1
|
Guo Q, Qiao P, Wang J, Zhao L, Guo Z, Li X, Fan X, Yu C, Zhang L. Investigating the value of urinary biomarkers in relation to lupus nephritis histopathology: present insights and future prospects. Front Pharmacol 2024; 15:1421657. [PMID: 39104393 PMCID: PMC11298450 DOI: 10.3389/fphar.2024.1421657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/02/2024] [Indexed: 08/07/2024] Open
Abstract
Lupus nephritis (LN), a leading cause of death in Systemic Lupus Erythematosus (SLE) patients, presents significant diagnostic and prognostic challenges. Although renal pathology offers critical insights regarding the diagnosis, classification, and therapy for LN, its clinical utility is constrained by the invasive nature and limited reproducibility of renal biopsies. Moreover, the continuous monitoring of renal pathological changes through repeated biopsies is impractical. Consequently, there is a growing interest in exploring urine as a non-invasive, easily accessible, and dynamic "liquid biopsy" alternative to guide clinical management. This paper examines novel urinary biomarkers from a renal pathology perspective, encompassing cellular components, cytokines, adhesion molecules, auto-antibodies, soluble leukocyte markers, light chain fragments, proteins, small-molecule peptides, metabolomics, urinary exosomes, and ribonucleic acids. We also discuss the application of combined models comprising multiple biomarkers in assessing lupus activity. These innovative biomarkers and models offer insights into LN disease activity, acute and chronic renal indices, fibrosis, thrombotic microangiopathy, podocyte injury, and other pathological changes, potentially improving the diagnosis, management, and prognosis of LN. These urinary biomarkers or combined models may serve as viable alternatives to traditional renal pathology, potentially revolutionizing the method for future LN diagnosis and observation.
Collapse
Affiliation(s)
- Qianyu Guo
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Department of Rheumatology, Shanxi Bethune Hospital, Taiyuan, China
| | - Pengyan Qiao
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Department of Rheumatology, Shanxi Bethune Hospital, Taiyuan, China
| | - Juanjuan Wang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Stem Cell Translational Laboratory, Shanxi Bethune Hospital, Taiyuan, China
| | - Li Zhao
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| | - Zhiying Guo
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Department of Rheumatology, Shanxi Bethune Hospital, Taiyuan, China
| | - Xiaochen Li
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Department of Rheumatology, Shanxi Bethune Hospital, Taiyuan, China
| | - Xiuying Fan
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Office of Drug Clinical Trial Institution, Taiyuan, China
| | - Chong Yu
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Department of Rheumatology, Shanxi Bethune Hospital, Taiyuan, China
| | - Liyun Zhang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Department of Rheumatology, Shanxi Bethune Hospital, Taiyuan, China
- Stem Cell Translational Laboratory, Shanxi Bethune Hospital, Taiyuan, China
- Office of Drug Clinical Trial Institution, Taiyuan, China
| |
Collapse
|
2
|
Abstract
PURPOSE OF REVIEW Mesangial cells are critical for the proper function of the glomerulus, playing roles in structural support and injury repair. However, they are also early responders to glomerular immune complex deposition and contribute to inflammation and fibrosis in lupus nephritis. This review highlights recent studies identifying signaling pathways and mediators in mesangial cell response to lupus-relevant stimuli. RECENT FINDINGS Anti-dsDNA antibodies, serum, or plasma from individuals with lupus nephritis, or specific pathologic factors activated multiple signaling pathways. These pathways largely included JAK/STAT/SOCS, PI3K/AKT, and MAPK and led to induction of proliferation and expression of multiple proinflammatory cytokines, growth factors, and profibrotic factors. NFκB activation was a common mediator of response. Mesangial cells proliferate and express a wide array of proinflammatory/profibrotic factors in response to a variety of lupus-relevant pathologic stimuli. While some of the responses are similar, the mechanisms involved appear to be diverse depending on the stimulus. Future studies are needed to fully elucidate these mechanisms with respect to the diverse milieu of stimuli.
Collapse
Affiliation(s)
- Tamara K Nowling
- Department of Medicine, Division of Rheumatology, Medical University of South Carolina, 96 Jonathan Lucas St. CSB 822 MSC 637, Charleston, SC, 29425-6370, USA.
