1
|
Tuovinen T, Häkli J, Rytty R, Krüger J, Korhonen V, Järvelä M, Helakari H, Kananen J, Nikkinen J, Veijola J, Remes AM, Kiviniemi V. The relative brain signal variability increases in the behavioral variant of frontotemporal dementia and Alzheimer's disease but not in schizophrenia. J Cereb Blood Flow Metab 2024; 44:1535-1549. [PMID: 38897598 PMCID: PMC11574935 DOI: 10.1177/0271678x241262583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024]
Abstract
Overlapping symptoms between Alzheimer's disease (AD), behavioral variant of frontotemporal dementia (bvFTD), and schizophrenia (SZ) can lead to misdiagnosis and delays in appropriate treatment, especially in cases of early-onset dementia. To determine the potential of brain signal variability as a diagnostic tool, we assessed the coefficient of variation of the BOLD signal (CVBOLD) in 234 participants spanning bvFTD (n = 53), AD (n = 17), SZ (n = 23), and controls (n = 141). All underwent functional and structural MRI scans. Data unveiled a notable increase in CVBOLD in bvFTD patients across both datasets (local and international, p < 0.05), revealing an association with clinical scores (CDR and MMSE, r = 0.46 and r = -0.48, p < 0.0001). While SZ and control group demonstrated no significant differences, a comparative analysis between AD and bvFTD patients spotlighted elevated CVBOLD in the frontopolar cortices for the latter (p < 0.05). Furthermore, CVBOLD not only presented excellent diagnostic accuracy for bvFTD (AUC 0.78-0.95) but also showcased longitudinal repeatability. During a one-year follow-up, the CVBOLD levels increased by an average of 35% in the bvFTD group, compared to a 2% increase in the control group (p < 0.05). Our findings suggest that CVBOLD holds promise as a biomarker for bvFTD, offering potential for monitoring disease progression and differentiating bvFTD from AD and SZ.
Collapse
Affiliation(s)
- Timo Tuovinen
- Oulu Functional NeuroImaging, Research Unit of Health Sciences and Technology, University of Oulu, Oulu, Finland
- Medical Research Center, Oulu University Hospital, The Wellbeing Services County of North Ostrobothnia, Oulu, Finland
| | - Jani Häkli
- Oulu Functional NeuroImaging, Research Unit of Health Sciences and Technology, University of Oulu, Oulu, Finland
- Medical Research Center, Oulu University Hospital, The Wellbeing Services County of North Ostrobothnia, Oulu, Finland
| | - Riikka Rytty
- Oulu Functional NeuroImaging, Research Unit of Health Sciences and Technology, University of Oulu, Oulu, Finland
- Neurology, Hyvinkää Hospital, The Wellbeing Services County of Central Uusimaa, Hyvinkää, Finland
| | - Johanna Krüger
- Medical Research Center, Oulu University Hospital, The Wellbeing Services County of North Ostrobothnia, Oulu, Finland
- Research Unit of Clinical Medicine, Neurology, University of Oulu, Oulu, Finland
- Neurology, Neurocenter, Oulu University Hospital, The Wellbeing Services County of North Ostrobothnia, Oulu, Finland
| | - Vesa Korhonen
- Oulu Functional NeuroImaging, Research Unit of Health Sciences and Technology, University of Oulu, Oulu, Finland
- Medical Research Center, Oulu University Hospital, The Wellbeing Services County of North Ostrobothnia, Oulu, Finland
| | - Matti Järvelä
- Oulu Functional NeuroImaging, Research Unit of Health Sciences and Technology, University of Oulu, Oulu, Finland
- Medical Research Center, Oulu University Hospital, The Wellbeing Services County of North Ostrobothnia, Oulu, Finland
| | - Heta Helakari
- Oulu Functional NeuroImaging, Research Unit of Health Sciences and Technology, University of Oulu, Oulu, Finland
- Medical Research Center, Oulu University Hospital, The Wellbeing Services County of North Ostrobothnia, Oulu, Finland
| | - Janne Kananen
- Oulu Functional NeuroImaging, Research Unit of Health Sciences and Technology, University of Oulu, Oulu, Finland
- Medical Research Center, Oulu University Hospital, The Wellbeing Services County of North Ostrobothnia, Oulu, Finland
- Clinical Neurophysiology, Oulu University Hospital, The Wellbeing Services County of North Ostrobothnia, Oulu, Finland
| | - Juha Nikkinen
- Medical Research Center, Oulu University Hospital, The Wellbeing Services County of North Ostrobothnia, Oulu, Finland
- Department of Oncology and Radiotherapy, Oulu University Hospital, The Wellbeing Services County of North Ostrobothnia, Oulu, Finland
| | - Juha Veijola
- Medical Research Center, Oulu University Hospital, The Wellbeing Services County of North Ostrobothnia, Oulu, Finland
- Research Unit of Clinical Medicine, Department of Psychiatry, University of Oulu, Oulu, Finland
- Department of Psychiatry, Oulu University Hospital, The Wellbeing Services County of North Ostrobothnia, Oulu, Finland
| | - Anne M Remes
- Research Unit of Clinical Medicine, Neurology, University of Oulu, Oulu, Finland
- Clinical Neurosciences, University of Helsinki, Helsinki, Finland
| | - Vesa Kiviniemi
- Oulu Functional NeuroImaging, Research Unit of Health Sciences and Technology, University of Oulu, Oulu, Finland
- Medical Research Center, Oulu University Hospital, The Wellbeing Services County of North Ostrobothnia, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
2
|
Carbayo Á, Borrego-Écija S, Turon-Sans J, Cortés-Vicente E, Molina-Porcel L, Gascón-Bayarri J, Rubio MÁ, Povedano M, Gámez J, Sotoca J, Juntas-Morales R, Almendrote M, Marquié M, Sánchez-Valle R, Illán-Gala I, Dols-Icardo O, Rubio-Guerra S, Bernal S, Caballero-Ávila M, Vesperinas A, Gelpi E, Rojas-García R. Clinicopathological correlates in the frontotemporal lobar degeneration-motor neuron disease spectrum. Brain 2024; 147:2357-2367. [PMID: 38227807 PMCID: PMC11224598 DOI: 10.1093/brain/awae011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/05/2023] [Accepted: 01/02/2024] [Indexed: 01/18/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating motor neuron disease (MND) that shares a common clinical, genetic and pathologic spectrum with frontotemporal dementia (FTD). It is highly heterogeneous in its presentation and features. Up to 50% of patients with MND develop cognitive-behavioural symptoms during the course of the disease, meeting criteria for FTD in 10%-15% of cases. In the absence of a precise biomarker, neuropathology is still a valuable tool to understand disease nosology, reach a definite diagnostic confirmation and help define specific subgroups of patients with common phenotypic, genetic and biomarker profiles. However, few neuropathological series have been published, and the frequency of frontotemporal lobar degeneration (FTLD) in MND is difficult to estimate. In this work we describe a large clinicopathological series of MND patients, analysing the frequency of concurrent FTLD changes and trying to define specific subgroups of patients based on their clinical, genetic and pathological characteristics. We performed an observational, retrospective, multicentre case study. We included all cases meeting neuropathological criteria for MND from the Neurological Tissue Bank of the FRCB-IDIBAPS-Hospital Clínic Barcelona Biobank between 1994 and 2022, regardless of their last clinical diagnosis. While brain donation is encouraged in all patients, it is performed in very few, and representativeness of the cohort might not be precise for all patients with MND. We retrospectively reviewed clinical and neuropathological data and describe the main clinical, genetic and pathogenic features, comparing neuropathologic groups between MND with and without FTLD changes and aiming to define specific subgroups. We included brain samples from 124 patients, 44 of whom (35.5%) had FTLD neuropathologic features (i.e. FTLD-MND). Pathologic TDP-43 aggregates were present in 93.6% of the cohort and were more extensive (higher Brettschneider stage) in those with concurrent FTLD (P < 0.001). Motor symptom onset was more frequent in the bulbar region in FTLD-MND cases than in those with isolated MND (P = 0.023), with no differences in survival. We observed a better clinicopathological correlation in the MND group than in the FTLD-MND group (93.8% versus 61.4%; P < 0.001). Pathogenic genetic variants were more common in the FTLD-MND group, especially C9orf72. We describe a frequency of FTLD of 35.5% in our series of neuropathologically confirmed cases of MND. The FTLD-MND spectrum is highly heterogeneous in all aspects, especially in patients with FTLD, in whom it is particularly difficult to define specific subgroups. In the absence of definite biomarkers, neuropathology remains a valuable tool for a definite diagnosis, increasing our knowledge in disease nosology.
