Reese R, Kriesen T, Kersten M, Löhle M, Cantré D, Freiman TM, Storch A, Walter U. Combining ultrasound and microelectrode recordings for postoperative localization of subthalamic electrodes in Parkinson's disease.
Clin Neurophysiol 2023;
156:196-206. [PMID:
37972531 DOI:
10.1016/j.clinph.2023.11.001]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/10/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023]
Abstract
OBJECTIVE
To assess transcranial sonography (TCS) as stand-alone tool and in combination with microelectrode recordings (MER) as a method for the postoperative localization of deep brain stimulation (DBS) electrodes in the subthalamic nucleus (STN).
METHODS
Individual dorsal and ventral boundaries of STN (n = 12) were determined on intraoperative MER. Postoperatively, a standardized TCS protocol was applied to measure medio-lateral, anterior-posterior and rostro-caudal electrode position using visualized reference structures (midline, substantia nigra). TCS and combined TCS-MER data were validated using fusion-imaging and clinical outcome data.
RESULTS
Test-retest reliability of standard TCS measures of electrode position was excellent. Computed tomography and TCS measures of distance between distal electrode contact and midline agreed well (Pearson correlation; r = 0.86; p < 0.001). Comparing our "gold standard" of rostro-caudal electrode localization relative to STN boundaries, i.e. combining MRI-based stereotaxy and MER data, with the combination of TCS and MER data, the measures differed by 0.32 ± 0.87 (range, -1.35 to 1.25) mm. Combined TCS-MER data identified the clinically preferred electrode contacts for STN-DBS with high accuracy (Coheńs kappa, 0.86).
CONCLUSIONS
Combined TCS-MER data allow for exact localization of STN-DBS electrodes.
SIGNIFICANCE
Our method provides a new option for monitoring of STN-DBS electrode location and guidance of DBS programming in Parkinson's disease.
Collapse