1
|
Wagner Z, Steinberg H. [Using electricity to combat headache : Electrotherapy and tDCS in the 1870s/1880s and today]. Schmerz 2025; 39:185-193. [PMID: 37620679 DOI: 10.1007/s00482-023-00746-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/09/2023] [Accepted: 06/21/2023] [Indexed: 08/26/2023]
Abstract
Headache can be a widespread symptom as well as a disorder in itself. Headache syndromes such as migraine cause a lot of distress, disability and overall socioeconomic costs. Pharmacological treatments are often limited in their efficacy as well as due to side effects. The therapeutic application of electricity for this medical indication was a relevant field of research in the 19th century and-in the form of transcranial direct current stimulation (tDCS)-is still widely studied today. This paper provides an overview of publications from the late 19th century (as the era of discovery and success of electrotherapy) as well as contemporary studies investigating the usage of weak currents for the treatment or prophylaxis of headache. Our results show a large number of highly favorable reports of treatment successes. However, the number of cases analysed is often rather small and the forms of electric stimulation applied were often highly heterogeneous. In summary, electric stimulation appears to be a promising field of research and a possible therapeutic agent for the treatment of headaches; however, further research is necessary, especially into the details of the stimulation techniques applied and the various indications in which it may be of use.
Collapse
Affiliation(s)
- Zhenya Wagner
- Forschungsstelle für die Geschichte der Psychiatrie, Klinik und Poliklinik für Psychiatrie und Psychotherapie, Medizinische Fakultät, Universität Leipzig, Semmelweisstr. 10, 04103, Leipzig, Deutschland
| | - Holger Steinberg
- Forschungsstelle für die Geschichte der Psychiatrie, Klinik und Poliklinik für Psychiatrie und Psychotherapie, Medizinische Fakultät, Universität Leipzig, Semmelweisstr. 10, 04103, Leipzig, Deutschland.
| |
Collapse
|
2
|
Ornello R, D'Atri A, De Icco R, De Santis F, Rosignoli C, Onofri A, Vaghi G, Cammarota F, Brancaccio C, Corrado M, Bighiani F, Grillo V, Sances G, Corigliano D, Salfi F, Tassorelli C, Ferrara M, Sacco S. Effectiveness of transcranial direct current stimulation and monoclonal antibodies acting on the CGRP as a combined treatment for migraine (TACTIC): Results of a randomized controlled trial. Cephalalgia 2025; 45:3331024251325567. [PMID: 40384614 DOI: 10.1177/03331024251325567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
BackgroundMigraine pathogenesis involves both central and peripheral mechanisms. Although calcitonin gene-related peptide monoclonal antibodies have shown efficacy over placebo in migraine prevention, a proportion of individuals with migraine may experience a substantial residual burden while on treatment. Transcranial direct current stimulation is a non-invasive neuromodulation technique that can target central migraine mechanisms and may therefore complement calcitonin gene-related peptide monoclonal antibodies. The present study aimed to assess the efficacy of transcranial direct current stimulation as an adjunctive treatment to calcitonin gene-related peptide monoclonal antibodies in migraine prevention and to investigate its neurophysiological effects.MethodsThis is a multicenter, randomized double-blind, sham-controlled, parallel-group trial including subjects with migraine on treatment with calcitonin gene-related peptide monoclonal antibodies for ≥90 days and with ≥8 monthly migraine days in the last 30 days. Subjects were randomized to active or sham transcranial direct current stimulation. The transcranial direct current stimulation protocol consisted of five daily 20-minute sessions of bilateral cathodal stimulation on the occipital area and anodal stimulation on the M1 area. High-density electroencephalographic recordings were performed before the first and after the last transcranial direct current stimulation session. The primary endpoint was the number of headache days during the 28-day follow-up period controlling for the 28-days baseline value. Secondary endpoints included the number of migraine days during the follow-up period, disability measures and electroencephalographic spectral power. The active and sham groups were compared using analysis of covariance. For clinical outcomes with significant differences between groups, we also ran paired t-tests comparing baseline and follow-up assessment within groups.ResultsThirty participants were randomized (15 to active and 15 to sham group). Headache days during the 28-day follow-up period did not differ significantly between groups (p = 0.560, ηp2 = 0.017). However, participants receiving active transcranial direct current stimulation reported fewer migraine days during follow-up compared to the sham group (p = 0.008, ηp2 = 0.241). Paired t-tests indicated that the active tDCS group reported a reduction in migraine days during the follow-up period compared to baseline (t = 2.557, p = 0.023, Cohen's d = 0.660), while no difference was found in the sham group. Referring to neurophysiological endpoints, active transcranial direct current stimulation induced a significant decrease in delta power at frontal regions compared to sham.ConclusionsThis randomized-controlled trial suggests that transcranial direct current stimulation is a promising potentially effective treatment that may give additional benefits to subjects with migraine who are already on prevention with calcitonin gene-related peptide monoclonal antibodies but who have a substantial residual migraien burden. Combination treatments need to be better explored to provide strategies to further improve benefits of migraine prevention.Trial Registration: NCT05161871 (clinicaltrials.gov).