| |
Collapse
|
3
|
Stojan G, Li J, Wittmaack A, Petri M. Cachexia in Systemic Lupus Erythematosus: Risk Factors and Relation to Disease Activity and Damage. Arthritis Care Res (Hoboken) 2021; 73:1577-1582. [PMID: 32741060 PMCID: PMC7855238 DOI: 10.1002/acr.24395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 06/30/2020] [Accepted: 07/21/2020] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Cachexia is a disorder characterized by involuntary weight loss in addition to loss of homeostatic control of both energy and protein balance. Despite an abundance of data from other inflammatory diseases, cachexia in systemic lupus erythematosus (SLE) remains a largely undescribed syndrome. The present study was undertaken to define the prevalence of cachexia in SLE and to identify the main factors that place patients at risk of developing cachexia. METHODS A total of 2,452 patients in a prospective SLE cohort had their weight assessed at each visit. Patients were categorized into 5 predetermined groups based on weight. Cachexia was defined based on modified Fearon criteria (5% stable weight loss in 6 months without starvation relative to the average weight in all prior visits and/or a weight loss of >2% without starvation relative to the average weight in all prior cohort visits and a body mass index [BMI] of <20 kg/m2 ). Risk of cachexia within 5 years of cohort entry was based on Kaplan-Meier estimates. The association of prior disease manifestations with risk of cachexia adjusted by current steroid use was determined using Cox regression. An analysis of variance test was used to determine whether Systemic Lupus International Collaborating Clinics/American College of Rheumatology Damage Index (SDI) scores varied based on cachexia status. RESULTS Within 5 years of cohort entry, 56% of patients developed cachexia, 18% of which never recovered their weight during follow-up. The risk factors for cachexia development were a BMI of <20 kg/m2 , current steroid use, vasculitis, lupus nephritis, serositis, hematologic lupus manifestations, positive anti-double-stranded DNA, anti-Sm, and anti-RNP. Patients with intermittent cachexia had significantly higher SDI scores compared to those with continuous cachexia or without cachexia. CONCLUSION Cachexia is an underrecognized syndrome in patients with SLE. SLE patients with intermittent cachexia have the highest risk of future organ damage.
Collapse
Affiliation(s)
- George Stojan
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jessica Li
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Amaya Wittmaack
- University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Michelle Petri
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
4
|
Xu Y, Wei HT, Jing HY, Tan XY, Zhou XT, Ma YR. Emerging role of TWEAK-Fn14 axis in lupus, a disease related to autoimmunity and fibrosis. Int J Rheum Dis 2021; 25:21-26. [PMID: 34716660 DOI: 10.1111/1756-185x.14232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 11/30/2022]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disorder. Lupus nephritis (LN) is one of the severe clinical implications in SLE, and this was relates to fibrosis in the kidney. As an important marker in the tumor necrosis factor (TNF) superfamily, TNF-like weak inducer of apoptosis (TWEAK) has been given much attention with respect to its role in regulating pro-inflammatory immune response. Fibroblast growth factor-inducible 14 (Fn14), the sole receptor for TWEAK, has been found expressed in different immune and non-immune cells. TWEAK binds to Fn14, and then regulates inflammatory components production via downstream signaling pathways. To date, dysregulated expression of TWEAK, Fn14 has been reported in SLE, LN patients, and in vivo, in vitro studies have discussed the significant role of TWEAK-Fn14 axis in SLE, LN pathogenesis, partly through mediating the fibrosis process. In this review, we will discuss the association of TWEAK-Fn14 axis in lupus. Understanding the relationship will better realize the potential for making TWEAK-Fn14 as a marker for the diseases, and will help to give many clues for targeting them in treatment of lupus in the future.
Collapse
Affiliation(s)
- Yuan Xu
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hui-Ting Wei
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hao-Yue Jing
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao-Yang Tan
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao-Tao Zhou
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yue-Rong Ma
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
5
|
Luo M, Liu M, Liu W, Cui X, Zhai S, Gu H, Wang H, Wu K, Zhang W, Li K, Xia Y. Inhibition of fibroblast growth factor-inducible 14 attenuates experimental tubulointerstitial fibrosis and profibrotic factor expression of proximal tubular epithelial cells. Inflamm Res 2021; 70:553-568. [PMID: 33755760 DOI: 10.1007/s00011-021-01455-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/21/2021] [Accepted: 03/12/2021] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND AND AIM As a proinflammatory cytokine, tumor necrosis factor-like weak inducer of apoptosis (TWEAK) participates in the progression of renal fibrosis by binding to its receptor, fibroblast growth factor-inducible 14 (Fn14). However, the effect of Fn14 inhibition on tubular epithelial cell-mediated tubulointerstitial fibrosis remains unclear. This study aimed to elucidate the role of TWEAK/Fn14 interaction in the development of experimental tubulointerstitial fibrosis as well as the protective effect of Fn14 knockdown on proximal tubular epithelial cells. METHODS A murine model of unilateral ureteral obstruction was constructed in both wild-type and Fn14-deficient BALB/c mice, followed by observation of the tubulointerstitial pathologies. RESULTS Fn14 deficiency ameliorated the pathological changes, including inflammatory cell infiltration and cell proliferation, accompanied by reduced production of profibrotic factors and extracellular matrix deposition. In vitro experiments showed that TWEAK dose-dependently enhanced the expression of collagen I, fibronectin, and α-smooth muscle actin in proximal tubular epithelial cells. Interestingly, TWEAK also upregulated the expression levels of Notch1/Jagged1. Fn14 knockdown and Notch1/Jagged1 inhibition also mitigated the effect of TWEAK on these cells. CONCLUSIONS In conclusion, TWEAK/Fn14 signals contributed to tubulointerstitial fibrosis by acting on proximal tubular epithelial cells. Fn14 inhibition might be a therapeutic strategy for protecting against renal interstitial fibrosis.