Collapse
Affiliation(s)
- Álvaro Carbayo
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute (IIB Sant Pau) Sant Pau, Barcelona 08025, Spain
- Department of Medicine, Universitat Autònoma de Barcelona (UAB), Barcelona 08025, Spain
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Sergi Borrego-Écija
- Alzheimer’s Disease and Other Cognitive Disorders Unit, Neurology Department, Hospital Clínic, Institut d’Investigacions Biomediques August Pi i Sunyer, University of Barcelona, Barcelona 08036, Spain
| | - Janina Turon-Sans
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute (IIB Sant Pau) Sant Pau, Barcelona 08025, Spain
- Department of Medicine, Universitat Autònoma de Barcelona (UAB), Barcelona 08025, Spain
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Elena Cortés-Vicente
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute (IIB Sant Pau) Sant Pau, Barcelona 08025, Spain
- Department of Medicine, Universitat Autònoma de Barcelona (UAB), Barcelona 08025, Spain
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Laura Molina-Porcel
- Alzheimer’s Disease and Other Cognitive Disorders Unit, Neurology Department, Hospital Clínic, Institut d’Investigacions Biomediques August Pi i Sunyer, University of Barcelona, Barcelona 08036, Spain
- Neurological Tissue Bank, Biobanc-Hospital Clínic-FRCB-IDIBAPS, Barcelona 08036, Spain
| | - Jordi Gascón-Bayarri
- Department of Neurology, Bellvitge University Hospital, L’Hospitalet de Llobregat, Barcelona 08907, Spain
| | - Miguel Ángel Rubio
- Neuromuscular Unit, Department of Neurology, Hospital del Mar, Barcelona 08003, Spain
| | - Mónica Povedano
- Department of Neurology, Motor Neuron Unit, Instituto de Investigación Biomédica de Bellvitge (IDIBELL), Bellvitge University Hospital, Hospitalet de Llobregat, Barcelona 08907, Spain
| | - Josep Gámez
- GMA Clinic, Neurology Department, European Reference Network On Rare Neuromuscular Diseases (ERN EURO-NMD), Barcelona 08029, Spain
| | - Javier Sotoca
- Neuromuscular Diseases Unit, Department of Neurology, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, 08035, Spain
| | - Raúl Juntas-Morales
- Neuromuscular Diseases Unit, Department of Neurology, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, 08035, Spain
| | - Miriam Almendrote
- Neurology Department, Hospital Germans Trias i Pujol, Badalona 08916, Spain
| | - Marta Marquié
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona 08028, Spain
| | - Raquel Sánchez-Valle
- Alzheimer’s Disease and Other Cognitive Disorders Unit, Neurology Department, Hospital Clínic, Institut d’Investigacions Biomediques August Pi i Sunyer, University of Barcelona, Barcelona 08036, Spain
| | - Ignacio Illán-Gala
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona 08025, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid 28029, Spain
| | - Oriol Dols-Icardo
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona 08025, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid 28029, Spain
| | - Sara Rubio-Guerra
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona 08025, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid 28029, Spain
| | - Sara Bernal
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid 28029, Spain
- Genetics Department, Hospital de la Santa Creu i Sant Pau, Barcelona 08025, Spain
| | - Marta Caballero-Ávila
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute (IIB Sant Pau) Sant Pau, Barcelona 08025, Spain
- Department of Medicine, Universitat Autònoma de Barcelona (UAB), Barcelona 08025, Spain
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Ana Vesperinas
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute (IIB Sant Pau) Sant Pau, Barcelona 08025, Spain
- Department of Medicine, Universitat Autònoma de Barcelona (UAB), Barcelona 08025, Spain
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Ellen Gelpi
- Neurological Tissue Bank, Biobanc-Hospital Clínic-FRCB-IDIBAPS, Barcelona 08036, Spain
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna 1090, Austria
| | - Ricard Rojas-García
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute (IIB Sant Pau) Sant Pau, Barcelona 08025, Spain
- Department of Medicine, Universitat Autònoma de Barcelona (UAB), Barcelona 08025, Spain
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid 28029, Spain
| |
Collapse
|
3
|
Perri R, Fadda L, Caltagirone C, Carlesimo GA. Subjective clustering in patients with fronto-temporal dementia. APPLIED NEUROPSYCHOLOGY. ADULT 2024; 31:144-154. [PMID: 35014573 DOI: 10.1080/23279095.2021.2002867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In the behavioral variant of frontotemporal dementia (bvFTD) memory deficits have been traditionally considered as due to difficulties in encoding/retrieval frontal strategies. However, the frontal origin of memory deficits in bvFTD has been questioned and hippocampal dysfunction has been also proposed. Here we analyzed bvFTD patients' proficiency in subjectively organizing memories without an external criterion. Twenty bvFTD patients and 20 healthy individuals were assessed with memory and executive tasks. The ability to subjectively organize memories in the immediate recall of a 15 unrelated word list was measured by calculating the index of subjective clustering (ISC) based on the constancies in response order across the five consecutive free recall trials. Results revealed reduced ISC in bvFTD patients with respect to normal controls. In the bvFTD group, the ISC score correlated with the Corsi span backward score and the number of categories achieved on the Modified Card Sorting Test. The bvFTD patients' reduced ISC and its correlation with executive performance suggest that executive deficits underlie their defective strategic organization of memories. However, as ISC did not predict memory accuracy in these patients, the memory deficit may not be the mere expression of their executive difficulties.
Collapse
Affiliation(s)
- Roberta Perri
- Laboratory of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Lucia Fadda
- Laboratory of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Carlo Caltagirone
- Laboratory of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Giovanni A Carlesimo
- Laboratory of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Systems Medicine, Tor Vergata University, Rome, Italy
| |
Collapse
|
4
|
Journe‐Mallet I, Gouju J, Etcharry‐Bouyx F, Chauvire V, Guillet‐Pichon V, Scherer‐Gagou C, Prundean A, Godard S, Lecluse A, Cassereau J, Verny C, Letournel F, Codron P. Design and application of a customizable relational
DataBase
to assess clinicopathological correlations and concomitant pathology in neurodegenerative diseases. Brain Pathol 2022; 33:e13138. [PMID: 36536531 PMCID: PMC10154372 DOI: 10.1111/bpa.13138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
The diagnosis of neurodegenerative diseases is made complex by the heterogenous phenotype of the patients and the regular occurrence of concomitant pathology. Studying clinicopathological correlations in autopsy series is a central approach to improve pathological prediction in clinical practice. However, such method requires a wealth of information, and the use of standard spreadsheet software is hardly suitable. To overcome this constraint, we designed a customizable and freely available neuropathology form with 456 data entry fields driven by an open-source DataBase Management Systems (DBMS) using Structured Query Language (SQL). This approach allowed us to optimize the compilation of clinical and pathological data from our brain collection (264 autopsied patients, 22,885 data points). Information was then easily retrieved using general and specific queries, facilitating the analysis of demographics, clinicopathological correlations, and incidental and concomitant proteinopathies. Tau, amyloid-β and α-synuclein incidental pathology was observed in respectively 78.1%, 42.8%, and 10.7% of all the patients. These proportions increased with age, reaching 100% for Tau pathology after 80. Concomitant proteinopathy was observed in 46.4% of the patients diagnosed with neurodegenerative diseases and prion disease. We observed a particularly high rate of co-pathology in patients with Dementia with Lewy bodies (81.3% of associated Tau and amyloid-β pathology) and Creutzfeldt-Jakob disease (68.4% of associated Tau pathology). Finally, we used specific queries to identify old cases that could meet newly defined neuropathological criteria and revised the diagnosis of a 90-year-old patient to LATE Stage 2. Increasing our understanding of clinicopathological correlations in neurodegenerative diseases is crucial given the implications in clinical diagnosis, biomarker identification and targeted therapies assessment. The precise characterization of clinical and pathological data of autopsy series remains a central approach but the large amount of generated data should encourage a more systematic use of DBMS.
Collapse
Affiliation(s)
- Isabelle Journe‐Mallet
- Laboratoire de neurobiologie et neuropathologie Centre Hospitalier Universitaire d'Angers Angers France
| | - Julien Gouju
- Laboratoire de neurobiologie et neuropathologie Centre Hospitalier Universitaire d'Angers Angers France
| | | | - Valérie Chauvire
- Centre mémoire de ressource et de recherche Centre Hospitalier Universitaire d'Angers Angers France
| | - Virginie Guillet‐Pichon
- Centre mémoire de ressource et de recherche Centre Hospitalier Universitaire d'Angers Angers France
- Centre de référence des maladies neurogénétiques Centre Hospitalier Universitaire d'Angers Angers France
- MITOVASC Univ Angers, Inserm, CNRS, SFR ICAT Angers France
| | - Clarisse Scherer‐Gagou
- Centre de référence des maladies neurogénétiques Centre Hospitalier Universitaire d'Angers Angers France
| | - Adriana Prundean
- Centre de référence des maladies neurogénétiques Centre Hospitalier Universitaire d'Angers Angers France
| | - Sophie Godard
- Unité neurovasculaire Centre Hospitalier Universitaire d'Angers Angers France
| | - Aldéric Lecluse
- Unité neurovasculaire Centre Hospitalier Universitaire d'Angers Angers France
| | - Julien Cassereau
- Centre de référence des maladies neurogénétiques Centre Hospitalier Universitaire d'Angers Angers France
- MITOVASC Univ Angers, Inserm, CNRS, SFR ICAT Angers France
- Centre de référence des maladies neuromusculaires AOC Centre Hospitalier Universitaire d'Angers Angers France
- Centre de ressources et de compétences sur la SLA Centre Hospitalier Universitaire d'Angers Angers France
| | - Christophe Verny
- Centre de référence des maladies neurogénétiques Centre Hospitalier Universitaire d'Angers Angers France
- MITOVASC Univ Angers, Inserm, CNRS, SFR ICAT Angers France
| | - Franck Letournel
- Laboratoire de neurobiologie et neuropathologie Centre Hospitalier Universitaire d'Angers Angers France
| | - Philippe Codron
- Laboratoire de neurobiologie et neuropathologie Centre Hospitalier Universitaire d'Angers Angers France
- MITOVASC Univ Angers, Inserm, CNRS, SFR ICAT Angers France
- Unité neurovasculaire Centre Hospitalier Universitaire d'Angers Angers France
- Centre de référence des maladies neuromusculaires AOC Centre Hospitalier Universitaire d'Angers Angers France
- Centre de ressources et de compétences sur la SLA Centre Hospitalier Universitaire d'Angers Angers France
| |
Collapse
|
5
|
del Campo M, Zetterberg H, Gandy S, Onyike CU, Oliveira F, Udeh‐Momoh C, Lleó A, Teunissen CE, Pijnenburg Y. New developments of biofluid-based biomarkers for routine diagnosis and disease trajectories in frontotemporal dementia. Alzheimers Dement 2022; 18:2292-2307. [PMID: 35235699 PMCID: PMC9790674 DOI: 10.1002/alz.12643] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 02/04/2022] [Accepted: 02/04/2022] [Indexed: 01/31/2023]
Abstract
Frontotemporal dementia (FTD) covers a spectrum of neurodegenerative disorders with different phenotypes, genetic backgrounds, and pathological states. Its clinicopathological diversity challenges the diagnostic process and the execution of clinical trials, calling for specific diagnostic biomarkers of pathologic FTD types. There is also a need for biomarkers that facilitate disease staging, quantification of severity, monitoring in clinics and observational studies, and for evaluation of target engagement and treatment response in clinical trials. This review discusses current FTD biofluid-based biomarker knowledge taking into account the differing applications. The limitations, knowledge gaps, and challenges for the development and implementation of such markers are also examined. Strategies to overcome these hurdles are proposed, including the technologies available, patient cohorts, and collaborative research initiatives. Access to robust and reliable biomarkers that define the exact underlying pathophysiological FTD process will meet the needs for specific diagnosis, disease quantitation, clinical monitoring, and treatment development.
