1
|
Bulut E, Johansen PM, Elbualy A, Kalman C, Mayer R, Kato N, Salmeron de Toledo Aguiar R, Pilitsis JG. How Long Does Deep Brain Stimulation Give Patients Benefit? Neuromodulation 2025; 28:472-483. [PMID: 39001725 DOI: 10.1016/j.neurom.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/01/2024] [Accepted: 05/22/2024] [Indexed: 07/15/2024]
Abstract
INTRODUCTION One of the most common questions patients ask when they are contemplating deep brain stimulation (DBS) is how long it will last. To guide physicians in answering this query, we performed a scoping review to assess the current state of the literature and to identify the gaps that need to be addressed. MATERIALS AND METHODS The authors performed a MEDLINE search inclusive of articles from January 1987 (advent of DBS literature) to June 2023 including human and modeling studies written in English. For longevity of therapy data, only studies with a mean follow-up of ≥three years were included. Using the Rayyan platform, two reviewers (JP and RM) performed a title screen. Of the 734 articles, 205 were selected by title screen and 109 from abstract review. Ultimately, a total of 122 articles were reviewed. The research questions we explored were 1) how long can the different components of the DBS system maintain functionality? and 2) how long can DBS remain efficacious in treating Parkinson's disease (PD), essential tremor (ET), dystonia, and other disorders? RESULTS We showed that patients with PD, ET, and dystonia maintain a considerable long-term benefit in motor scores seven to ten years after implant, although the percentage improvement decreases over time. Stimulation off scores in PD and ET show worsening, consistent with disease progression. Battery life varies by the disease treated and the programming settings used. There remains a paucity of literature after ten years, and the impact of new device technology has not been classified to date. CONCLUSION We reviewed existing data on DBS longevity. Overall, outcomes data after ten years of therapy are substantially limited in the current literature. We recommend that physicians who have data for patients with DBS exceeding this duration publish their results.
Collapse
Affiliation(s)
- Esin Bulut
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - P Mitchell Johansen
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Alya Elbualy
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Cheyenne Kalman
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Ryan Mayer
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Nicholas Kato
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | | | - Julie G Pilitsis
- Department of Neurosurgery, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
2
|
Cenolli I, Campbell TA, Dorfman N, Hurley M, Smith J, Kostick-Quenet K, Storch EA, Blumenthal-Barby J, Lázaro-Muñoz G. Deep Brain Stimulation for Childhood Treatment-Resistant Obsessive-Compulsive Disorder: Mental Health Clinician Views on Candidacy Factors. AJOB Empir Bioeth 2025; 16:32-41. [PMID: 39250769 PMCID: PMC11785495 DOI: 10.1080/23294515.2024.2399519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
INTRODUCTION Deep brain stimulation (DBS) is approved under a humanitarian device exemption to manage treatment-resistant obsessive-compulsive disorder (TR-OCD) in adults. It is possible that DBS may be trialed or used clinically off-label in children and adolescents with TR-OCD in the future. DBS is already used to manage treatment-resistant childhood dystonia. Evidence suggests it is a safe and effective intervention for certain types of dystonia. Important questions remain unanswered about the use of DBS in children and adolescents with TR-OCD, including whether mental health clinicians would refer pediatric patients for DBS, and who would be a good candidate for DBS. OBJECTIVES To explore mental health clinicians' views on what clinical and psychosocial factors they would consider when determining which children with OCD would be good DBS candidates. MATERIALS AND METHODS In depth, semi-structured interviews were conducted with n = 25 mental health clinicians who treat pediatric patients with OCD. The interviews were transcribed, coded, and analyzed using thematic content analysis. Three questions focused on key, clinical, and psychosocial factors for assessing candidacy were analyzed to explore respondent views on candidacy factors. Our analysis details nine overarching themes expressed by clinicians, namely the patient's previous OCD treatment, OCD severity, motivation to commit to treatment, presence of comorbid conditions, family environment, education on DBS, quality of life, accessibility to treatment, and patient age and maturity. CONCLUSIONS Clinicians generally saw considering DBS treatment in youth as a last resort and only for very specific cases. DBS referral was predominantly viewed as acceptable for children with severe TR-OCD who have undertaken intensive, appropriate treatment without success, whose OCD has significantly reduced their quality of life, and who exhibit strong motivation to continue treatment given the right environment. Appropriate safeguards, eligibility criteria, and procedures should be discussed and identified before DBS for childhood TR-OCD becomes practice.