Collapse
Affiliation(s)
- Mai Luo
- Core Research Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Mengmeng Liu
- Core Research Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Wei Liu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Xiao Cui
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Siyue Zhai
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Hanjiang Gu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Huixia Wang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Kunyi Wu
- Core Research Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Wen Zhang
- College of Military Basic Education, Engineering University of PAP, Xi'an, China
| | - Ke Li
- Core Research Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| | - Yumin Xia
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| |
Collapse
|
6
|
Ihara K, Skupien J, Krolewski B, Md Dom ZI, O'Neil K, Satake E, Kobayashi H, Rashidi NM, Niewczas MA, Krolewski AS. A profile of multiple circulating tumor necrosis factor receptors associated with early progressive kidney decline in Type 1 Diabetes is similar to profiles in autoimmune disorders. Kidney Int 2021; 99:725-736. [PMID: 32717193 PMCID: PMC7891866 DOI: 10.1016/j.kint.2020.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/03/2020] [Accepted: 07/02/2020] [Indexed: 12/28/2022]
Abstract
This study comprehensively evaluated the association between known circulating tumor necrosis factor (TNF) superfamily ligands and receptors and the development of early progressive kidney decline (PKD) leading to end-stage kidney disease (ESKD) in Type 1 diabetes. Participants for the study were from the Macro-Albuminuria Study (198 individuals), and the Micro-Albuminuria Study (148 individuals) of the Joslin Kidney Study. All individuals initially had normal kidney function and were followed for seven-fifteen years to determine the slope of the estimate glomerular filtration rate and to ascertain onset of ESKD. Plasma concentrations of 25 TNF superfamily proteins were measured using proximity extension assay applied in the OLINK proteomics platform. In the both studies risk of early PKD, determined as estimated glomerular filtration rate loss greater than or equal to three ml/min/1.73m2/year, was associated with elevated circulating levels of 13 of 19 TNF receptors examined. In the Macro-Albuminuria Study, we obtained similar findings for risk of progression to ESKD. These receptors comprised: TNF-R1A, -R1B, -R3, -R4, -R6, -R6B, -R7, -R10A, -R10B, -R11A, -R14, -R21, and -R27. Serial measurements showed that circulating levels of these TNF receptors had increased before the onset of PKD. In contrast, none of the six measured TNF ligands showed association with risk of early PKD. Of significance, the disease process that underlies PKD leading to ESKD in Type 1 diabetes has a profile also seen in autoimmune disorders. The mechanisms of this enrichment may be causally related to the development of PKD in Type 1 diabetes and must be investigated further. Thus, some of these receptors may be used as new risk predictors of ESKD.
Collapse
Affiliation(s)
- Katsuhito Ihara
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA; Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Jan Skupien
- Department of Metabolic Diseases, Jagellonian University Medical College, Krakow, Poland
| | - Bozena Krolewski
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA; Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Zaipul I Md Dom
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA; Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Kristina O'Neil
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
| | - Eiichiro Satake
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA; Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Hiroki Kobayashi
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA; Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Monika A Niewczas
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA; Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrzej S Krolewski
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA; Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
7
|
Zhang Y, Zeng W, Xia Y. TWEAK/Fn14 axis is an important player in fibrosis. J Cell Physiol 2020; 236:3304-3316. [PMID: 33000480 DOI: 10.1002/jcp.30089] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 12/15/2022]
Abstract
Fibrosis is a common pathological condition associated with abnormal repair after tissue injury. However, the etiology and molecular mechanisms of fibrosis are still not well-understood. Tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) belongs to the TNF superfamily and acts by binding to its receptor, fibroblast growth factor-inducible 14 (Fn14), thereby activating a variety of intracellular signal transduction pathways in various types of cells. Besides promoting the expression of growth factors, activation of TWEAK/Fn14 signaling after tissue injury can promote the expression of pro-inflammatory cytokines, which trigger the immune response, thereby exacerbating the injury. Severe or repetitive injury leads to a dysregulated tissue repair process, in which the TWEAK/Fn14 axis promotes the activation and proliferation of myofibroblasts, induces the secretion of the extracellular matrix, and regulates profibrotic mediators to further perpetuate and sustain the fibrotic process. In this review, we summarize the available experimental evidence on the underlying molecular mechanisms by which the TWEAK/Fn14 pathway mediates the development and progression of fibrosis. In addition, we discuss the therapeutic potential of the TWEAK/Fn14 pathway in fibrosis-associated diseases based on evidence derived from multiple models and cells from injured tissue and fibrotic tissue.