Collapse
Affiliation(s)
- Marta del Campo
- Departamento de Ciencias Farmacéuticas y de la SaludFacultad de FarmaciaUniversidad San Pablo‐CEUCEU UniversitiesMadridSpain
| | - Henrik Zetterberg
- Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgGothenburgSweden,Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden,UK Dementia Research Institute at UCLLondonUK,Department of Neurodegenerative DiseaseUCL Institute of NeurologyLondonUK,Hong Kong Center for Neurodegenerative DiseasesHong KongChina
| | - Sam Gandy
- Department of NeurologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Chiadi U Onyike
- Division of Geriatric Psychiatry and NeuropsychiatryThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Fabricio Oliveira
- Department of Neurology and NeurosurgeryEscola Paulista de MedicinaFederal University of São Paulo (UNIFESP)São PauloSão PauloBrazil
| | - Chi Udeh‐Momoh
- Ageing Epidemiology Research UnitSchool of Public HealthFaculty of MedicineImperial College LondonLondonUK,Translational Health SciencesFaculty of MedicineUniversity of BristolBristolUK
| | - Alberto Lleó
- Neurology DepartmentHospital de la Santa Creu I Sant PauBarcelonaSpain
| | - Charlotte E. Teunissen
- Neurochemistry LaboratoryDepartment of Clinical ChemistryAmsterdam NeuroscienceAmsterdam University Medical CentersVrije UniversiteitAmsterdamthe Netherlands
| | - Yolande Pijnenburg
- Alzheimer Center AmsterdamDepartment of NeurologyAmsterdam NeuroscienceVrije Universiteit AmsterdamAmsterdam UMCAmsterdamthe Netherlands
| |
Collapse
|
6
|
Xu C, Zhao L, Dong C. A Review of Application of Aβ42/40 Ratio in Diagnosis and Prognosis of Alzheimer’s Disease. J Alzheimers Dis 2022; 90:495-512. [DOI: 10.3233/jad-220673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The number of patients with Alzheimer’s disease (AD) and non-Alzheimer’s disease (non-AD) has drastically increased over recent decades. The amyloid cascade hypothesis attributes a vital role to amyloid-β protein (Aβ) in the pathogenesis of AD. As the main pathological hallmark of AD, amyloid plaques consist of merely the 42 and 40 amino acid variants of Aβ (Aβ 42 and Aβ 40). The cerebrospinal fluid (CSF) biomarker Aβ 42/40 has been extensively investigated and eventually integrated into important diagnostic tools to support the clinical diagnosis of AD. With the development of highly sensitive assays and technologies, blood-based Aβ 42/40, which was obtained using a minimally invasive and cost-effective method, has been proven to be abnormal in synchrony with CSF biomarker values. This paper presents the recent progress of the CSF Aβ 42/40 ratio and plasma Aβ 42/40 for AD as well as their potential clinical application as diagnostic markers or screening tools for dementia.
Collapse
Affiliation(s)
- Chang Xu
- Department of Neurology, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Li Zhao
- Department of Neurology, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Chunbo Dong
- Department of Neurology, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| |
Collapse
|
7
|
Kamalian A, Khodadadifar T, Saberi A, Masoudi M, Camilleri JA, Eickhoff CR, Zarei M, Pasquini L, Laird AR, Fox PT, Eickhoff SB, Tahmasian M. Convergent regional brain abnormalities in behavioral variant frontotemporal dementia: A neuroimaging meta-analysis of 73 studies. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2022; 14:e12318. [PMID: 35664889 PMCID: PMC9148620 DOI: 10.1002/dad2.12318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/13/2022] [Accepted: 04/10/2022] [Indexed: 12/19/2022]
Abstract
Introduction Numerous studies have reported brain alterations in behavioral variant frontotemporal dementia (bvFTD). However, they pointed to inconsistent findings. Methods We used a meta‐analytic approach to identify the convergent structural and functional brain abnormalities in bvFTD. Following current best‐practice neuroimaging meta‐analysis guidelines, we searched PubMed and Embase databases and performed reference tracking. Then, the coordinates of group comparisons between bvFTD and controls from 73 studies were extracted and tested for convergence using activation likelihood estimation. Results We identified convergent abnormalities in the anterior cingulate cortices, anterior insula, amygdala, paracingulate, striatum, and hippocampus. Task‐based and resting‐state functional connectivity pointed to the networks that are connected to the obtained consistent regions. Functional decoding analyses suggested associated dysfunction of emotional processing, interoception, reward processing, higher‐order cognitive functions, and olfactory and gustatory perceptions in bvFTD. Discussion Our findings highlighted the key role of the salience network and subcortical regions in the pathophysiology of bvFTD.
Collapse
Affiliation(s)
- Aida Kamalian
- School of Medicine Tehran University of Medical Sciences Tehran Iran
| | - Tina Khodadadifar
- School of Cognitive Sciences Institute for Research in Fundamental Sciences Tehran Iran
| | - Amin Saberi
- Institute of Neuroscience and Medicine Brain and Behavior (INM-7) Research Center Jülich Jülich Germany.,Institute for Systems Neuroscience Medical Faculty Heinrich-Heine University Düsseldorf Düsseldorf Germany
| | - Maryam Masoudi
- School of Medicine Tehran University of Medical Sciences Tehran Iran
| | - Julia A Camilleri
- Institute of Neuroscience and Medicine Brain and Behavior (INM-7) Research Center Jülich Jülich Germany.,Institute for Systems Neuroscience Medical Faculty Heinrich-Heine University Düsseldorf Düsseldorf Germany
| | - Claudia R Eickhoff
- Institute of Clinical Neuroscience and Medical Psychology Heinrich Heine University Düsseldorf Düsseldorf Germany.,Institute of Neuroscience and Medicine Research Center Jülich Structural and Functional Organisation of the Brain (INM-1) Jülich Germany
| | - Mojtaba Zarei
- Institute of Medical Science and Technology Shahid Beheshti University Tehran Iran
| | - Lorenzo Pasquini
- Department of Neurology Memory and Aging Center University of California-San Francisco San Francisco California USA
| | - Angela R Laird
- Department of Physics Florida International University Miami Florida USA
| | - Peter T Fox
- Research Imaging Institute University of Texas Health Science Center San Antonio Texas USA.,South Texas Veterans Health Care System San Antonio Texas USA
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine Brain and Behavior (INM-7) Research Center Jülich Jülich Germany.,Institute for Systems Neuroscience Medical Faculty Heinrich-Heine University Düsseldorf Düsseldorf Germany
| | - Masoud Tahmasian
- Institute of Neuroscience and Medicine Brain and Behavior (INM-7) Research Center Jülich Jülich Germany.,Institute for Systems Neuroscience Medical Faculty Heinrich-Heine University Düsseldorf Düsseldorf Germany
| |
Collapse
|
8
|
Recent Advances in Frontotemporal Dementia. Neurol Sci 2022:1-10. [DOI: 10.1017/cjn.2022.69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
9
|
Ruggeri M, Ricci M, Gerace C, Blundo C. Late-onset obsessive-compulsive disorder as the initial manifestation of possible behavioural variant Alzheimer's disease. Cogn Neuropsychiatry 2022; 27:11-19. [PMID: 34713765 DOI: 10.1080/13546805.2021.1996342] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION A late-onset obsessive-compulsive disorder (OCD) might be a challenging diagnostic issue because of the overlapping with the dementia conditions more related to frontal lobe pathology. We aim to describe and investigate how this condition might represent the isolated long-lasting symptomatology of a frontal Alzheimer's disease (AD). METHODS An elderly woman with normal cognitive status showed a subacute onset of OCD with contamination obsession and washing compulsion. We conducted neuropsychological assessments and neuroimaging examinations at the onset and at 3-years follow-up. RESULTS At 3-years follow-up, the patient developed cognitive deterioration, frontal behavioural disorders and improvement of OCD. Cognitive assessment showed impairments of executive functions, episodic memory, and constructional apraxia, according to the involvement of fronto-mesial, temporal and parietal regions at neuroimaging. A clinical diagnosis of possible behavioural variant AD was assigned. CONCLUSION A typical OCD might be the long-lasting initial manifestation of a possible behavioural variant AD due to dysfunctions of the anterior cingulate network.