Collapse
Affiliation(s)
- Ilona Cenolli
- Harvard Center for Bioethics, Harvard Medical School, Boston, MA, USA
| | | | - Natalie Dorfman
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, USA
| | - Meghan Hurley
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, USA
| | - Jared Smith
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, USA
| | - Kristin Kostick-Quenet
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, USA
| | - Eric A. Storch
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | | | - Gabriel Lázaro-Muñoz
- Harvard Center for Bioethics, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital (MGH), Boston, MA, USA
| |
Collapse
|
3
|
Knebel J, McClure RK, Kennedy MLH. Assessing the Pharmacotherapy and Clinical Outcomes After Deep Brain Stimulation for Treatment-Refractory Obsessive-Compulsive Disorder: A Case-Cohort Study. J Clin Med 2024; 13:6549. [PMID: 39518688 PMCID: PMC11546672 DOI: 10.3390/jcm13216549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/16/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Background: In the search for effective treatments for refractive obsessive-compulsive disorder (OCD), deep brain stimulation (DBS) serves as an alternative option for those with minimal response to pharmacotherapy. The rarity of reports regarding DBS use for OCD is attributed to the invasive nature of the procedure: placement of electrodes within targeted areas of the brain to provide neuromodulation. This treatment of last resort may decrease functional impairment and pharmacologic complications for a debilitating mental illness. This study compares the pharmacotherapy utilization and treatment outcomes of five treatment-refractory OCD patients after the placement of DBS with those of a matched cohort. Methods: This retrospective, single-center, case-cohort study reviewed the electronic medical records of five subjects treated with DBS for treatment-refractory OCD and compared them to a similar treatment-refractory cohort whose OCD was treated without the use of DBS. Control subjects were matched by age, sex, years since diagnosis, number of previous medication class trials, and additional clinical factors. Inclusion criteria were defined as those that are at least eighteen years of age, assigned a primary diagnosis of OCD per the ICD-10 classification, and received DBS treatment for refractory OCD. Exclusion criteria included comorbid psychotic disorders, unstable neurological or coagulation disorder(s), and/or an eating disorder diagnosis. The primary endpoint was the change in the number of psychotropic medications two years after implantation for the DBS cohort and two years after psychiatric decompensation for the comparator cohort. Secondary endpoints included: Y-BOCS (the Yale-Brown Obsessive-Compulsive Scale) changes over time, duration quantity of psychotropic medication classes prescribed, and additional symptomology scale changes. Results: Patients receiving DBS were more likely to be on fewer medications and trialed fewer medications after treatment. One out of the five patients was found to be a responder in Y-BOCS scoring after DBS treatment. A reduction in anxiety and depression symptoms was also seen in the HAM-A and HAM-D scales for those that received DBS. Conclusions: A reduction in psychiatric medications trialed during therapy was observed, as well as varying reductions in OCD, anxiety, and depression symptomology following DBS. Results from this study indicate that DBS implantation may contribute to a reduction in polypharmacy while displaying DBS's potential impact on comorbid anxiety and depression symptoms. Given that the small sample size limits generalizability, additional prospective, randomized trials comparing the efficacy of DBS for OCD-specific symptomology and its overall impact on pharmacotherapy are needed in order to further establish the role of DBS as an accepted treatment option for OCD.
Collapse
Affiliation(s)
- Joshua Knebel
- Department of Pharmacy Practice, University of the Incarnate Word, San Antonio, TX 78209, USA
| | - Robert K. McClure
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC 27599, USA;
| | | |
Collapse
|
4
|
Runge J, Nagel JM, Blahak C, Kinfe TM, Heissler HE, Schrader C, Wolf ME, Saryyeva A, Krauss JK. Does Temporary Externalization of Electrodes After Deep Brain Stimulation Surgery Result in a Higher Risk of Infection? Neuromodulation 2024; 27:565-571. [PMID: 37804281 DOI: 10.1016/j.neurom.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 08/14/2023] [Accepted: 08/22/2023] [Indexed: 10/09/2023]
Abstract
OBJECTIVES Deep brain stimulation (DBS) is a well-established surgical therapy for movement disorders that comprises implantation of stimulation electrodes and a pacemaker. These procedures can be performed separately, leaving the possibility of externalizing the electrodes for local field potential recording or testing multiple targets for therapeutic efficacy. It is still debated whether the temporary externalization of DBS electrodes leads to an increased risk of infection. We therefore aimed to assess the risk of infection during and after lead externalization in DBS surgery. MATERIALS AND METHODS In this retrospective study, we analyzed a consecutive series of 624 DBS surgeries, including 266 instances with temporary externalization of DBS electrodes for a mean of 6.1 days. Patients were available for follow-up of at least one year, except in 15 instances. In 14 patients with negative test stimulation, electrodes were removed. All kinds of infections related to implantation of the neurostimulation system were accounted for. RESULTS Overall, infections occurred in 22 of 624 surgeries (3.5%). Without externalization of electrodes, infections were noted after 7 of 358 surgeries (2.0%), whereas with externalization, 15 of 252 infections were found (6.0%). This difference was significant (p = 0.01), but it did not reach statistical significance when comparing groups within different diagnoses. The rate of infection with externalized electrodes was highest in psychiatric disorders (9.1%), followed by Parkinson's disease (7.3%), pain (5.7%), and dystonia (5.5%). The duration of the externalization of the DBS electrodes was comparable in patients who developed an infection (6.1 ± 3.1 days) with duration in those who did not (6.0 ± 3.5 days). CONCLUSIONS Although infection rates were relatively low in our study, there was a slightly higher infection rate when DBS electrodes were externalized. On the basis of our results, the indication for electrode externalization should be carefully considered, and patients should be informed about the possibility of a higher infection risk when externalization of DBS electrodes is planned.
Collapse
Affiliation(s)
- Joachim Runge
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany.
| | - Johanna M Nagel
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | | | - Thomas M Kinfe
- Division of Functional Neurosurgery, Friedrich-Alexander University, Erlangen-Nürnberg, Germany
| | - Hans E Heissler
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | | | - Marc E Wolf
- Department of Neurology, Katharinenhospital Stuttgart, Stuttgart, Germany
| | - Assel Saryyeva
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Joachim K Krauss
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| |
Collapse
|
5
|
Acevedo N, Rossell S, Castle D, Groves C, Cook M, McNeill P, Olver J, Meyer D, Perera T, Bosanac P. Clinical outcomes of deep brain stimulation for obsessive-compulsive disorder: Insight as a predictor of symptom changes. Psychiatry Clin Neurosci 2024; 78:131-141. [PMID: 37984432 PMCID: PMC10952286 DOI: 10.1111/pcn.13619] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/18/2023] [Accepted: 11/11/2023] [Indexed: 11/22/2023]
Abstract
AIM Deep brain stimulation (DBS) is a safe and effective treatment option for people with refractory obsessive-compulsive disorder (OCD). Yet our understanding of predictors of response and prognostic factors remains rudimentary, and long-term comprehensive follow-ups are lacking. We aim to investigate the efficacy of DBS therapy for OCD patients, and predictors of clinical response. METHODS Eight OCD participants underwent DBS stimulation of the nucleus accumbens (NAc) in an open-label longitudinal trial, duration of follow-up varied between 9 months and 7 years. Post-operative care involved comprehensive fine tuning of stimulation parameters and adjunct multidisciplinary therapy. RESULTS Six participants achieved clinical response (35% improvement in obsessions and compulsions on the Yale Brown Obsessive Compulsive Scale (YBOCS)) within 6-9 weeks, response was maintained at last follow up. On average, the YBOCS improved by 45% at last follow up. Mixed linear modeling elucidated directionality of symptom changes: insight into symptoms strongly predicted (P = 0.008) changes in symptom severity during DBS therapy, likely driven by initial changes in depression and anxiety. Precise localization of DBS leads demonstrated that responders most often had their leads (and active contacts) placed dorsal compared to non-responders, relative to the Nac. CONCLUSION The clinical efficacy of DBS for OCD is demonstrated, and mediators of changes in symptoms are proposed. The symptom improvements within this cohort should be seen within the context of the adjunct psychological and biopsychosocial care that implemented a shared decision-making approach, with flexible iterative DBS programming. Further research should explore the utility of insight as a clinical correlate of response. The trial was prospectively registered with the ANZCTR (ACTRN12612001142820).