Collapse
Affiliation(s)
- Yitian Zhang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Weihui Zeng
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yumin Xia
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
8
|
Gong X, Huang A. Differential expression and diagnostic significance of P53, MutS homologs 2, tropomyosin-4 in alpha-fetoprotein-negative hepatocellular carcinoma. J Clin Lab Anal 2020; 34:e23353. [PMID: 32363617 PMCID: PMC7439328 DOI: 10.1002/jcla.23353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Current study aimed to explore the value of P53, MutS homologs 2 (MSH2), and tropomyosin-4 (Tm-4) combined with inflammatory factors, life-history traits in the differential diagnosis of alpha-fetoprotein-negative hepatocellular carcinoma (AFP-Negative HCC). METHODS A testing cohort including 280 AFP-Negative HCC patients and 300 controls was included. Three external validation cohorts from 3 centers were used to assess the novel logistic regression model including 400 AFP-Negative HCC patients and 400 controls. RESULTS Compared with the control group, the levels of P53, MSH2, and Tm-4 protein in si-P53 group, si-MSH2 group, and si-Tm-4 group were significantly reduced (P < .05). The P53, MSH2, Tm-4, neutrophil to lymphocyte ratio (NLR), monocytes to lymphocyte ratio (MLR), hypersensitive C-reactive protein (hs-CRP), tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6) levels, and the smoking, drinking, and occupational exposure to chemicals rates in patients were significantly higher than those in controls (P < .05). ROC analyses showed that the area under curve (AUC) of NLR, MLR, hs-CRP, TNF-α, IL-6, P53, MSH2, Tm-4, drinking, smoking, and occupational exposure to chemicals were 0.798, 0.803, 0.560, 0.644, 0.808, 0.681, 0.830, 0.694, 0.582, 0.581, and 0.567, respectively. A novel logistic regression model was built and has a high value in identifying AFP-Negative HCC with AUC of 0.917, sensitivity of 85.2%, and specificity of 88.3%. In the validation cohorts, this model also showed good diagnostic efficiency (AUC = 0.898 with Dazu Branch cohort, AUC = 0.924 with Jinshan Branch cohort, and AUC = 0.907 with Liangping Branch cohort). CONCLUSION Current model has potential significance for the noninvasive diagnosis of AFP-Negative HCC.
Collapse
Affiliation(s)
- Xuyang Gong
- Infectious Disease and Molecular Biology Laboratory, Chongqing Medical University, Chongqing, China
| | - Ailong Huang
- Infectious Disease and Molecular Biology Laboratory, Chongqing Medical University, Chongqing, China
| |
Collapse
|
9
|
Chen J, Jia F, Ren K, Luo M, Min X, Wang P, Xiao S, Xia Y. Inhibition of suppressor of cytokine signaling 1 mediates the profibrotic effect of TWEAK/Fn14 signaling on kidney cells. Cell Signal 2020; 71:109615. [PMID: 32217132 DOI: 10.1016/j.cellsig.2020.109615] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/22/2020] [Accepted: 03/23/2020] [Indexed: 12/18/2022]
Abstract
Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) engagement with the receptor Fn14 contributes to the fibrotic process of kidney cells in systemic lupus erythematosus. Downregulation of the protein suppressor of cytokine signaling 1 (SOCS1) correlates with amplified production of proinflammatory factors and cell apoptosis, which participate in the pathogenesis of lupus nephritis. To elucidate the potential role of SOCS1 in TWEAK/Fn14 signaling, we determined the SOCS1 levels in primary kidney cells from MRL/MpJ (control strain) or MRL/lpr (lupus-prone) mice. These cells (mesangial cells, glomerular endothelial cells, and tubular epithelial cells) were also evaluated after stimulation with TWEAK (0 to 250 ng/mL). The results showed that the lupus-prone cells exhibited reduced SOCS1 expression. TWEAK induced the production of profibrotic factors (laminin, fibronectin, (CC motif) ligand 20, etc.) in kidney cells from both mouse strains. TWEAK stimulation also decreased both the mRNA and protein levels of SOCS1 in all cells. Moreover, the effect of TWEAK on mesangial cells was amplified by pre-transfection of SOCS1 siRNA but was partly reduced with SOCS1 overexpression by adenoviral delivery. Therefore, TWEAK/Fn14 activation contributes to renal fibrosis in lupus nephritis involving the depression of SOCS1 function.