Collapse
Affiliation(s)
- Massimiliano Ruggeri
- Unit of Cognitive Disorders and Dementia, Department of Neuroscience, San Camillo-Forlanini Hospital, Rome, Italy
| | - Monica Ricci
- Unit of Cognitive Disorders and Dementia, Department of Neuroscience, San Camillo-Forlanini Hospital, Rome, Italy
| | - Carmela Gerace
- Unit of Cognitive Disorders and Dementia, Department of Neuroscience, San Camillo-Forlanini Hospital, Rome, Italy
| | - Carlo Blundo
- Unit of Cognitive Disorders and Dementia, Department of Neuroscience, San Camillo-Forlanini Hospital, Rome, Italy
| |
Collapse
|
10
|
Ossenkoppele R, Singleton EH, Groot C, Dijkstra AA, Eikelboom WS, Seeley WW, Miller B, Laforce RJ, Scheltens P, Papma JM, Rabinovici GD, Pijnenburg YAL. Research Criteria for the Behavioral Variant of Alzheimer Disease: A Systematic Review and Meta-analysis. JAMA Neurol 2021; 79:48-60. [PMID: 34870696 PMCID: PMC8649917 DOI: 10.1001/jamaneurol.2021.4417] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Importance The behavioral variant of Alzheimer disease (bvAD) is characterized by early and predominant behavioral deficits caused by AD pathology. This AD phenotype is insufficiently understood and lacks standardized clinical criteria, limiting reliability and reproducibility of diagnosis and scientific reporting. Objective To perform a systematic review and meta-analysis of the bvAD literature and use the outcomes to propose research criteria for this syndrome. Data Sources A systematic literature search in PubMed/MEDLINE and Web of Science databases (from inception through April 7, 2021) was performed in duplicate. Study Selection Studies reporting on behavioral, neuropsychological, or neuroimaging features in bvAD and, when available, providing comparisons with typical amnestic-predominant AD (tAD) or behavioral variant frontotemporal dementia (bvFTD). Data Extraction and Synthesis This analysis involved random-effects meta-analyses on group-level study results of clinical data and systematic review of the neuroimaging literature. The study was performed following Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines. Main Outcomes and Measures Behavioral symptoms (neuropsychiatric symptoms and bvFTD core clinical criteria), cognitive function (global cognition, episodic memory, and executive functioning), and neuroimaging features (structural magnetic resonance imaging, [18F]fluorodeoxyglucose-positron emission tomography, perfusion single-photon emission computed tomography, amyloid positron emission tomography, and tau positron emission tomography). Results The search led to the assessment of 83 studies, including 13 suitable for meta-analysis. Data were collected for 591 patients with bvAD. There was moderate to substantial heterogeneity and moderate risk of bias across studies. Cases with bvAD showed more severe behavioral symptoms than tAD (standardized mean difference [SMD], 1.16 [95% CI, 0.74-1.59]; P < .001) and a trend toward less severe behavioral symptoms compared with bvFTD (SMD, -0.22 [95% CI, -0.47 to 0.04]; P = .10). Meta-analyses of cognitive data indicated worse executive performance in bvAD vs tAD (SMD, -1.03 [95% CI, -1.74 to -0.32]; P = .008) but not compared with bvFTD (SMD, -0.61 [95% CI, -1.75 to 0.53]; P = .29). Cases with bvAD showed a nonsignificant difference of worse memory performance compared with bvFTD (SMD, -1.31 [95% CI, -2.75 to 0.14]; P = .08) but did not differ from tAD (SMD, 0.43 [95% CI, -0.46 to 1.33]; P = .34). The neuroimaging literature revealed 2 distinct bvAD neuroimaging phenotypes: an AD-like pattern with relative frontal sparing and a relatively more bvFTD-like pattern characterized by additional anterior involvement, with the AD-like pattern being more prevalent. Conclusions and Relevance These data indicate that bvAD is clinically most similar to bvFTD, while it shares most pathophysiological features with tAD. Based on these insights, we propose research criteria for bvAD aimed at improving the consistency and reliability of future research and aiding the clinical assessment of this AD phenotype.
Collapse
Affiliation(s)
- Rik Ossenkoppele
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands.,Lund University, Clinical Memory Research Unit, Lund, Sweden
| | - Ellen H Singleton
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Colin Groot
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Anke A Dijkstra
- Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centre, Location VUMC, Amsterdam, the Netherlands
| | - Willem S Eikelboom
- Department of Neurology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - William W Seeley
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco
| | - Bruce Miller
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco
| | - Robert Jr Laforce
- Clinique Interdisciplinaire de Mémoire, Centre Hospitalier Universitaire de Québec, Québec, Canada
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Janne M Papma
- Department of Neurology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Gil D Rabinovici
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco.,Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco.,Weill Institute for Neurosciences, University of California, San Francisco, San Francisco.,Associate Editor, JAMA Neurology
| | - Yolande A L Pijnenburg
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| |
Collapse
|
11
|
Kowalska M, Wize K, Prendecki M, Lianeri M, Kozubski W, Dorszewska J. Genetic Variants and Oxidative Stress in Alzheimer's Disease. Curr Alzheimer Res 2021; 17:208-223. [PMID: 32091332 DOI: 10.2174/1567205017666200224121447] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 01/08/2020] [Accepted: 02/12/2020] [Indexed: 12/26/2022]
Abstract
In an aging society, the number of people suffering from Alzheimer's Disease (AD) is still growing. Currently, intensive research is being carried out on the pathogenesis of AD. The results of these studies indicated that oxidative stress plays an important role in the onset and development of this disease. Moreover, in AD oxidative stress is generated by both genetic and biochemical factors as well as the functioning of the systems responsible for their formation and removal. The genetic factors associated with the regulation of the redox system include TOMM40, APOE, LPR, MAPT, APP, PSEN1 and PSEN2 genes. The most important biochemical parameters related to the formation of oxidative species in AD are p53, Homocysteine (Hcy) and a number of others. The formation of Reactive Oxygen Species (ROS) is also related to the efficiency of the DNA repair system, the effectiveness of the apoptosis, autophagy and mitophagy processes as well as the antioxidant potential. However, these factors are responsible for the development of many disorders, often with similar clinical symptoms, especially in the early stages of the disease. The discovery of markers of the early diagnosis of AD may contribute to the introduction of pharmacotherapy and slow down the progression of this disease.
Collapse
Affiliation(s)
- Marta Kowalska
- Laboratory of Neurobiology, Poznan University of Medical Sciences, Poznan, Poland
| | - Katarzyna Wize
- Laboratory of Neurobiology, Poznan University of Medical Sciences, Poznan, Poland
| | - Michał Prendecki
- Laboratory of Neurobiology, Poznan University of Medical Sciences, Poznan, Poland
| | - Margarita Lianeri
- Laboratory of Neurobiology, Poznan University of Medical Sciences, Poznan, Poland
| | - Wojciech Kozubski
- Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Jolanta Dorszewska
- Laboratory of Neurobiology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
12
|
Marelli C, Hourregue C, Gutierrez LA, Paquet C, Menjot de Champfleur N, De Verbizier D, Jacob M, Dubois J, Maleska AM, Hirtz C, Navucet S, Bennys K, Dumurgier J, Cognat E, Berr C, Magnin E, Lehmann S, Gabelle A. Cerebrospinal Fluid and Plasma Biomarkers do not Differ in the Presenile and Late-Onset Behavioral Variants of Frontotemporal Dementia. J Alzheimers Dis 2021; 74:903-911. [PMID: 32083577 DOI: 10.3233/jad-190378] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Memory troubles and hippocampal atrophy are considered more frequent and focal atrophy less severe in late-onset (>65 years) than in presenile behavioral variant of frontotemporal dementia (bvFTD). OBJECTIVE To compare cerebrospinal fluid (CSF) and plasma biomarkers in late-onset and presenile bvFTD. METHODS Multicentric retrospective study (2007-2017) on patients with clinical diagnosis of bvFTD. RESULTS This study included 44 patients (67%) with presenile and 22 (33%) with late-onset bvFTD (comparable mean disease duration; n = 11 with causal mutations). Hippocampal atrophy was more frequent (80% versus 25.8%) and severe in late-onset bvFTD (median Scheltens score: 3 [0-4] versus 1 [0-3]), without difference after adjustment for age. Lobar atrophy and focal hypometabolism/hypoperfusion were not different between groups. The median CSF Aβ1-42 and phosphorylated tau (P-tau) concentrations were in the normal range and comparable between groups. Axonal neurodegeneration biomarkers were within the normal range (CSF T-tau; plasma T-tau in late-onset bvFTD) or higher (plasma neurofilament light chain (NFL); plasma T-tau in presenile bvFTD) than the normal values, but globally not different between bvFTD groups. Plasma glial fibrillary acid protein (GFAP) was strongly increased in both bvFTD groups compared with the values in controls of the same age. CONCLUSION The CSF and plasma biomarker profiles did not suggest a more aggressive neurodegeneration in the presenile group (comparable T-tau, NFL, and GFAP levels) or the co-existence of Alzheimer's disease in the late-onset group (comparable and within normal range CSF Aβ1-42 and P-tau). The severity of the neurodegenerative process seems comparable in presenile and late-onset bvFTD.