Collapse
Affiliation(s)
- Nicola Acevedo
- Centre for Mental HealthSwinburne University of TechnologyMelbourneVictoriaAustralia
- St Vincent's HospitalMelbourneVictoriaAustralia
| | - Susan Rossell
- Centre for Mental HealthSwinburne University of TechnologyMelbourneVictoriaAustralia
- St Vincent's HospitalMelbourneVictoriaAustralia
| | - David Castle
- St Vincent's HospitalMelbourneVictoriaAustralia
- Centre for Addiction and Mental HealthUniversity of TorontoTorontoOntarioCanada
| | | | - Mark Cook
- St Vincent's HospitalMelbourneVictoriaAustralia
| | | | - James Olver
- Department of PsychiatryUniversity of MelbourneMelbourneVictoriaAustralia
| | - Denny Meyer
- Centre for Mental HealthSwinburne University of TechnologyMelbourneVictoriaAustralia
| | - Thushara Perera
- Bionics InstituteEast MelbourneVictoriaAustralia
- Department of Medical BionicsThe University of MelbourneMelbourneVictoriaAustralia
| | - Peter Bosanac
- St Vincent's HospitalMelbourneVictoriaAustralia
- Department of PsychiatryUniversity of MelbourneMelbourneVictoriaAustralia
| |
Collapse
|
6
|
Huang ST, Wu K, Guo MM, Shao S, Hua R, Zhang YM. Glutamatergic and GABAergic anteroventral BNST projections to PVN CRH neurons regulate maternal separation-induced visceral pain. Neuropsychopharmacology 2023; 48:1778-1788. [PMID: 37516802 PMCID: PMC10579407 DOI: 10.1038/s41386-023-01678-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 07/31/2023]
Abstract
Early-life stress (ELS) is thought to cause the development of visceral pain disorders. While some individuals are vulnerable to visceral pain, others are resilient, but the intrinsic circuit and molecular mechanisms involved remain largely unclear. Herein, we demonstrate that inbred mice subjected to maternal separation (MS) could be separated into susceptible and resilient subpopulations by visceral hypersensitivity evaluation. Through a combination of chemogenetics, optogenetics, fiber photometry, molecular and electrophysiological approaches, we discovered that susceptible mice presented activation of glutamatergic projections or inhibition of GABAergic projections from the anteroventral bed nucleus of the stria terminalis (avBNST) to paraventricular nucleus (PVN) corticotropin-releasing hormone (CRH) neurons. However, resilience develops as a behavioral adaptation partially due to restoration of PVN SK2 channel expression and function. Our findings suggest that PVN CRH neurons are dually regulated by functionally opposing avBNST neurons and that this circuit may be the basis for neurobiological vulnerability to visceral pain.
Collapse
Affiliation(s)
- Si-Ting Huang
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Ke Wu
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Miao-Miao Guo
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Shuai Shao
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Rong Hua
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Emergency Department, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221116, Jiangsu, China
| | - Yong-Mei Zhang
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
7
|
Abdelnaim MA, Lang-Hambauer V, Hebel T, Schoisswohl S, Schecklmann M, Deuter D, Schlaier J, Langguth B. Deep brain stimulation for treatment resistant obsessive compulsive disorder; an observational study with ten patients under real-life conditions. Front Psychiatry 2023; 14:1242566. [PMID: 37779611 PMCID: PMC10533930 DOI: 10.3389/fpsyt.2023.1242566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/23/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction Obsessive-compulsive disorder (OCD) affects 2-3% of the global population, causing distress in many functioning levels. Standard treatments only lead to a partial recovery, and about 10% of the patients remain treatment-resistant. Deep brain stimulation offers a treatment option for severe, therapy-refractory OCD, with a reported response of about 60%. We report a comprehensive clinical, demographic, and treatment data for patients who were treated with DBS in our institution. Methods We offered DBS to patients with severe chronic treatment resistant OCD. Severity was defined as marked impairment in functioning and treatment resistance was defined as non-response to adequate trials of medications and psychotherapy. Between 2020 and 2022, 11 patients were implanted bilaterally in the bed nucleus of stria terminalis (BNST). Patients were evaluated with YBOCS, MADRS, GAF, CGI, and WHOQOL-BREF. We performed the ratings at baseline (before surgery), after implantation before the start of the stimulation, after reaching satisfactory stimulation parameters, and at follow-up visits 3, 6, 9, and 12 months after optimized stimulation. Results One patient has retracted his consent to publish the results of his treatment, thus we are reporting the results of 10 patients (5 males, 5 females, mean age: 37 years). Out of our 10 patients, 6 have shown a clear response indicated by a YBOCS-reduction between 42 and 100 percent at last follow-up. One further patient experienced a subjectively dramatic effect on OCD symptoms, but opted afterwards to stop the stimulation. The other 3 patients showed a slight, non-significant improvement of YBOCS between 8.8 and 21.9%. The overall mean YBOCS decreased from 28.3 at baseline to 13.3 (53% reduction) at the last follow-up. The improvement of the OCD symptoms was also accompanied by an improvement of depressive symptoms, global functioning, and quality of life. Conclusion Our results suggest that BNST-DBS can be effective for treatment-resistant OCD patients, as indicated by a reduction in symptoms and an overall improvement in functioning. Despite the need for additional research to define the patients' selection criteria, the most appropriate anatomical target, and the most effective stimulation parameters, improved patient access for this therapy should be established.