Collapse
Affiliation(s)
- Jingyun Chen
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Fangyan Jia
- Department of Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Kaixuan Ren
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Mai Luo
- Core Research Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Xiaoyun Min
- Core Research Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Ping Wang
- Department of Immunology and Microbiology, Wannan Medical College, Wuhu 241002, China
| | - Shengxiang Xiao
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Yumin Xia
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China.
| |
Collapse
|
10
|
Liu X, Tang C, Song X, Cheng L, Liu Y, Ding F, Xia C, Xue L, Xiao J, Huang B. Clinical value of CTLA4-associated microRNAs combined with inflammatory factors in the diagnosis of non-small cell lung cancer. Ann Clin Biochem 2020; 57:151-161. [PMID: 31906699 DOI: 10.1177/0004563220901564] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background The current study aimed to explore the value of cytotoxic T-lymphocyte-associated protein 4 (CTLA4)-associated microRNAs combined with inflammatory factors in the differential diagnosis of non-small cell lung cancer (NSCLC). Methods A retrospective study including 245 NSCLC patients and 245 healthy controls was conducted on a testing group. A regression formula for NSCLC prediction was established based on the testing group. Two validation groups from two centres were used to assess the novel logistic regression model including 144 NSCLC patients and 144 healthy controls recruited from the Wuchang Hospital Affiliated to Wuhan University of Science and Technology, and 128 NSCLC patients and 128 healthy controls recruited from the Zhongnan Hospital of Wuhan University. Results Predictive software and dual-luciferase reporter assays showed that miR-155-5p and miR-630 could target CTLA4 expression. The miR-155-5p and miR-630 concentrations in the NSCLC patients were significantly lower, and the neutrophil to lymphocyte ratio, hypersensitive C-reactive protein (hs-CRP), interleukin 6, cytokeratin-19-fragment (CYFRA21-1), squamous cell carcinoma antigen (SCCA) concentrations and the smoking rate were significantly higher than that in healthy controls ( P < 0.05). A logistic regression model that included smoking, neutrophil to lymphocyte ratio, hs-CRP, interleukin 6, CYFRA21-1, SCCA, miR-155-5p and miR-630 was performed. This model presented a high discriminating value (AUC: 0.830, sensitivity/specificity: 74.6%/89.7%) than any single indicator. In the validation groups, this model still showed a high discriminating value (AUC = 0.838 with the internal validation group; AUC = 0.851 with the external validation group). Conclusion The current model has potential significance for the non-invasive diagnosis for NSCLC.
Collapse
Affiliation(s)
- Xiaohong Liu
- Department of Clinical Laboratory, Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Chunlian Tang
- Department of Clinical Laboratory, Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Xianda Song
- Department of Clinical Laboratory, Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Lanfang Cheng
- Department of Clinical Laboratory, Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Ying Liu
- Department of Clinical Laboratory, Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Fan Ding
- Department of Clinical Laboratory, Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Chun Xia
- Department of Clinical Laboratory, Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Lian Xue
- Department of Clinical Laboratory, Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Jun Xiao
- Department of Clinical Laboratory, Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Baorong Huang
- Department of Clinical Laboratory, Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
El‐Taweel AEI, Salem RM, Abdelrahman AMN, Mohamed BAE. Serum TWEAK in acne vulgaris: An unknown soldier. J Cosmet Dermatol 2019; 19:514-518. [DOI: 10.1111/jocd.13011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 04/17/2019] [Accepted: 05/08/2019] [Indexed: 11/29/2022]
Affiliation(s)
| | - Rehab Mohammed Salem
- Department of Dermatology and Andrology, Faculty of Medicine Benha University Benha Egypt
| | | | | |
Collapse
|
12
|
TRAIL, OPG, and TWEAK in kidney disease: biomarkers or therapeutic targets? Clin Sci (Lond) 2019; 133:1145-1166. [PMID: 31097613 PMCID: PMC6526163 DOI: 10.1042/cs20181116] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 04/19/2019] [Accepted: 04/29/2019] [Indexed: 12/11/2022]
Abstract
Ligands and receptors of the tumor necrosis factor (TNF) superfamily regulate immune responses and homeostatic functions with potential diagnostic and therapeutic implications. Kidney disease represents a global public health problem, whose prevalence is rising worldwide, due to the aging of the population and the increasing prevalence of diabetes, hypertension, obesity, and immune disorders. In addition, chronic kidney disease is an independent risk factor for the development of cardiovascular disease, which further increases kidney-related morbidity and mortality. Recently, it has been shown that some TNF superfamily members are actively implicated in renal pathophysiology. These members include TNF-related apoptosis-inducing ligand (TRAIL), its decoy receptor osteoprotegerin (OPG), and TNF-like weaker inducer of apoptosis (TWEAK). All of them have shown the ability to activate crucial pathways involved in kidney disease development and progression (e.g. canonical and non-canonical pathways of the transcription factor nuclear factor-kappa B), as well as the ability to regulate cell proliferation, differentiation, apoptosis, necrosis, inflammation, angiogenesis, and fibrosis with double-edged effects depending on the type and stage of kidney injury. Here we will review the actions of TRAIL, OPG, and TWEAK on diabetic and non-diabetic kidney disease, in order to provide insights into their full clinical potential as biomarkers and/or therapeutic options against kidney disease.