Collapse
Affiliation(s)
- Cecilia Marelli
- Memory Research and Resources Alzheimer Center, Department of Neurology, University Hospital Center, Gui de Chauliac Hospital, Montpellier, France.,Inserm U1198 MMDN, Montpellier, France; EPHE, Paris, France, Montpellier, France
| | - Claire Hourregue
- Memory Research and Resources Alzheimer Center, Department of Neurology, University Hospital Center, Gui de Chauliac Hospital, Montpellier, France
| | - Laure-Anne Gutierrez
- Memory Research and Resources Alzheimer Center, Department of Neurology, University Hospital Center, Gui de Chauliac Hospital, Montpellier, France.,INSERM U1061, Univ Montpellier, Neuropsychiatry: Epidemiological and Clinical Research, Montpellier, France
| | - Claire Paquet
- Center of Cognitive Neurology, Lariboisière Fernand-Widal Hospital, APHP, University of Paris Diderot, Paris, France
| | - Nicolas Menjot de Champfleur
- Institut d'Imagerie Fonctionnelle Humaine, I2FH, University Hospital Center, Gui de Chauliac Hospital, Montpellier, France.,Department of Neuroradiology, University Hospital Center, Gui de Chauliac Hospital, Montpellier, France.,Team "Plasticity of Central Nervous System, Stem Cells and Glial Tumors, " Institut National de la Santé et de la Recherche Médicale Unité 583, Institut of Neurosciences of Montpellier, Saint Eloi Hospital, Montpellier, France
| | - Delphine De Verbizier
- Department of Nuclear Medicine, University Hospital Center, Gui de Chauliac Hospital, Montpellier, France
| | - Melissa Jacob
- Memory Research and Resources Alzheimer Center, Department of Neurology, University Hospital Center, Gui de Chauliac Hospital, Montpellier, France
| | - Jonathan Dubois
- INSERM U1061, Univ Montpellier, Neuropsychiatry: Epidemiological and Clinical Research, Montpellier, France
| | - Aleksandra Maceski Maleska
- Laboratoire de Biochimie Protéomique Clinique, INSERM-UM 1183, University Hospital Center, University of Montpellier, Montpellier, France
| | - Christophe Hirtz
- Laboratoire de Biochimie Protéomique Clinique, INSERM-UM 1183, University Hospital Center, University of Montpellier, Montpellier, France
| | - Sophie Navucet
- Memory Research and Resources Alzheimer Center, Department of Neurology, University Hospital Center, Gui de Chauliac Hospital, Montpellier, France
| | - Karim Bennys
- Memory Research and Resources Alzheimer Center, Department of Neurology, University Hospital Center, Gui de Chauliac Hospital, Montpellier, France
| | - Julien Dumurgier
- Center of Cognitive Neurology, Lariboisière Fernand-Widal Hospital, APHP, University of Paris Diderot, Paris, France
| | - Emmanuel Cognat
- Center of Cognitive Neurology, Lariboisière Fernand-Widal Hospital, APHP, University of Paris Diderot, Paris, France
| | - Claudine Berr
- Memory Research and Resources Alzheimer Center, Department of Neurology, University Hospital Center, Gui de Chauliac Hospital, Montpellier, France.,INSERM U1061, Univ Montpellier, Neuropsychiatry: Epidemiological and Clinical Research, Montpellier, France
| | - Eloi Magnin
- Department of Neurology, Centre Mémoire Ressources Recherche Besançon Franche-Comté, CHU de Besançon, Besançon, France
| | - Sylvain Lehmann
- Laboratoire de Biochimie Protéomique Clinique, INSERM-UM 1183, University Hospital Center, University of Montpellier, Montpellier, France
| | - Audrey Gabelle
- Memory Research and Resources Alzheimer Center, Department of Neurology, University Hospital Center, Gui de Chauliac Hospital, Montpellier, France.,INSERM U1061, Univ Montpellier, Neuropsychiatry: Epidemiological and Clinical Research, Montpellier, France
| |
Collapse
|
13
|
Illán-Gala I, Falgàs N, Friedberg A, Castro-Suárez S, Keret O, Rogers N, Oz D, Nigro S, Quattrone A, Quattrone A, Wolf A, Younes K, Santos-Santos M, Borrego-Écija S, Cobigo Y, Dols-Icardo O, Lladó A, Sánchez-Valle R, Clarimon J, Blesa R, Alcolea D, Fortea J, Lleó A, Grinberg LT, Spina S, Kramer JH, Rabinovici GD, Boxer A, Gorno Tempini ML, Miller BL, Seeley WW, Rosen HJ, Perry DC. Diagnostic Utility of Measuring Cerebral Atrophy in the Behavioral Variant of Frontotemporal Dementia and Association With Clinical Deterioration. JAMA Netw Open 2021; 4:e211290. [PMID: 33704477 PMCID: PMC7953307 DOI: 10.1001/jamanetworkopen.2021.1290] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
IMPORTANCE The presence of atrophy on magnetic resonance imaging can support the diagnosis of the behavioral variant of frontotemporal dementia (bvFTD), but reproducible measurements are lacking. OBJECTIVE To assess the diagnostic and prognostic utility of 6 visual atrophy scales (VAS) and the Magnetic Resonance Parkinsonism Index (MRPI). DESIGN, SETTING, AND PARTICIPANTS In this diagnostic/prognostic study, data from 235 patients with bvFTD and 225 age- and magnetic resonance imaging-matched control individuals from 3 centers were collected from December 1, 1998, to September 30, 2019. One hundred twenty-one participants with bvFTD had high confidence of frontotemporal lobar degeneration (FTLD) (bvFTD-HC), and 19 had low confidence of FTLD (bvFTD-LC). Blinded clinicians applied 6 previously validated VAS, and the MRPI was calculated with a fully automated approach. Cortical thickness and subcortical volumes were also measured for comparison. Data were analyzed from February 1 to June 30, 2020. MAIN OUTCOMES AND MEASURES The main outcomes of this study were bvFTD-HC or a neuropathological diagnosis of 4-repeat (4R) tauopathy and the clinical deterioration rate (assessed by longitudinal measurements of Clinical Dementia Rating Sum of Boxes). Measures of cerebral atrophy included VAS scores, the bvFTD atrophy score (sum of VAS scores in orbitofrontal, anterior cingulate, anterior temporal, medial temporal lobe, and frontal insula regions), the MRPI, and other computerized quantifications of cortical and subcortical volumes. The areas under the receiver operating characteristic curve (AUROC) were calculated for the differentiation of participants with bvFTD-HC and bvFTD-LC and controls. Linear mixed models were used to evaluate the ability of atrophy measures to estimate longitudinal clinical deterioration. RESULTS Of the 460 included participants, 296 (64.3%) were men, and the mean (SD) age was 62.6 (11.4) years. The accuracy of the bvFTD atrophy score for the differentiation of bvFTD-HC from controls (AUROC, 0.930; 95% CI, 0.903-0.957) and bvFTD-HC from bvFTD-LC (AUROC, 0.880; 95% CI, 0.787-0.972) was comparable to computerized measures (AUROC, 0.973 [95% CI, 0.954-0.993] and 0.898 [95% CI, 0.834-0.962], respectively). The MRPI was increased in patients with bvFTD and underlying 4R tauopathies compared with other FTLD subtypes (14.1 [2.0] vs 11.2 [2.6] points; P < .001). Higher bvFTD atrophy scores were associated with faster clinical deterioration in bvFTD (1.86-point change in Clinical Dementia Rating Sum of Boxes score per bvFTD atrophy score increase per year; 95% CI, 0.99-2.73; P < .001). CONCLUSIONS AND RELEVANCE Based on these study findings, in bvFTD, VAS increased the diagnostic certainty of underlying FTLD, and the MRPI showed potential for the detection of participants with underlying 4R tauopathies. These widely available measures of atrophy can also be useful to estimate longitudinal clinical deterioration.
Collapse
Affiliation(s)
- Ignacio Illán-Gala
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Atlantic Fellow for Equity in Brain Health, Department of Neurology, University of California, San Francisco
| | - Neus Falgàs
- Atlantic Fellow for Equity in Brain Health, Department of Neurology, University of California, San Francisco
- Alzheimer’s Disease and Other Cognitive Disorders Unit, Department of Neurology, Hospital Clínic, Institut d’Investigació Biomèdica August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Adit Friedberg
- Atlantic Fellow for Equity in Brain Health, Department of Neurology, University of California, San Francisco
| | - Sheila Castro-Suárez
- Atlantic Fellow for Equity in Brain Health, Department of Neurology, University of California, San Francisco
| | - Ophir Keret
- Atlantic Fellow for Equity in Brain Health, Department of Neurology, University of California, San Francisco
| | - Nicole Rogers
- Atlantic Fellow for Equity in Brain Health, Department of Neurology, University of California, San Francisco
| | - Didem Oz
- Atlantic Fellow for Equity in Brain Health, Department of Neurology, University of California, San Francisco
| | - Salvatore Nigro
- Neuroscience Centre, Magna Graecia University, Catanzaro, Italy
| | - Andrea Quattrone
- Department of Medical and Surgical Sciences, Institute of Neurology, Magna Graecia University, Catanzaro, Italy
| | - Aldo Quattrone
- Neuroscience Centre, Magna Graecia University, Catanzaro, Italy
- Neuroimaging Research Unit, Institute of Molecular Bioimaging and Physiology, National Research Council, Catanzaro, Italy
| | - Amy Wolf
- Memory and Aging Center, Department of Neurology, University of California, San Francisco
| | - Kyan Younes
- Memory and Aging Center, Department of Neurology, University of California, San Francisco
| | - Miguel Santos-Santos
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sergi Borrego-Écija
- Alzheimer’s Disease and Other Cognitive Disorders Unit, Department of Neurology, Hospital Clínic, Institut d’Investigació Biomèdica August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Yann Cobigo
- Memory and Aging Center, Department of Neurology, University of California, San Francisco
| | - Oriol Dols-Icardo
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Albert Lladó
- Alzheimer’s Disease and Other Cognitive Disorders Unit, Department of Neurology, Hospital Clínic, Institut d’Investigació Biomèdica August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Raquel Sánchez-Valle
- Alzheimer’s Disease and Other Cognitive Disorders Unit, Department of Neurology, Hospital Clínic, Institut d’Investigació Biomèdica August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Jordi Clarimon
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Rafael Blesa
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Daniel Alcolea
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Juan Fortea
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alberto Lleó
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Lea T. Grinberg
- Memory and Aging Center, Department of Neurology, University of California, San Francisco
| | - Salvatore Spina
- Memory and Aging Center, Department of Neurology, University of California, San Francisco
| | - Joel H. Kramer
- Memory and Aging Center, Department of Neurology, University of California, San Francisco
| | - Gil D. Rabinovici
- Memory and Aging Center, Department of Neurology, University of California, San Francisco
| | - Adam Boxer
- Memory and Aging Center, Department of Neurology, University of California, San Francisco
| | | | - Bruce L. Miller
- Memory and Aging Center, Department of Neurology, University of California, San Francisco
| | - William W. Seeley
- Memory and Aging Center, Department of Neurology, University of California, San Francisco
| | - Howard J. Rosen
- Memory and Aging Center, Department of Neurology, University of California, San Francisco
| | - David C. Perry
- Memory and Aging Center, Department of Neurology, University of California, San Francisco
| |
Collapse
|
14
|
Cazzaniga FA, De Luca CMG, Bistaffa E, Consonni A, Legname G, Giaccone G, Moda F. Cell-free amplification of prions: Where do we stand? PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 175:325-358. [PMID: 32958239 DOI: 10.1016/bs.pmbts.2020.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neurodegenerative diseases (NDs) such as Alzheimer's disease (AD), Parkinson's disease (PD), atypical parkinsonisms, frontotemporal dementia (FTLD) and prion diseases are characterized by the accumulation of misfolded proteins in the central nervous system (CNS). Although the cause for the initiation of protein aggregation is not well understood, these aggregates are disease-specific. For instance, AD is characterized by the intraneuronal accumulation of tau and extracellular deposition of amyloid-β (Aβ), PD is marked by the intraneuronal accumulation of α-synuclein, many FTLD are associated with the accumulation of TDP-43 while prion diseases show aggregates of misfolded prion protein. Hence, misfolded proteins are considered disease-specific biomarkers and their identification and localization in the CNS, collected postmortem, is required for a definitive diagnosis. With the development of two innovative cell-free amplification techniques named Protein Misfolding Cyclic Amplification (PMCA) and Real-Time Quaking-Induced Conversion (RT-QuIC), traces of disease-specific biomarkers were found in CSF and other peripheral tissues (e.g., urine, blood, and olfactory mucosa) of patients with different NDs. These techniques exploit an important feature shared by many misfolded proteins, that is their ability to interact with their normally folded counterparts and force them to undergo similar structural rearrangements. Essentially, RT-QuIC and PMCA mimic in vitro the same pathological processes of protein misfolding which occur in vivo in a very rapid manner. For this reason, they have been employed for studying different aspects of protein misfolding but, overall, they seem to be very promising for the premortem diagnosis of NDs.