Collapse
Affiliation(s)
- Mohamed A. Abdelnaim
- Department of Psychiatry and Psychotherapy, University Regensburg, Regensburg, Germany
- Center for Deep Brain Stimulation, University Regensburg, Regensburg, Germany
| | - Verena Lang-Hambauer
- Department of Psychiatry and Psychotherapy, University Regensburg, Regensburg, Germany
- Center for Deep Brain Stimulation, University Regensburg, Regensburg, Germany
| | - Tobias Hebel
- Department of Psychiatry and Psychotherapy, University Regensburg, Regensburg, Germany
| | - Stefan Schoisswohl
- Department of Psychiatry and Psychotherapy, University Regensburg, Regensburg, Germany
- Department of Psychology, University of the Bundeswehr Munich, Neubiberg, Germany
| | - Martin Schecklmann
- Department of Psychiatry and Psychotherapy, University Regensburg, Regensburg, Germany
| | - Daniel Deuter
- Center for Deep Brain Stimulation, University Regensburg, Regensburg, Germany
- Department of Neurosurgery, University Regensburg, Regensburg, Germany
| | - Juergen Schlaier
- Center for Deep Brain Stimulation, University Regensburg, Regensburg, Germany
- Department of Neurosurgery, University Regensburg, Regensburg, Germany
| | - Berthold Langguth
- Department of Psychiatry and Psychotherapy, University Regensburg, Regensburg, Germany
- Center for Deep Brain Stimulation, University Regensburg, Regensburg, Germany
| |
Collapse
|
8
|
Fanty L, Yu J, Chen N, Fletcher D, Hey G, Okun M, Wong J. The current state, challenges, and future directions of deep brain stimulation for obsessive compulsive disorder. Expert Rev Med Devices 2023; 20:829-842. [PMID: 37642374 DOI: 10.1080/17434440.2023.2252732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/27/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023]
Abstract
INTRODUCTION Obsessive-compulsive disorder (OCD) is clinically and pathologically heterogenous, with symptoms often refractory to first-line treatments. Deep brain stimulation (DBS) for the treatment of refractory OCD provides an opportunity to adjust and individualize neuromodulation targeting aberrant circuitry underlying OCD. The tailoring of DBS therapy may allow precision in symptom control based on patient-specific pathology. Progress has been made in understanding the potential targets for DBS intervention; however, a consensus on an optimal target has not been agreed upon. AREAS COVERED A literature review of DBS for OCD was performed by querying the PubMed database. The following topics were covered: the evolution of DBS targeting in OCD, the concept of an underlying unified connectomic network, current DBS targets, challenges facing the field, and future directions which could advance personalized DBS in this challenging population. EXPERT OPINION To continue the increasing efficacy of DBS for OCD, we must further explore the optimal DBS response across clinical profiles and neuropsychiatric domains of OCD as well as how interventions targeting multiple points in an aberrant circuit, multiple aberrant circuits, or a connectivity hub impact clinical response. Additionally, biomarkers would be invaluable in programming adjustments and creating a closed-loop paradigm to address symptom fluctuation in daily life.
Collapse
Affiliation(s)
- Lauren Fanty
- Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, USA
| | - Jun Yu
- Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, USA
| | - Nita Chen
- Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, USA
| | - Drew Fletcher
- College of Medicine, University of Florida Health Science Center, Gainesville, FL, USA
| | - Grace Hey
- Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, USA
- College of Medicine, University of Florida Health Science Center, Gainesville, FL, USA
| | - Michael Okun
- Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, USA
| | - Josh Wong
- Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, USA
| |
Collapse
|
9
|
Gadot R, Najera R, Hirani S, Anand A, Storch E, Goodman WK, Shofty B, Sheth SA. Efficacy of deep brain stimulation for treatment-resistant obsessive-compulsive disorder: systematic review and meta-analysis. J Neurol Neurosurg Psychiatry 2022; 93:jnnp-2021-328738. [PMID: 36127157 DOI: 10.1136/jnnp-2021-328738] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 05/22/2022] [Indexed: 11/03/2022]
Abstract
Deep brain stimulation (DBS) is an established and growing intervention for treatment-resistant obsessive-compulsive disorder (TROCD). We assessed current evidence on the efficacy of DBS in alleviating OCD and comorbid depressive symptoms including newly available evidence from recent trials and a deeper risk of bias analysis than previously available. PubMed and EMBASE databases were systematically queried using Preferred Reporting Items for Systematic reviews and Meta-Analyses guidelines. We included studies reporting primary data on multiple patients who received DBS therapy with outcomes reported through the Yale-Brown Obsessive-Compulsive Scale (Y-BOCS). Primary effect measures included Y-BOCS mean difference and per cent reduction as well as responder rate (≥35% Y-BOCS reduction) at last follow-up. Secondary effect measures included standardised depression scale reduction. Risk of bias assessments were performed on randomised controlled (RCTs) and non-randomised trials. Thirty-four studies from 2005 to 2021, 9 RCTs (n=97) and 25 non-RCTs (n=255), were included in systematic review and meta-analysis based on available outcome data. A random-effects model indicated a meta-analytical average 14.3 point or 47% reduction (p<0.01) in Y-BOCS scores without significant difference between RCTs and non-RCTs. At last follow-up, 66% of patients were full responders to DBS therapy. Sensitivity analyses indicated a low likelihood of small study effect bias in reported outcomes. Secondary analysis revealed a 1 standardised effect size (Hedges' g) reduction in depressive scale symptoms. Both RCTs and non-RCTs were determined to have a predominantly low risk of bias. A strong evidence base supports DBS for TROCD in relieving both OCD and comorbid depression symptoms in appropriately selected patients.
