JAM, Saraiva-Pereira ML, Jardim LB. State biomarkers for Machado Joseph disease: Validation, feasibility and responsiveness to change. Genet Mol Biol 2019; 42:238-251. [PMID: 31188927 PMCID: PMC6687346 DOI: 10.1590/1678-4685-gmb-2018-0103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 11/04/2018] [Indexed: 12/18/2022] Open
Abstract
Machado-Joseph disease (SCA3/MJD) is the most common spinocerebellar ataxia worldwide, and particularly so in Southern Brazil. Due to an expanded polyglutamine at ataxin-3, SCA3/MJD presents a relentless course with no current disease modifying treatment. Clinical scales used to measure SCA3/MJD progression present moderate effect sizes, a major drawback for their use as main outcomes in clinical trials, given the rarity and slow progression of the disease. This limitation might be overcome by finding good surrogate markers. We present here a review of studies on peripheral and neurophysiological markers in SCA3/MJD that can be candidates for state biomarkers. Data on markers already studied were summarized, giving emphasis on validation against clinical scale, and responsiveness to change. While some biological fluid compounds and neurophysiological parameters showed poor responsiveness, others seemed to be good candidates. Some potential candidates that are waiting for responsiveness studies were serum levels of neuron specific enolase, vestibulo-ocular reflex and video-oculography. Candidates evaluated by RNA and microRNA expression levels need further studies to improve their measurements. Data on peripheral levels of Beclin-1 and DNAJB1 are promising but still incipient. We conclude that several potential candidates should follow onto validating studies for surrogate state biomarkers of SCA3/MJD.
Collapse
Affiliation(s)
- Gabriel Vasata Furtado
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Laboratório de Identificação Genética, Hospital de Clínicas (HCPA), Porto Alegre, RS, Brazil.,Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil
| | - Camila Maria de Oliveira
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.,Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Medicina: Ciências Médicas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Gabriela Bolzan
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.,Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Jonas Alex Morales Saute
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.,Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Medicina: Ciências Médicas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Departamento de Medicina Interna, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Maria Luiza Saraiva-Pereira
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Laboratório de Identificação Genética, Hospital de Clínicas (HCPA), Porto Alegre, RS, Brazil.,Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.,Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Laura Bannach Jardim
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.,Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Medicina: Ciências Médicas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Departamento de Medicina Interna, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
9
|
Ramani B, Panwar B, Moore LR, Wang B, Huang R, Guan Y, Paulson HL. Comparison of spinocerebellar ataxia type 3 mouse models identifies early gain-of-function, cell-autonomous transcriptional changes in oligodendrocytes. Hum Mol Genet 2018; 26:3362-3374. [PMID: 28854700 DOI: 10.1093/hmg/ddx224] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 05/31/2017] [Indexed: 01/09/2023] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3) is a neurodegenerative disorder caused by a polyglutamine-encoding CAG repeat expansion in the ATXN3 gene. This expansion leads to misfolding and aggregation of mutant ataxin-3 (ATXN3) and degeneration of select brain regions. A key unanswered question in SCA3 and other polyglutamine diseases is the extent to which neurodegeneration is mediated through gain-of-function versus loss-of-function. To address this question in SCA3, we performed transcriptional profiling on the brainstem, a highly vulnerable brain region in SCA3, in a series of mouse models with varying degrees of ATXN3 expression and aggregation. We include two SCA3 knock-in mouse models: our previously published model that erroneously harbors a tandem duplicate of the CAG repeat-containing exon, and a corrected model, introduced here. Both models exhibit dose-dependent neuronal accumulation and aggregation of mutant ATXN3, but do not exhibit a behavioral phenotype. We identified a molecular signature that correlates with ATXN3 neuronal aggregation yet is primarily linked to oligodendrocytes, highlighting early white matter dysfunction in SCA3. Two robustly elevated oligodendrocyte transcripts, Acy3 and Tnfrsf13c, were confirmed as elevated at the protein level in SCA3 human disease brainstem. To determine if mutant ATXN3 acts on oligodendrocytes cell-autonomously, we manipulated the repeat expansion in the variant SCA3 knock-in mouse by cell-type specific Cre/LoxP recombination. Changes in oligodendrocyte transcripts are driven cell-autonomously and occur independent of neuronal ATXN3 aggregation. Our findings support a primary toxic gain of function mechanism and highlight a previously unrecognized role for oligodendrocyte dysfunction in SCA3 disease pathogenesis.
Collapse
Affiliation(s)
| | - Bharat Panwar
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | - Yuanfang Guan
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
10
|
Katsuno M, Watanabe H, Yamamoto M, Sobue G. Potential therapeutic targets in polyglutamine-mediated diseases. Expert Rev Neurother 2014; 14:1215-28. [PMID: 25190502 DOI: 10.1586/14737175.2014.956727] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Polyglutamine diseases are a group of inherited neurodegenerative disorders that are caused by an abnormal expansion of a trinucleotide CAG repeat, which encodes a polyglutamine tract in the protein-coding region of the respective disease genes. To date, nine polyglutamine diseases are known, including Huntington's disease, spinal and bulbar muscular atrophy, dentatorubral-pallidoluysian atrophy and six forms of spinocerebellar ataxia. These diseases share a salient molecular pathophysiology including the aggregation of the mutant protein followed by the disruption of cellular functions such as transcriptional regulation and axonal transport. The intraneuronal accumulation of mutant protein and resulting cellular dysfunction are the essential targets for the development of disease-modifying therapies, some of which have shown beneficial effects in animal models. In this review, the current status of and perspectives on therapy development for polyglutamine diseases will be discussed.
Collapse
Affiliation(s)
- Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | | | | | | |
Collapse
|