Collapse
Affiliation(s)
- Federico Angelo Cazzaniga
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Unit of Neurology 5 and Neuropathology, Milan, Italy
| | | | - Edoardo Bistaffa
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Unit of Neurology 5 and Neuropathology, Milan, Italy
| | - Alessandra Consonni
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Milan, Italy
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA), Trieste, Italy
| | - Giorgio Giaccone
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Unit of Neurology 5 and Neuropathology, Milan, Italy
| | - Fabio Moda
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Unit of Neurology 5 and Neuropathology, Milan, Italy.
| |
Collapse
|
15
|
Ikeda M, Kuwabara T, Takai E, Kasahara H, Furuta M, Sekine A, Makioka K, Yamazaki T, Fujita Y, Nagashima K, Higuchi T, Tsushima Y, Ikeda Y. Increased Neurofilament Light Chain and YKL-40 CSF Levels in One Japanese IBMPFD Patient With VCP R155C Mutation: A Clinical Case Report With CSF Biomarker Analyses. Front Neurol 2020; 11:757. [PMID: 32849216 PMCID: PMC7431878 DOI: 10.3389/fneur.2020.00757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 06/19/2020] [Indexed: 12/12/2022] Open
Abstract
Inclusion body myopathy (IBM) with Paget's disease of bone (PDB) and frontotemporal dementia (IBMPFD) presents with multiple symptoms and an unknown etiology. Valosin-containing protein (VCP) has been identified as the main causative gene of IBMPFD. However, no studies on neurofilament light chain (NFL) as a cerebrospinal fluid (CSF) marker of axonal neurodegeneration or on YKL-40 as a CSF marker of glial neuroinflammation have been conducted in IBMPFD patients with VCP mutations. A 65-year-old man presented with progressive muscle atrophy and weakness of all limbs, non-fluent aphasia, and changes in personality and behavior. Cerebral MRI revealed bilateral frontal and temporal atrophy. 99mTc-HMDP bone scintigraphy and pelvic CT revealed remodeling changes and active osteoblastic accumulations in the right medial iliac bone. Muscle biopsy demonstrated multiple rimmed vacuoles in muscle cells with myogenic and neurogenic pathological alterations. After the patient was clinically diagnosed with IBMPFD, DNA analysis of the VCP gene revealed a cytosine (C) to thymine (T) (C→ T) mutation, resulting in an amino acid exchange of arginine to cysteine (p.R155C mutation). The CSF levels of NFL at two time points (12 years apart) were higher than those in non-dementia controls (CTR) and Alzheimer's disease (AD); lower than those in frontotemporal dementia with motor neuron disease (FTD-MND); and comparable to those in patients with behavioral variant frontotemporal dementia (bvFTD), progressive supranuclear palsy (PSP), and corticobasal syndrome (CBS). The CSF levels of YKL-40 were comparable at both time points and higher than those in CTR; lower than those in FTD-MND; and comparable to those in bvFTD, PSP, CBS, and AD. The CSF levels of phosphorylated tau 181 (P-Tau) and total tau (T-Tau) were not significantly different from those in CTR and other neurodegenerative diseases, except those in AD, which were significantly elevated. This is the first report that demonstrates increased NFL and YKL-40 CSF levels in an IBMPFD patient with a VCP mutation (p.R155C); NFL and YKL-40 levels were comparable to those in bvFTD, PSP, CBS, and AD and higher than those in CTR. Our results suggest that IBMPFD neuropathology may involve both axonal neurodegeneration and glial neuroinflammation.
Collapse
Affiliation(s)
- Masaki Ikeda
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Takeo Kuwabara
- Department of Neurology, Jobu Hospital for Respiratory Diseases, Maebashi, Japan
| | - Eriko Takai
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hiroo Kasahara
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Minori Furuta
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Akiko Sekine
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Kouki Makioka
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Tsuneo Yamazaki
- Department of Occupational Therapy, Gunma University Graduate School of Health Sciences, Maebashi, Japan
| | - Yukio Fujita
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Kazuaki Nagashima
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Tetsuya Higuchi
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yoshito Tsushima
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yoshio Ikeda
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
16
|
Chaudhry A, Houlden H, Rizig M. Novel fluid biomarkers to differentiate frontotemporal dementia and dementia with Lewy bodies from Alzheimer's disease: A systematic review. J Neurol Sci 2020; 415:116886. [PMID: 32428759 DOI: 10.1016/j.jns.2020.116886] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/16/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022]
Abstract
RATIONALE Frontotemporal dementia (FTD) and dementia with Lewy bodies (DLB) are two common forms of neurodegenerative dementia, subsequent to Alzheimer's disease (AD). AD is the only dementia that includes clinically validated cerebrospinal fluid (CSF) biomarkers in the diagnostic criteria. FTD and DLB often overlap with AD in their clinical and pathological features, making it challenging to differentiate between these conditions. AIM This systematic review aimed to identify if novel fluid biomarkers are useful in differentiating FTD and DLB from AD. Increasing the certainty of the differentiation between dementia subtypes would be advantageous clinically and in research. METHODS PubMed and Scopus were searched for studies that quantified and assessed diagnostic accuracy of novel fluid biomarkers in clinically diagnosed patients with FTD or DLB, in comparison to patients with AD. Meta-analyses were performed on biomarkers that were quantified in 3 studies or more. RESULTS The search strategy yielded 614 results, from which, 27 studies were included. When comparing bio-fluid levels in AD and FTD patients, neurofilament light chain (NfL) level was often higher in FTD, whilst brain soluble amyloid precursor protein β (sAPPβ) was higher in patients with AD. When comparing bio-fluid levels in AD and DLB patients, α-synuclein ensued heterogeneous findings, while the noradrenaline metabolite (MHPG) was found to be lower in DLB. Ratios of Aβ42/Aβ38 and Aβ42/Aβ40 were lower in AD than FTD and DLB and offered better diagnostic accuracy than raw amyloid-β (Aβ) concentrations. CONCLUSIONS Several promising novel biomarkers were highlighted in this review. Combinations of fluid biomarkers were more often useful than individual biomarkers in distinguishing subtypes of dementia. Considering the heterogeneity in methods and results between the studies, further validation, ideally with longitudinal prospective designs with large sample sizes and unified protocols, are fundamental before conclusions can be finalised.
Collapse
Affiliation(s)
- Aiysha Chaudhry
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, United Kingdom
| | - Henry Houlden
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, United Kingdom
| | - Mie Rizig
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, United Kingdom.
| |
Collapse
|
17
|
Update on PET in neurodegenerative and neuroinflammatory disorders manifesting on a behavioural level: imaging for differential diagnosis. Curr Opin Neurol 2020; 32:548-556. [PMID: 31107281 DOI: 10.1097/wco.0000000000000706] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW To give an update on recent findings concerning the use of PET for differential diagnosis in neurodegenerative and neuroinflammatory disorders manifesting on a behavioural level. RECENT FINDINGS Although accurate differential diagnosis of dementia can be achieved by imaging disease-specific patterns of cerebral glucose metabolism with [F]fluorodeoxyglucose ([F]FDG)-PET, the diagnostic impact of [F]FDG-PET in primary psychiatric disorders is limited. Amyloid-beta PET provides an incremental value beyond [F]FDG-PET in the differential diagnosis of dementia and was proposed as a biomarker defining the so-called Alzheimer continuum. Recently developed tau-specific tracers might also aid in the diagnostic process (biological definition of Alzheimer's disease together with amyloid-beta). Surpassing the diagnostic accuracy of other techniques, such as MRI, [F]FDG-PET has also gained widespread clinical use for diagnosis and follow-up of paraneoplastic and autoimmune disorders of the central nervous system (CNS) as an important differential diagnosis for rapid progressive dementia and subacute onset of psychiatric syndromes. SUMMARY Molecular neuroimaging with PET is an established method for the differential diagnosis of neurodegenerative and autoimmune CNS disorders manifesting on a behavioural level with significant therapeutic and prognostic impact. Future prospective studies are needed to define the value of tau imaging for diagnosis and prognosis in neurodegenerative disorders.