Collapse
Affiliation(s)
- Ron Gadot
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Ricardo Najera
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Samad Hirani
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Adrish Anand
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Eric Storch
- Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA
| | - Wayne K Goodman
- Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA
| | - Ben Shofty
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Sameer A Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
10
|
Visser-Vandewalle V, Andrade P, Mosley PE, Greenberg BD, Schuurman R, McLaughlin NC, Voon V, Krack P, Foote KD, Mayberg HS, Figee M, Kopell BH, Polosan M, Joyce EM, Chabardes S, Matthews K, Baldermann JC, Tyagi H, Holtzheimer PE, Bervoets C, Hamani C, Karachi C, Denys D, Zrinzo L, Blomstedt P, Naesström M, Abosch A, Rasmussen S, Coenen VA, Schlaepfer TE, Dougherty DD, Domenech P, Silburn P, Giordano J, Lozano AM, Sheth SA, Coyne T, Kuhn J, Mallet L, Nuttin B, Hariz M, Okun MS. Deep brain stimulation for obsessive-compulsive disorder: a crisis of access. Nat Med 2022; 28:1529-1532. [PMID: 35840727 DOI: 10.1038/s41591-022-01879-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Veerle Visser-Vandewalle
- Department of Stereotactic and Functional Neurosurgery, University Hospital Cologne, and Faculty of Medicine, University of Cologne, Cologne, Germany.
| | - Pablo Andrade
- Department of Stereotactic and Functional Neurosurgery, University Hospital Cologne, and Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Philip E Mosley
- Clinical Brain Networks Group, QIMR Berghofer Medical Research Institute, and Queensland Brain Institute, Brisbane, Queensland, Australia
| | - Benjamin D Greenberg
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA.,Center for Neuromodulation, Butler Hospital, Providence, RI, USA.,RR&D Center for Neurorestoration and Neurotechnology, Providence, RI, USA
| | - Rick Schuurman
- Department of Neurosurgery, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - Nicole C McLaughlin
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA.,Behavioral Medicine and Addictions Research, Butler Hospital, Providence, Rhode Island, USA
| | - Valerie Voon
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Paul Krack
- Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Kelly D Foote
- Department of Neurosurgery, University of Florida Health, Gainesville, FL, USA.,Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, USA
| | - Helen S Mayberg
- Departments of Neurology, Neurosurgery, Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Martijn Figee
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Brian H Kopell
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Mircea Polosan
- Fondation Fondamental, Créteil, France.,Centre Expert Troubles Bipolaires, Service Universitaire de Psychiatrie, Centre Hospitalier Universitaire de Grenoble et des Alpes, Grenoble, France.,Grenoble Institut des Neurosciences, Inserm U 836, La Tronche, France
| | - Eileen M Joyce
- Unit of Functional Neurosurgery, UCL Queen Square Institute of Neurology and UCLH National Hospital for Neurology and Neurosurgery, Queen Square, London, UK.,Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology and UCLH National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Stephan Chabardes
- Department of Neurosurgery, Grenoble University Hospital, Grenoble, France
| | - Keith Matthews
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, Scotland, UK
| | - Juan C Baldermann
- Department of Neurology, University Hospital Cologne, and Faculty of Medicine, University of Cologne, Cologne, Germany.,Department of Psychiatry and Psychotherapy, University Hospital Cologne, and Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Himanshu Tyagi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology and UCLH National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Paul E Holtzheimer
- Departments of Psychiatry and Surgery, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Chris Bervoets
- Department of Neurosciences, Adult Psychiatry, UPC KU Leuven, Leuven, Belgium
| | - Clement Hamani
- Sunnybrook Research Institute, Division of Neurosurgery, University of Toronto, Toronto, Canada
| | - Carine Karachi
- Neurosurgery Department, Hôpital de la Salpêtrière, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Damiaan Denys
- Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Ludvic Zrinzo
- Unit of Functional Neurosurgery, UCL Queen Square Institute of Neurology and UCLH National Hospital for Neurology and Neurosurgery, Queen Square, London, UK.,Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology and UCLH National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | | | - Matilda Naesström
- Department of Clinical Sciences/Psychiatry, Umeå University, Umeå, Sweden
| | - Aviva Abosch
- Department of Neurosurgery and Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Steven Rasmussen
- Department of Psychiatry and Human Behavior, Alpert School of Medicine, Brown University, Providence, RI, USA.,Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Volker A Coenen
- Department of Stereotactic and Functional Neurosurgery, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Deep Brain Stimulation, Freiburg University, Freiburg, Germany
| | - Thomas E Schlaepfer
- Department of Stereotactic and Functional Neurosurgery, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Deep Brain Stimulation, Freiburg University, Freiburg, Germany
| | - Darin D Dougherty
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, MA, USA
| | - Philippe Domenech
- Département Médico-Universitaire de Psychiatrie et d'Addictologie, Assistance Publique-Hôpitaux de Paris, Le Groupe Hospitalier Universitaire Henri Mondor, Université Paris-Est, Créteil, France.,Institut du Cerveau, Inserm U1127, CNRS UMR7225, Sorbonne Université, Paris, France
| | - Peter Silburn
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - James Giordano
- Department of Neurology, Georgetown University Medical Center, Washington, DC, USA.,Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, USA.,Neuroethics Studies Program, Pellegrino Center for Clinical Bioethics, Georgetown University, Washington, DC, USA
| | - Andres M Lozano
- Department of Neurosurgery and Neuroscience, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Sameer A Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Terry Coyne
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Jens Kuhn
- Department of Psychiatry and Psychotherapy, University Hospital Cologne, and Faculty of Medicine, University of Cologne, Cologne, Germany.,Department of Psychiatry, Psychotherapy, and Psychosomatics, Johanniter Hospital Oberhausen, Oberhausen, Germany
| | - Luc Mallet
- Département Médical-Universitaire de Psychiatrie et d'Addictologie, Hôpitaux Universitaires Henri Mondor-Albert Chenevier, Assistance Publique-Hôpitaux de Paris, University Paris-Est Créteil, Créteil, France.,Institut du Cerveau, Paris Brain Institute, Inserm, CNRS, Sorbonne Université, Paris, France.,Department of Mental Health and Psychiatry, Global Health Institute, University of Geneva, Geneva, Switzerland
| | - Bart Nuttin
- Department of Neurosurgery, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Marwan Hariz
- Unit of Functional Neurosurgery, UCL Queen Square Institute of Neurology and UCLH National Hospital for Neurology and Neurosurgery, Queen Square, London, UK.,Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology and UCLH National Hospital for Neurology and Neurosurgery, Queen Square, London, UK.,Unit for Deep Brain Stimulation, Umeå University, Umeå, Sweden
| | - Michael S Okun
- Department of Neurosurgery, University of Florida Health, Gainesville, FL, USA.,Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, USA.,Department of Neurology, University of Florida Health, Gainesville, FL, USA
| |
Collapse
|
11
|
Müller S, van Oosterhout A, Bervoets C, Christen M, Martínez-Álvarez R, Bittlinger M. Concerns About Psychiatric Neurosurgery and How They Can Be Overcome: Recommendations for Responsible Research. NEUROETHICS-NETH 2022. [DOI: 10.1007/s12152-022-09485-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Abstract
Background
Psychiatric neurosurgery is experiencing a revival. Beside deep brain stimulation (DBS), several ablative neurosurgical procedures are currently in use. Each approach has a different profile of advantages and disadvantages. However, many psychiatrists, ethicists, and laypeople are sceptical about psychiatric neurosurgery.