Collapse
|
13
|
Hu G, Liang L, Liu Y, Liu J, Tan X, Xu M, Peng L, Zhai S, Li Q, Chu Z, Zeng W, Xia Y. TWEAK/Fn14 Interaction Confers Aggressive Properties to Cutaneous Squamous Cell Carcinoma. J Invest Dermatol 2019; 139:796-806. [DOI: 10.1016/j.jid.2018.09.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 09/08/2018] [Accepted: 09/27/2018] [Indexed: 12/13/2022]
|
14
|
Fn14 Deficiency Ameliorates Anti-dsDNA IgG-Induced Glomerular Damage in SCID Mice. J Immunol Res 2018; 2018:1256379. [PMID: 30648117 PMCID: PMC6311848 DOI: 10.1155/2018/1256379] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 10/14/2018] [Indexed: 12/18/2022] Open
Abstract
Many studies have demonstrated that anti-dsDNA IgG is closely associated with lupus nephritis. Recently, it was found that activation of the fibroblast growth factor-inducible 14 (Fn14) signaling pathway damages glomerular filtration barrier in MRL/lpr lupus-prone mice. However, MRL/lpr mice have high titers of serum autoantibodies other than anti-dsDNA IgG. The aim of this study was to further explore the effect of Fn14 deficiency on anti-dsDNA IgG-induced glomerular damage in severe combined immunodeficiency (SCID) mice that have no endogenous IgG. Fn14 deficiency was generated in SCID mice. The murine hybridoma cells producing control IgG or anti-dsDNA IgG were intraperitoneally injected into mice. In two weeks, the urine, serum, and kidney tissue samples were harvested from mice at sacrifice. It showed that the injection of anti-dsDNA IgG, but not control IgG hybridoma cells, induced proteinuria and glomerular damage in SCID mice. Between the wild-type (WT) and knockout (KO) mice injected with anti-dsDNA IgG hybridoma cells, the latter showed a decrease in both proteinuria and glomerular IgG deposition. The histopathological changes, inflammatory cell infiltration, and proinflammatory cytokine production were also attenuated in the kidneys of the Fn14-KO mice upon anti-dsDNA IgG injection. Therefore, Fn14 deficiency effectively protects SCID mice from anti-dsDNA IgG-induced glomerular damage.
Collapse
|
15
|
Fn14 deficiency ameliorates psoriasis-like skin disease in a murine model. Cell Death Dis 2018; 9:801. [PMID: 30038329 PMCID: PMC6056551 DOI: 10.1038/s41419-018-0820-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/22/2018] [Accepted: 06/22/2018] [Indexed: 12/12/2022]
Abstract
Tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) is a multifunctional cytokine that acts through its receptor fibroblast growth factor-inducible 14 (Fn14). Recent studies demonstrated that the TWEAK/Fn14 signals participate in the development of psoriasis. The purpose of this study was to further explore the effect of Fn14 inhibition on experimental psoriasis. Psoriasis-like skin disease was induced in the wild-type and Fn14-knockout BALB/c mice. We found that Fn14 deficiency ameliorates psoriasis-like lesion in this model, accompanied by less inflammatory cell infiltration and proinflammatory cytokine production in lesional skin. The cutaneous expression of TNF receptor type 2 also decreased in the Fn14-deficient mice. Moreover, the topical application of TWEAK exacerbated psoriatic lesion in the wild-type but not in the Fn14-deficient mice. Furthermore, TWEAK promoted the expression of interleukin 8, keratin 17, and epidermal growth factor receptor (EGFR) but inhibited the expression of involucrin in psoriatic keratinocytes in vitro. Interestingly, such effect of TWEAK was abrogated by an EGFR inhibitor (erlotinib). TWEAK also enhances the proliferation and interleukin-6 production of dermal microvascular endothelial cells under psoriatic condition. In conclusion, TWEAK/Fn14 signals contribute to the development of psoriasis, and involves the modulation of resident cells and the transduction of the EGFR pathway. Fn14 inhibition might be a novel therapeutic strategy for patients with psoriasis.