Collapse
|
18
|
Gossye H, Van Broeckhoven C, Engelborghs S. The Use of Biomarkers and Genetic Screening to Diagnose Frontotemporal Dementia: Evidence and Clinical Implications. Front Neurosci 2019; 13:757. [PMID: 31447625 PMCID: PMC6691066 DOI: 10.3389/fnins.2019.00757] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022] Open
Abstract
Within the wide range of neurodegenerative brain diseases, the differential diagnosis of frontotemporal dementia (FTD) frequently poses a challenge. Often, signs and symptoms are not characteristic of the disease and may instead reflect atypical presentations. Consequently, the use of disease biomarkers is of importance to correctly identify the patients. Here, we describe how neuropsychological characteristics, neuroimaging and neurochemical biomarkers and screening for causal gene mutations can be used to differentiate FTD from other neurodegenerative diseases as well as to distinguish between FTD subtypes. Summarizing current evidence, we propose a stepwise approach in the diagnostic evaluation. Clinical consensus criteria that take into account a full neuropsychological examination have relatively good accuracy (sensitivity [se] 75–95%, specificity [sp] 82–95%) to diagnose FTD, although misdiagnosis (mostly AD) is common. Structural brain MRI (se 70–94%, sp 89–99%) and FDG PET (se 47–90%, sp 68–98%) or SPECT (se 36–100%, sp 41–100%) brain scans greatly increase diagnostic accuracy, showing greater involvement of frontal and anterior temporal lobes, with sparing of hippocampi and medial temporal lobes. If these results are inconclusive, we suggest detecting amyloid and tau cerebrospinal fluid (CSF) biomarkers that can indicate the presence of AD with good accuracy (se 74–100%, sp 82–97%). The use of P-tau181 and the Aβ1–42/Aβ1–40 ratio significantly increases the accuracy of correctly identifying FTD vs. AD. Alternatively, an amyloid brain PET scan can be performed to differentiate FTD from AD. When autosomal dominant inheritance is suspected, or in early onset dementia, mutation screening of causal genes is indicated and may also be offered to at-risk family members. We have summarized genotype–phenotype correlations for several genes that are known to cause familial frontotemporal lobar degeneration, which is the neuropathological substrate of FTD. The genes most commonly associated with this disease (C9orf72, MAPT, GRN, TBK1) are discussed, as well as some less frequent ones (CHMP2B, VCP). Several other techniques, such as diffusion tensor imaging, tau PET imaging and measuring serum neurofilament levels, show promise for future implementation as diagnostic biomarkers.
Collapse
Affiliation(s)
- Helena Gossye
- Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB, Antwerp, Belgium.,Institute Born - Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology and Center for Neurosciences, UZ Brussel and Vrije Universiteit Brussel, Brussels, Belgium
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB, Antwerp, Belgium.,Institute Born - Bunge, University of Antwerp, Antwerp, Belgium
| | - Sebastiaan Engelborghs
- Institute Born - Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology and Center for Neurosciences, UZ Brussel and Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
19
|
Illán-Gala I, Montal V, Borrego-Écija S, Vilaplana E, Pegueroles J, Alcolea D, Sánchez-Saudinós B, Clarimón J, Turón-Sans J, Bargalló N, González-Ortiz S, Rosen HJ, Gorno-Tempini ML, Miller BL, Lladó A, Rojas-García R, Blesa R, Sánchez-Valle R, Lleó A, Fortea J. Cortical microstructure in the behavioural variant of frontotemporal dementia: looking beyond atrophy. Brain 2019; 142:1121-1133. [PMID: 30906945 PMCID: PMC6439330 DOI: 10.1093/brain/awz031] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 12/04/2018] [Accepted: 12/21/2018] [Indexed: 12/11/2022] Open
Abstract
Cortical mean diffusivity has been proposed as a novel biomarker for the study of the cortical microstructure in Alzheimer's disease. In this multicentre study, we aimed to assess the cortical microstructural changes in the behavioural variant of frontotemporal dementia (bvFTD); and to correlate cortical mean diffusivity with clinical measures of disease severity and CSF biomarkers (neurofilament light and the soluble fraction beta of the amyloid precursor protein). We included 148 participants with a 3 T MRI and appropriate structural and diffusion weighted imaging sequences: 70 patients with bvFTD and 78 age-matched cognitively healthy controls. The modified frontotemporal lobar degeneration clinical dementia rating was obtained as a measure of disease severity. A subset of patients also underwent a lumbar puncture for CSF biomarker analysis. Two independent raters blind to the clinical data determined the presence of significant frontotemporal atrophy to dichotomize the participants into possible or probable bvFTD. Cortical thickness and cortical mean diffusivity were computed using a surface-based approach. We compared cortical thickness and cortical mean diffusivity between bvFTD (both using the whole sample and probable and possible bvFTD subgroups) and controls. Then we computed the Cohen's d effect size for both cortical thickness and cortical mean diffusivity. We also performed correlation analyses with the modified frontotemporal lobar degeneration clinical dementia rating score and CSF neuronal biomarkers. The cortical mean diffusivity maps, in the whole cohort and in the probable bvFTD subgroup, showed widespread areas with increased cortical mean diffusivity that partially overlapped with cortical thickness, but further expanded to other bvFTD-related regions. In the possible bvFTD subgroup, we found increased cortical mean diffusivity in frontotemporal regions, but only minimal loss of cortical thickness. The effect sizes of cortical mean diffusivity were notably higher than the effect sizes of cortical thickness in the areas that are typically involved in bvFTD. In the whole bvFTD group, both cortical mean diffusivity and cortical thickness correlated with measures of disease severity and CSF biomarkers. However, the areas of correlation with cortical mean diffusivity were more extensive. In the possible bvFTD subgroup, only cortical mean diffusivity correlated with the modified frontotemporal lobar degeneration clinical dementia rating. Our data suggest that cortical mean diffusivity could be a sensitive biomarker for the study of the neurodegeneration-related microstructural changes in bvFTD. Further longitudinal studies should determine the diagnostic and prognostic utility of this novel neuroimaging biomarker.
Collapse
Affiliation(s)
- Ignacio Illán-Gala
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas. CIBERNED, Spain
| | - Victor Montal
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas. CIBERNED, Spain
| | - Sergi Borrego-Écija
- Alzheimer’s Disease and Other Cognitive Disorders Unit, Department of Neurology, Hospital Clínic, Institut d’Investigació Biomèdica August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Eduard Vilaplana
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas. CIBERNED, Spain
| | - Jordi Pegueroles
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas. CIBERNED, Spain
| | - Daniel Alcolea
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas. CIBERNED, Spain
| | - Belén Sánchez-Saudinós
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jordi Clarimón
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas. CIBERNED, Spain
| | - Janina Turón-Sans
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Nuria Bargalló
- Radiology Department, Hospital Clínic de Barcelona and Magnetic Resonance Image Core Facility, Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Howard J Rosen
- Memory and Aging Centre, Department of Neurology, University of California San Francisco, San Francisco, USA
| | - Maria Luisa Gorno-Tempini
- Memory and Aging Centre, Department of Neurology, University of California San Francisco, San Francisco, USA
| | - Bruce L Miller
- Memory and Aging Centre, Department of Neurology, University of California San Francisco, San Francisco, USA
| | - Albert Lladó
- Alzheimer’s Disease and Other Cognitive Disorders Unit, Department of Neurology, Hospital Clínic, Institut d’Investigació Biomèdica August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Ricard Rojas-García
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Rafael Blesa
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas. CIBERNED, Spain
| | - Raquel Sánchez-Valle
- Alzheimer’s Disease and Other Cognitive Disorders Unit, Department of Neurology, Hospital Clínic, Institut d’Investigació Biomèdica August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Alberto Lleó
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas. CIBERNED, Spain
| | - Juan Fortea
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas. CIBERNED, Spain
- Barcelona Down Medical Centre, Fundació Catalana de Síndrome de Down, Barcelona, Spain
| | | |
Collapse
|
20
|
Cajanus A, Hall A, Koikkalainen J, Solje E, Tolonen A, Urhemaa T, Liu Y, Haanpää RM, Hartikainen P, Helisalmi S, Korhonen V, Rueckert D, Hasselbalch S, Waldemar G, Mecocci P, Vanninen R, van Gils M, Soininen H, Lötjönen J, Remes AM. Automatic MRI Quantifying Methods in Behavioral-Variant Frontotemporal Dementia Diagnosis. Dement Geriatr Cogn Dis Extra 2018; 8:51-59. [PMID: 29606954 PMCID: PMC5869565 DOI: 10.1159/000486849] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/15/2018] [Indexed: 12/11/2022] Open
Abstract
Aims We assessed the value of automated MRI quantification methods in the differential diagnosis of behavioral-variant frontotemporal dementia (bvFTD) from Alzheimer disease (AD), Lewy body dementia (LBD), and subjective memory complaints (SMC). We also examined the role of the C9ORF72-related genetic status in the differentiation sensitivity. Methods The MRI scans of 50 patients with bvFTD (17 C9ORF72 expansion carriers) were analyzed using 6 quantification methods as follows: voxel-based morphometry (VBM), tensor-based morphometry, volumetry (VOL), manifold learning, grading, and white-matter hyperintensities. Each patient was then individually compared to an independent reference group in order to attain diagnostic suggestions. Results Only VBM and VOL showed utility in correctly identifying bvFTD from our set of data. The overall classification sensitivity of bvFTD with VOL + VBM achieved a total sensitivity of 60%. Using VOL + VBM, 32% were misclassified as having LBD. There was a trend of higher values for classification sensitivity of the C9ORF72 expansion carriers than noncarriers. Conclusion VOL, VBM, and their combination are effective in differential diagnostics between bvFTD and AD or SMC. However, MRI atrophy profiles for bvFTD and LBD are too similar for a reliable differentiation with the quantification methods tested in this study.