Methods
We identify the main concerns against psychiatric neurosurgery, and discuss the extent to which they are justified and how they might be overcome. We review the evidence for the effectiveness, efficacy and safety of each approach, and discuss how this could be improved. We analyse whether and, if so, how randomised controlled trials (RCTs) can be used in the different approaches, and what alternatives are available if conducting RCTs is impossible for practical or ethical reasons. Specifically, we analyse the problem of failed RCTs after promising open-label studies.
Results
The main concerns are: (i) reservations based on historical psychosurgery, (ii) concerns about personality changes, (iii) concerns regarding localised interventions, and (iv) scepticism due to the lack of scientific evidence. Given the need for effective therapies for treatment-refractory psychiatric disorders and preliminary evidence for the effectiveness of psychiatric neurosurgery, further research is warranted and necessary. Since psychiatric neurosurgery has the potential to modify personality traits, it should be held to the highest ethical and scientific standards.
Conclusions
Psychiatric neurosurgery procedures with preliminary evidence for efficacy and an acceptable risk–benefit profile include DBS and micro- or radiosurgical anterior capsulotomy for intractable obsessive–compulsive disorder. These methods may be considered for individual treatment attempts, but multi-centre RCTs are necessary to provide reliable evidence.
Collapse
|
12
|
Mar-Barrutia L, Real E, Segalás C, Bertolín S, Menchón JM, Alonso P. Deep brain stimulation for obsessive-compulsive disorder: A systematic review of worldwide experience after 20 years. World J Psychiatry 2021; 11:659-680. [PMID: 34631467 PMCID: PMC8474989 DOI: 10.5498/wjp.v11.i9.659] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/02/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Twenty years after its first use in a patient with obsessive-compulsive disorder (OCD), the results confirm that deep brain stimulation (DBS) is a promising therapy for patients with severe and resistant forms of the disorder. Nevertheless, many unknowns remain, including the optimal anatomical targets, the best stimulation parameters, the long-term (LT) effects of the therapy, and the clinical or biological factors associated with response. This systematic review of the articles published to date on DBS for OCD assesses the short and LT efficacy of the therapy and seeks to identify predictors of response.
AIM To summarize the existing knowledge on the efficacy and tolerability of DBS in treatment-resistant OCD.
METHODS A comprehensive search was conducted in the PubMed, Cochrane, Scopus, and ClinicalTrials.gov databases from inception to December 31, 2020, using the following strategy: “(Obsessive-compulsive disorder OR OCD) AND (deep brain stimulation OR DBS).” Clinical trials and observational studies published in English and evaluating the effectiveness of DBS for OCD in humans were included and screened for relevant information using a standardized collection tool. The inclusion criteria were as follows: a main diagnosis of OCD, DBS conducted for therapeutic purposes and variation in symptoms of OCD measured by the Yale-Brown Obsessive-Compulsive scale (Y-BOCS) as primary outcome. Data were analyzed with descriptive statistics.
RESULTS Forty articles identified by the search strategy met the eligibility criteria. Applying a follow-up threshold of 36 mo, 29 studies (with 230 patients) provided information on short-term (ST) response to DBS in, while 11 (with 155 patients) reported results on LT response. Mean follow-up period was 18.5 ± 8.0 mo for the ST studies and 63.7 ± 20.7 mo for the LT studies. Overall, the percentage of reduction in Y-BOCS scores was similar in ST (47.4%) and LT responses (47.2%) to DBS, but more patients in the LT reports met the criteria for response (defined as a reduction in Y-BOCS scores > 35%: ST, 60.6% vs LT, 70.7%). According to the results, the response in the first year predicts the extent to which an OCD patient will benefit from DBS, since the maximum symptom reduction was achieved in most responders in the first 12-14 mo after implantation. Reports indicate a consistent tendency for this early improvement to be maintained to the mid-term for most patients; but it is still controversial whether this improvement persists, increases or decreases in the long term. Three different patterns of LT response emerged from the analysis: 49.5% of patients had good and sustained response to DBS, 26.6% were non responders, and 22.5% were partial responders, who might improve at some point but experience relapses during follow-up. A significant improvement in depressive symptoms and global functionality was observed in most studies, usually (although not always) in parallel with an improvement in obsessive symptoms. Most adverse effects of DBS were mild and transient and improved after adjusting stimulation parameters; however, some severe adverse events including intracranial hemorrhages and infections were also described. Hypomania was the most frequently reported psychiatric side effect. The relationship between DBS and suicide risk is still controversial and requires further study. Finally, to date, no clear clinical or biological predictors of response can be established, probably because of the differences between studies in terms of the neuroanatomical targets and stimulation protocols assessed.