Collapse
|
16
|
Boulamery A, Desplat-Jégo S. Regulation of Neuroinflammation: What Role for the Tumor Necrosis Factor-Like Weak Inducer of Apoptosis/Fn14 Pathway? Front Immunol 2017; 8:1534. [PMID: 29201025 PMCID: PMC5696327 DOI: 10.3389/fimmu.2017.01534] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 10/27/2017] [Indexed: 12/25/2022] Open
Abstract
Observed in many central nervous system diseases, neuroinflammation (NI) proceeds from peripheral immune cell infiltration into the parenchyma, from cytokine secretion and from oxidative stress. Astrocytes and microglia also get activated and proliferate. NI manifestations and consequences depend on its context and on the acute or chronic aspect of the disease. The tumor necrosis factor-like weak inducer of apoptosis (TWEAK)/Fn14 pathway has been involved in chronic human inflammatory pathologies such as neurodegenerative, autoimmune, or malignant diseases. New data now describe its regulatory effects in tissues or fluids from patients with neurological diseases. In this mini-review, we aim to highlight the role of TWEAK/Fn14 in modulating NI in multiple sclerosis, neuropsychiatric systemic lupus erythematosus, stroke, or glioma. TWEAK/Fn14 can modulate NI by activating canonical and non-canonical nuclear factor-κB pathways but also by stimulating mitogen-activated protein kinase signaling. These downstream activations are associated with (i) inflammatory cytokine, chemokine and adhesion molecule expression or release, involved in NI propagation, (ii) matrix-metalloproteinase 9 secretion, implicated in blood–brain barrier disruption and tissue remodeling, (iii) astrogliosis and microgliosis, and (iv) migration of tumor cells in glioma. In addition, we report several animal and human studies pointing to TWEAK as an attractive therapeutic target.
Collapse
Affiliation(s)
- Audrey Boulamery
- Aix-Marseille University, CNRS, NICN, Marseille, France.,AP-HM, Hôpital Sainte-Marguerite, Centre Antipoison et de Toxicovigilance, Marseille, France
| | - Sophie Desplat-Jégo
- Aix-Marseille University, CNRS, NICN, Marseille, France.,Service d'Immunologie, Hôpital de la Conception, Marseille, France
| |
Collapse
|
17
|
Liu Q, Xiao S, Xia Y. TWEAK/Fn14 Activation Participates in Skin Inflammation. Mediators Inflamm 2017; 2017:6746870. [PMID: 29038621 PMCID: PMC5606047 DOI: 10.1155/2017/6746870] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/01/2017] [Indexed: 02/07/2023] Open
Abstract
Tumor necrosis factor- (TNF-) like weak inducer of apoptosis (TWEAK) participates in multiple biological activities via binding to its sole receptor-fibroblast growth factor-inducible 14 (Fn14). The TWEAK/Fn14 signaling pathway is activated in skin inflammation and modulates the inflammatory responses of keratinocytes by activating nuclear factor-κB signals and enhancing the production of several cytokines, including interleukins, monocyte chemotactic protein-1, RANTES (regulated on activation, normal T cell expressed and secreted), and interferon gamma-induced protein 10. Mild or transient TWEAK/Fn14 activation contributes to tissular repair and regeneration while excessive or persistent TWEAK/Fn14 signals may lead to severe inflammatory infiltration and tissue damage. TWEAK also regulates cell fate of keratinocytes, involving the function of Fn14-TNF receptor-associated factor-TNF receptor axis. By recruiting inflammatory cells, promoting cytokine production, and regulating cell fate, TWEAK/Fn14 activation plays a pivotal role in the pathogenesis of various skin disorders, such as psoriasis, atopic dermatitis, cutaneous vasculitis, human papillomavirus infection and related skin tumors, and cutaneous autoimmune diseases. Therefore, the TWEAK/Fn14 pathway may be a potential target for the development of novel therapeutics for skin inflammatory diseases.