Collapse
Affiliation(s)
- Antti Cajanus
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland.,Neurocenter, Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Anette Hall
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland
| | | | - Eino Solje
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland.,Neurocenter, Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Antti Tolonen
- VTT Technical Research Centre of Finland Ltd., Tampere, Finland
| | - Timo Urhemaa
- VTT Technical Research Centre of Finland Ltd., Tampere, Finland
| | - Yawu Liu
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland.,Department of Radiology, Kuopio University Hospital, Kuopio, Finland
| | - Ramona M Haanpää
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland
| | - Päivi Hartikainen
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland.,Neurocenter, Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Seppo Helisalmi
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland
| | - Ville Korhonen
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland.,Neurocenter, Neurosurgery, Kuopio University Hospital, Kuopio, Finland
| | - Daniel Rueckert
- Department of Computing, Imperial College London, London, United Kingdom
| | - Steen Hasselbalch
- Danish Dementia Research Centre, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Gunhild Waldemar
- Danish Dementia Research Centre, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Patrizia Mecocci
- Section of Gerontology and Geriatrics, University of Perugia, Perugia, Italy
| | - Ritva Vanninen
- Department of Radiology, Kuopio University Hospital, Kuopio, Finland
| | - Mark van Gils
- VTT Technical Research Centre of Finland Ltd., Tampere, Finland
| | - Hilkka Soininen
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland.,Neurocenter, Neurology, Kuopio University Hospital, Kuopio, Finland
| | | | - Anne M Remes
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland.,Neurocenter, Neurology, Kuopio University Hospital, Kuopio, Finland.,Medical Research Center, Oulu University Hospital, Oulu, Finland.,Unit of Clinical Neuroscience, Neurology, University of Oulu, Oulu, Finland
| |
Collapse
|
21
|
Current Role for Biomarkers in Clinical Diagnosis of Alzheimer Disease and Frontotemporal Dementia. Curr Treat Options Neurol 2017; 19:46. [PMID: 29134465 DOI: 10.1007/s11940-017-0484-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Purpose of review Alzheimer's disease (AD) and frontotemporal dementia can often be diagnosed accurately with careful clinical history, cognitive testing, neurological examination, and structural brain MRI. However, there are certain circumstances wherein detection of specific biomarkers of neurodegeneration or underlying AD pathology will impact the clinical diagnosis or treatment plan. We will review the currently available biomarkers for AD and frontotemporal dementia (FTD) and discuss their clinical importance. Recent findings With the advent of 18F-labeled tracers that bind amyloid plaques, amyloid PET is now clinically available for the detection of amyloid pathology and to aid in a biomarker-supported diagnosis of AD or mild cognitive impairment (MCI) due to AD. It is not yet possible to test for the specific FTD pathologies (tau or TDP-43); however, a diagnosis of FTD may be "imaging supported" based upon specific MRI or FDG-PET findings. Cerebrospinal fluid measures of amyloid-beta, total-tau, and phospho-tau are clinically available and allow detection of both of the cardinal pathologies of AD: amyloid and tau pathology. Summary It is appropriate to pursue biomarker testing in cases of MCI and dementia when there remains diagnostic uncertainty and the result will impact diagnosis or treatment. Practically speaking, due to the rising prevalence of amyloid positivity with advancing age, measurement of biomarkers in cases of MCI and dementia is most helpful in early-onset patients, patients with atypical clinical presentations, or when considering referral for AD clinical trials.
Collapse
|
22
|
Vijverberg EGB, Dols A, Krudop WA, Peters A, Kerssens CJ, van Berckel BNM, Wattjes MP, Barkhof F, Gossink F, Prins ND, Stek ML, Scheltens P, Pijnenburg YAL. Diagnostic Accuracy of the Frontotemporal Dementia Consensus Criteria in the Late-Onset Frontal Lobe Syndrome. Dement Geriatr Cogn Disord 2017; 41:210-9. [PMID: 27160162 DOI: 10.1159/000444849] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/19/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS We aimed to prospectively assess the diagnostic accuracy of the revised criteria for behavioural variant frontotemporal dementia (bvFTD) among subjects presenting with a frontal lobe syndrome in middle-late adulthood. METHODS Patients were included based on a predominant behavioural clinical presentation, a Frontal Behavioural Inventory (FBI) score of ≥11 and/or a Stereotypy Rating Inventory (SRI) score of ≥10. At baseline, the fulfilment of the international consensus criteria for behavioural variant FTD (FTDC) was systematically recorded. The 2-year follow-up consensus diagnosis was used as the gold standard to calculate sensitivity and specificity of the FTDC criteria for possible and probable bvFTD. RESULTS Two-year follow-up data were available for 116 patients (85%). Two-year follow-up consensus diagnoses consisted of probable/definite bvFTD (n = 27), other dementia (n = 30), psychiatric disorders (n = 46) and other neurological disorders (n = 13). Sensitivity for possible bvFTD was 85% (95% CI 70-95%) at a specificity of 27% (95% CI 19-37%). Sensitivity for probable bvFTD was 85% (95% CI 69-95%), whereas their specificity was 82% (95% CI 73-89%). CONCLUSIONS We found a good diagnostic accuracy for FTDC probable bvFTD. However, the specificity for FTDC possible bvFTD was low. Our results reflect the symptomatic overlap between bvFTD, other neurological conditions and psychiatric disorders, and the relevance of adding neuroimaging to the diagnostic process.
Collapse
Affiliation(s)
- Everard G B Vijverberg
- Alzheimer Centre and Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Centre, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Adaptación y validación de la Frontotemporal Dementia Rating Scale (FTD-FRS) al castellano. Neurologia 2017; 32:290-299. [DOI: 10.1016/j.nrl.2015.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 12/06/2015] [Indexed: 11/19/2022] Open
|
24
|
Adaptation and validation of a Spanish-language version of the Frontotemporal Dementia Rating Scale (FTD-FRS). NEUROLOGÍA (ENGLISH EDITION) 2017. [DOI: 10.1016/j.nrleng.2015.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
25
|
Woollacott IOC, Rohrer JD. The clinical spectrum of sporadic and familial forms of frontotemporal dementia. J Neurochem 2016; 138 Suppl 1:6-31. [PMID: 27144467 DOI: 10.1111/jnc.13654] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 04/10/2016] [Accepted: 04/27/2016] [Indexed: 12/11/2022]
Abstract
The term frontotemporal dementia (FTD) describes a clinically, genetically and pathologically diverse group of neurodegenerative disorders. Symptoms of FTD can present in individuals in their 20s through to their 90s, but the mean age at onset is in the sixth decade. The most common presentation is with a change in personality and impaired social conduct (behavioural variant FTD). Less frequently patients present with language problems (primary progressive aphasia). Both of these groups of patients can develop motor features consistent with either motor neuron disease (usually the amyotrophic lateral sclerosis variant) or parkinsonism (most commonly a progressive supranuclear palsy or corticobasal syndrome). In about a third of cases FTD is familial, with mutations in the progranulin, microtubule-associated protein tau and chromosome 9 open reading frame 72 genes being the major causes. Mutations in a number of other genes including TANK-binding kinase 1 are rare causes of familial FTD. This review aims to clarify the often confusing terminology of FTD, and outline the various clinical features and diagnostic criteria of sporadic and familial FTD syndromes. It will also discuss the current major challenges in FTD research and clinical practice, and potential areas for future research. This review clarifies the terminology of frontotemporal dementia (FTD) and summarizes the various clinical features and most recent diagnostic criteria of sporadic and familial FTD syndromes. It also discusses the current major challenges in FTD research and clinical practice, and highlights potential areas for future research.
Collapse
Affiliation(s)
- Ione O C Woollacott
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
| |
Collapse
|
26
|
Gelpi E. How neuropathology can contribute to the understanding of dementia. Neurodegener Dis Manag 2016; 6:183-6. [PMID: 27230123 DOI: 10.2217/nmt-2016-0013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Ellen Gelpi
- Neurological Tissue Bank of the Biobank-Hospital Clinic-Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
27
|
Feasibility Study: Comparison of Frontal Cortex Needle Core Versus Open Biopsy for Detection of Characteristic Proteinopathies of Neurodegenerative Diseases. J Neuropathol Exp Neurol 2015; 74:934-42. [PMID: 26230581 DOI: 10.1097/nen.0000000000000235] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The clinical diagnosis and classification of neurodegenerative diseases based on clinical examination or available biomarkers are currently insufficiently accurate. Although histologic examination is considered the gold standard for diagnosis, brain biopsies have been avoided because of the high risk-benefit ratio. However, brain biopsies have previously been performed with a craniotomy and excision of approximately 1 cm of cerebral cortex tissue, and it is possible that needle core brain biopsies would have a lower morbidity and mortality risk. Here, we compared the ability of simulated needle core biopsy versus simulated open biopsy to detect the frontal cortex histopathology associated with common neurodegenerative diseases in the elderly using 144 autopsy-proven cases. Simulated needle core biopsy, as compared with simulated open biopsy, gave close to 90% sensitivity and specificity for identifying graded densities of β-amyloid and neuritic plaques, neurofibrillary tangles, phosphorylated α-synuclein, and phosphorylated TDP-43 pathology. This study shows that the presence and densities of the most common molecular pathologies may be histopathologically assessed in simulated frontal cortex needle biopsies, with accuracy very close to that obtained by open cortical biopsy. An accurate estimation of the morbidity and mortality risk associated with cortical needle core biopsy will require specifically designed clinical trials in appropriate subjects.
Collapse
|