CONCLUSION The present review confirms that DBS is a promising therapy for patients with severe resistant OCD, providing both ST and LT evidence of efficacy.
Collapse
Affiliation(s)
- Lorea Mar-Barrutia
- OCD Clinical and Research Unit, Department of Psychiatry, Hospital de Bellvitge, Barcelona 08907, Spain
| | - Eva Real
- OCD Clinical and Research Unit, Department of Psychiatry, Hospital de Bellvitge, Barcelona 08907, Spain
- Bellvitge Biomedical Research Institute-IDIBELL, Barcelona 08907, Spain
- CIBERSAM (Centro de Investigación en Red de Salud Mental), Carlos III Health Institute, Madrid 28029, Spain
| | - Cinto Segalás
- OCD Clinical and Research Unit, Department of Psychiatry, Hospital de Bellvitge, Barcelona 08907, Spain
- Bellvitge Biomedical Research Institute-IDIBELL, Barcelona 08907, Spain
- CIBERSAM (Centro de Investigación en Red de Salud Mental), Carlos III Health Institute, Madrid 28029, Spain
| | - Sara Bertolín
- OCD Clinical and Research Unit, Department of Psychiatry, Hospital de Bellvitge, Barcelona 08907, Spain
| | - José Manuel Menchón
- OCD Clinical and Research Unit, Department of Psychiatry, Hospital de Bellvitge, Barcelona 08907, Spain
- Bellvitge Biomedical Research Institute-IDIBELL, Barcelona 08907, Spain
- CIBERSAM (Centro de Investigación en Red de Salud Mental), Carlos III Health Institute, Madrid 28029, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona 08907, Spain
| | - Pino Alonso
- OCD Clinical and Research Unit, Department of Psychiatry, Hospital de Bellvitge, Barcelona 08907, Spain
- Bellvitge Biomedical Research Institute-IDIBELL, Barcelona 08907, Spain
- CIBERSAM (Centro de Investigación en Red de Salud Mental), Carlos III Health Institute, Madrid 28029, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona 08907, Spain
| |
Collapse
|
13
|
Pinckard-Dover H, Ward H, Foote KD. The Decline of Deep Brain Stimulation for Obsessive-Compulsive Disorder Following FDA Humanitarian Device Exemption Approval. Front Surg 2021; 8:642503. [PMID: 33777998 PMCID: PMC7994854 DOI: 10.3389/fsurg.2021.642503] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/10/2021] [Indexed: 12/21/2022] Open
Abstract
Background: In February 2009, the US Food and Drug Administration (FDA) granted Humanitarian Device Exemption (HDE) for deep brain stimulation (DBS) in the anterior limb of the internal capsule (ALIC) for the treatment of severely debilitating, treatment refractory obsessive–compulsive disorder (OCD). Despite its promise as a life altering treatment for patients with otherwise refractory, severely debilitating OCD, the use of DBS for the treatment of OCD has diminished since the FDA HDE endorsement and is now rarely performed even at busy referral centers. We sought to identify factors hindering OCD patients from receiving DBS therapy. Materials and Methods: University of Florida (UF) clinical research databases were queried to identify patients evaluated as potential candidates for OCD DBS from January 1, 2002 to July 30, 2020. A retrospective review of these patients' medical records was performed to obtain demographic information, data related to their OCD, and details relevant to payment such as third-party payer, study participation, evaluation prior to or after HDE approval, and any stated factors prohibiting surgical intervention. Results: Out of 25 patients with severe OCD identified as candidates for DBS surgery during the past 18 years, 15 underwent surgery. Prior to FDA HDE approval, 6 out of 7 identified candidates were treated. After the HDE, only 9 out of 18 identified candidates were treated. Seven of the 9 were funded by Medicare, 1 paid out of pocket, and 1 had “pre-authorization” from her private insurer who ultimately refused to pay after the procedure. Among the 10 identified OCD DBS candidates who were ultimately not treated, 7 patients—all with private health insurance—were approved for surgery by the interdisciplinary team but were unable to proceed with surgery due to lack of insurance coverage, 1 decided against surgical intervention, 1 was excluded due to medical comorbidities and excessive perceived surgical risk, and no clear reason was identified for 1 patient evaluated in 2004 during our initial NIH OCD DBS trial. Conclusion: Based on compelling evidence that DBS provides substantial improvement of OCD symptoms and markedly improved functional capacity in 2 out of 3 patients with severely debilitating, treatment refractory OCD, the FDA approved this procedure under a Humanitarian Device Exemption in 2009, offering new hope to this unfortunate patient population. A careful review of our experience with OCD DBS at the University of Florida shows that since the HDE approval, only 50% of the severe OCD patients (9 of 18) identified as candidates for this potentially life altering treatment have been able to access the therapy. We found the most common limiting factor to be failure of private insurance policies to cover DBS for OCD, despite readily covering DBS for Parkinson's disease, essential tremor, and even dystonia—another HDE approved indication for DBS. We have identified an inherent discrimination in the US healthcare system against patients with medication-refractory OCD who are economically challenged and do not qualify for Medicare. We urge policy makers, insurance companies, and hospital administrations to recognize this health care disparity and seek to rectify it.