Collapse
Affiliation(s)
- Qilu Liu
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Shengxiang Xiao
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Yumin Xia
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
18
|
TWEAK/Fn14 Activation Contributes to the Pathogenesis of Bullous Pemphigoid. J Invest Dermatol 2017; 137:1512-1522. [DOI: 10.1016/j.jid.2017.03.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 01/05/2023]
|
19
|
Liu Y, Xu M, Min X, Wu K, Zhang T, Li K, Xiao S, Xia Y. TWEAK/Fn14 Activation Participates in Ro52-Mediated Photosensitization in Cutaneous Lupus Erythematosus. Front Immunol 2017; 8:651. [PMID: 28620393 PMCID: PMC5449764 DOI: 10.3389/fimmu.2017.00651] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/17/2017] [Indexed: 12/21/2022] Open
Abstract
Tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) binds to its sole receptor fibroblast growth factor-inducible 14 (Fn14), participating in various inflammatory responses. Recently, TWEAK/Fn14 activation was found prominent in the lesions of cutaneous lupus erythematosus (CLE). This study was designed to further reveal the potential role of this pathway in Ro52-mediated photosensitization. TWEAK, Fn14, and Ro52 were determined in the skin lesions of patients with CLE. Murine keratinocytes received ultraviolet B (UVB) irradiation or plus TWEAK stimulation and underwent detection for Ro52 and proinflammatory cytokines. The chemotaxis of J774.2 macrophages was evaluated on TWEAK stimulation of cocultured keratinocytes. We found that TWEAK, Fn14, and downstream cytokines were highly expressed in CLE lesions that overexpressed Ro52. Moreover, TWEAK enhanced the UVB-induced Ro52 upregulation in murine keratinocytes. Meanwhile, TWEAK stimulation of keratinocytes favored the migration of macrophages through promoting the production of chemokine C–C motif ligands 17 and 22. Furthermore, Fn14 siRNA transfection or nuclear factor-kappa B (NF-κB) inhibitor abrogated the TWEAK enhancement of Ro52 expression in keratinocytes. Similarly, TNF receptor associated factor 2 (TRAF2) siRNA reduced the protein level of Ro52 in these cells upon TWEAK stimulation. Interestingly, UVB irradiation increased the expression of TNF receptor type 1 (TNFR1) but not affecting TNFR2 expression in keratinocytes. In conclusion, the TWEAK/Fn14 signaling participates in Ro52-mediated photosensitization and involves the activation of NF-κB pathway as well as the function of the TRAF2/TNFR partners.
Collapse
Affiliation(s)
- Yale Liu
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Meifeng Xu
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Xiaoyun Min
- Core Research Laboratory, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Kunyi Wu
- Core Research Laboratory, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Ting Zhang
- Core Research Laboratory, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Ke Li
- Core Research Laboratory, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Shengxiang Xiao
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Yumin Xia
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
20
|
Wang P, Yang J, Tong F, Duan Z, Liu X, Xia L, Li K, Xia Y. Anti-Double-Stranded DNA IgG Participates in Renal Fibrosis through Suppressing the Suppressor of Cytokine Signaling 1 Signals. Front Immunol 2017; 8:610. [PMID: 28620377 PMCID: PMC5449454 DOI: 10.3389/fimmu.2017.00610] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 05/09/2017] [Indexed: 12/21/2022] Open
Abstract
Suppressor of cytokine signaling 1 (SOCS1) participates in renal fibrosis by downregulating Janus kinase 2 (JAK2)/signal transducer and activator of transcription 1 (STAT1)-mediated cytokine signaling. Recently, it was found that anti-double-stranded DNA (dsDNA) IgG induces the synthesis of profibrotic cytokines by renal cells. To explore the potential effect of anti-dsDNA IgG on SOCS1-mediated renal fibrosis, kidney tissues were collected from patients with lupus nephritis (LN) as well as MRL/lpr lupus-prone mice. The SOCS1 expression was evaluated in tissue samples. In addition, SCID mice were injected with anti-dsDNA IgG, followed by evaluation of SOCS1 levels. Renal resident cells were cultured in vitro, receiving the stimulation of anti-dsDNA IgG and then the measurement of SOCS1, JAK2, STAT1α, and profibrotic cytokines. Moreover, the binding of anti-dsDNA IgG to SOCS1 kinase inhibitory region (KIR) peptide was analyzed by surface plasmon resonance. We found that SOCS1 expression was inhibited, but JAK2/STAT1 activation was prominent in the kidney tissues of patients with LN, MRL/lpr mice, or anti-dsDNA IgG-injected SCID mice. The cultured renal cells also showed SOCS1 downregulation, JAK2/STAT1 activation, and profibrotic cytokine promotion upon anti-dsDNA IgG stimulation. Surprisingly, anti-dsDNA IgG showed high affinity to KIR peptide and competed with JAK2 loop for KIR. Additionally, a DNA-mimicking peptide (ALW) blocked the binding of anti-dsDNA IgG to KIR, and even partially abrogated the activation of JAK2/STAT1α signals and the expression of profibrotic cytokines in SCID mice. In conclusion, anti-dsDNA IgG downregulates SOCS1 expression, activates JAK2/STAT1 signals, and contributes to renal fibrosis; its peptide blockade may restore the SOCS1 inhibitory effect on the production of profibrotic cytokine, and finally ameliorate renal fibrosis in LN.
Collapse
Affiliation(s)
- Ping Wang
- Core Research Laboratory, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Jie Yang
- Department of Nephrology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Fang Tong
- Department of Immunology and Microbiology, Wannan Medical College, Wuhu, China
| | - Zhaoyang Duan
- Department of Nephrology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Xingyin Liu
- Department of Pathogenic Biology, Nanjing Medical University, Nanjing, China
| | - Linlin Xia
- Core Research Laboratory, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Ke Li
- Core Research Laboratory, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Yumin Xia
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|