Collapse
Affiliation(s)
- Heather Pinckard-Dover
- Department of Neurosurgery, University of Florida, Gainesville, FL, United States.,Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, United States
| | - Herbert Ward
- Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, United States.,Department of Psychiatry, University of Florida, Gainesville, FL, United States
| | - Kelly D Foote
- Department of Neurosurgery, University of Florida, Gainesville, FL, United States.,Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, United States
| |
Collapse
|
14
|
Oscillatory activity in the BNST/ALIC and the frontal cortex in OCD: acute effects of DBS. J Neural Transm (Vienna) 2021; 128:215-224. [PMID: 33533974 DOI: 10.1007/s00702-020-02297-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 12/22/2020] [Indexed: 11/27/2022]
Abstract
Deep brain stimulation (DBS) of the bed nucleus of the stria terminalis/anterior limb of the internal capsule (BNST/ALIC) is successfully used for treatment of patients with obsessive-compulsive disorder (OCD). Clinical and experimental studies have suggested that enhanced network synchronization in the theta band is correlated with severity of symptoms. The mechanisms of action of DBS remain unclear in OCD. We here investigate the effect of acute stimulation of the BNCT/ALIC on oscillatory neuronal activity in patients with OCD implanted with DBS electrodes. We recorded the oscillatory activity of local field potentials (LFPs) from DBS electrodes (contact + 0/- 3; bipolar configuration; both hemispheres) from the BNST/ALIC parallel with frontal cortical electroencephalogram (EEG) one day after DBS surgery in four patients with OCD. BNST/ALIC and frontal EEG oscillatory activities were analysed before stimulation as baseline, and after three periods of stimulation with different voltage amplitudes (1 V, 2 V and 3.5 V) at 130 Hz. Overall, acute high frequency DBS reduced oscillatory theta band (4-8 Hz; p < 0.01) but increased other frequency bands in BNST/ALIC and the frontal cortex (p < 0.01). We show that stimulation of the BNST/ALIC in OCD modulates oscillatory activity in brain regions that are involved in the pathomechanisms of OCD. Our findings confirm and extend the findings that enhanced theta oscillatory activity in neuronal networks may be a biomarker for OCD.
Collapse
|
15
|
du Mortier JAM, Remmerswaal KCP, Batelaan NM, Visser HAD, Twisk JWR, van Oppen P, van Balkom AJLM. Predictors of Intensive Treatment in Patients With Obsessive-Compulsive Disorder. Front Psychiatry 2021; 12:659401. [PMID: 33912087 PMCID: PMC8072047 DOI: 10.3389/fpsyt.2021.659401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/11/2021] [Indexed: 12/02/2022] Open
Abstract
Background: Few studies have investigated which patients with obsessive-compulsive disorder (OCD) do not recover through regular cognitive behavior therapy or pharmacotherapy and subsequently end up in intensive treatment like day treatment or inpatient treatment. Knowing the predictors of intensive treatment in these patients is significant because it could prevent intensive treatment. This study has identified predictors of intensive treatment in patients with OCD. Methods: Using 6-year longitudinal data of the Netherlands Obsessive Compulsive Disorder Association (NOCDA), potential predictors of intensive treatment were assessed in patients with OCD (n = 419). Intensive treatment was assessed using the Treatment Inventory Costs in Patients with Psychiatric Disorders (TIC-P). Examined potential predictors were: sociodemographics, and clinical and psychosocial characteristics. Logistic Generalized Estimating Equations was used to estimate to what extent the various characteristics (at baseline, 2- and 4-year assessment) predicted intensive treatment in the following 2 years, averaged over the three assessment periods. Results: Being single, more severe comorbid depression, use of psychotropic medication, and a low quality of life predicted intensive treatment in the following 2 years. Conclusions: Therapists should be aware that patients with OCD who are single, who have more severe comorbid depression, who use psychotropic medication, and who have a low quality of life or a drop in quality of life are at risk for intensive treatment. Intensive treatment might be prevented by focusing regular treatment not only on OCD symptoms but also on comorbid depression and on quality of life. Intensive treatment might be improved by providing extra support in treatment or by adjusting treatment to impairments due to comorbid depressive symptoms or a low quality of life.
Collapse
Affiliation(s)
| | - Karin C P Remmerswaal
- Amsterdam UMC, Vrije Universiteit, Department of Psychiatry, Amsterdam Public Health Institute and GGZ inGeest Specialized Mental Health Care, Amsterdam, Netherlands
| | - Neeltje M Batelaan
- Amsterdam UMC, Vrije Universiteit, Department of Psychiatry, Amsterdam Public Health Institute and GGZ inGeest Specialized Mental Health Care, Amsterdam, Netherlands
| | | | - Jos W R Twisk
- Amsterdam UMC, Vrije Universiteit, Epidemiology and Biostatistics, Amsterdam, Netherlands
| | - Patricia van Oppen
- Amsterdam UMC, Vrije Universiteit, Department of Psychiatry, Amsterdam Public Health Institute and GGZ inGeest Specialized Mental Health Care, Amsterdam, Netherlands
| | - Anton J L M van Balkom
- Amsterdam UMC, Vrije Universiteit, Department of Psychiatry, Amsterdam Public Health Institute and GGZ inGeest Specialized Mental Health Care, Amsterdam, Netherlands
| |
Collapse
|
16
|
Davidson B, Lipsman N, Meng Y, Rabin JS, Giacobbe P, Hamani C. The Use of Tractography-Based Targeting in Deep Brain Stimulation for Psychiatric Indications. Front Hum Neurosci 2020; 14:588423. [PMID: 33304258 PMCID: PMC7701283 DOI: 10.3389/fnhum.2020.588423] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022] Open
Abstract
Deep Brain Stimulation (DBS) has been investigated as a treatment option for patients with refractory psychiatric illness. Over the past two decades, neuroimaging developments have helped to advance the field, particularly the use of diffusion tensor imaging (DTI) and tractographic reconstruction of white-matter pathways. In this article, we review translational considerations and how DTI and tractography have been used to improve targeting during DBS surgery for depression, obsessive compulsive disorder (OCD) and post-traumatic stress disorder (PTSD).
Collapse
Affiliation(s)
- Benjamin Davidson
- Sunnybrook Research Institute, Toronto, ON, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Nir Lipsman
- Sunnybrook Research Institute, Toronto, ON, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Ying Meng
- Sunnybrook Research Institute, Toronto, ON, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Jennifer S. Rabin
- Sunnybrook Research Institute, Toronto, ON, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Peter Giacobbe
- Sunnybrook Research Institute, Toronto, ON, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Psychiatry, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Clement Hamani
- Sunnybrook Research Institute, Toronto, ON, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| |
Collapse
|