Collapse
Affiliation(s)
- Raffaele Ornello
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Aurora D'Atri
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Roberto De Icco
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Headache Science & Neurorehabilitation Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Federico De Santis
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Chiara Rosignoli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Agnese Onofri
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Gloria Vaghi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Headache Science & Neurorehabilitation Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Francescantonio Cammarota
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Headache Science & Neurorehabilitation Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Carla Brancaccio
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Headache Science & Neurorehabilitation Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Michele Corrado
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Headache Science & Neurorehabilitation Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Federico Bighiani
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Headache Science & Neurorehabilitation Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Valentina Grillo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Headache Science & Neurorehabilitation Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Grazia Sances
- Headache Science & Neurorehabilitation Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Domenico Corigliano
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Federico Salfi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Cristina Tassorelli
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Headache Science & Neurorehabilitation Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Michele Ferrara
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Simona Sacco
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
3
|
Huang YB, Yuan L, Xiao XY, Wang XY, Feng SJ, Zheng H. Effect of different non-pharmacologic placebo treatments on migraine prevention: a network meta-analysis of randomized controlled trials. Acta Neurol Belg 2024; 124:1125-1139. [PMID: 38245660 DOI: 10.1007/s13760-023-02460-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/08/2023] [Indexed: 01/22/2024]
Abstract
BACKGROUND Placebo control plays an important role in evaluating the effectiveness of interventions. Specifying differential effects of various placebo controls on migraine prevention would be essential in the explanation of preventive treatment for migraine and the indirect comparison between different prophylactic therapeutics. OBJECTIVES To access the impact of different non-pharmacologic placebo types on different outcomes in migraine patients. METHODS We searched PubMed, Cochrane Controlled Register of Trials, Embase, and Web of Science databases from the date of creation to June 19, 2023. Randomized controlled trials of migraine that included sham intervention of acupuncture or cognitive behavioural therapy (CBT) or non-invasive Vagus Nerve Stimulation (nVNS) or repetitive Transcranial Magnetic Stimulation (rTMS) or transcranial Direct Current Stimulation (tDCS) were conducted. The primary outcome was the migraine days, and the secondary outcomes were the number of migraine attacks, headache days, headache frequency, and responder's rate. Placebo effects were assessed using five individual placebos for network meta-analysis, using mean differences to measure the relative effect of pair-wise comparisons between interventions. RESULT A total of 50 trials with 4880 subjects were included. Twenty-seven trials were evaluated for low risk of bias. The results of indirect comparisons show that sham rTMS and sham tDCS had optimal and similar effects in reducing migraine days; sham acupuncture has the greatest effect on reducing the number of migraine attacks and relieving headache frequency; sham rTMS had a highly significant advantage in reducing headache days compared with the other placebo controls. CONCLUSION Based on the network meta-analysis results, we found that sham acupuncture had the greatest effect on migraine prophylaxis. The strong placebo effect of sham acupuncture should be considered when assessing the therapeutic effect.
Collapse
Affiliation(s)
- Yan-Bing Huang
- The Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Wenjiang District, Chengdu, 611100, China
| | - Lu Yuan
- The Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Wenjiang District, Chengdu, 611100, China
| | - Xin-Yu Xiao
- The Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Wenjiang District, Chengdu, 611100, China
| | - Xiao-Ying Wang
- The Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Wenjiang District, Chengdu, 611100, China
| | - Si-Jia Feng
- The Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Wenjiang District, Chengdu, 611100, China
| | - Hui Zheng
- The Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Wenjiang District, Chengdu, 611100, China.
| |
Collapse
|
4
|
Hasırcı Bayır BR, Aksu S, Gezegen H, Karaaslan Z, Yüceer H, Cerrahoğlu Şirin T, Küçükali Cİ, Kurt A, Karamürsel S, Yılmaz V, Baykan B. Effects of Transcranial Direct Current Stimulation on Clinical Outcomes, Calcitonin Gene-Related Peptide, and Pituitary Adenylate Cyclase-Activating Polypeptide-38 Levels in Menstrual Migraine. Neuromodulation 2024; 27:835-846. [PMID: 38506767 DOI: 10.1016/j.neurom.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 12/27/2023] [Accepted: 01/29/2024] [Indexed: 03/21/2024]
Abstract
OBJECTIVES Transcranial direct current stimulation (tDCS) has been suggested as an alternative treatment option for migraine. The present study aimed to evaluate the efficacy of tDCS on clinical outcomes in addition to calcitonin gene-related peptide (CGRP) and pituitary adenylate cyclase-activating peptide 38 (PACAP-38) levels in individuals with menstrual-related migraine (MRM) for the first time. MATERIALS AND METHODS In this parallel study, 58 female patients between the ages of 18 and 45 years, including 36 with MRM and 22 with nonmenstrual migraines (nMM), were recruited. Sessions of 2-mA 20-minute anodal tDCS were administered over the left dorsolateral prefrontal cortex within three consecutive days (1:1 active and sham stimulation). Migraine attack frequency, severity, analgesic usage, CGRP, and PACAP-38 levels of the patients were evaluated before and one month after tDCS. RESULTS After tDCS, in the active group compared with the sham group, the frequency (p = 0.031), the severity of attacks (p = 0.003), the number of days with headache (p = 0.004), and the analgesic usage (p = 0.024) were all decreased. In both MRM and nMM groups, the frequency and severity of attacks and analgesic usage were decreased in those receiving active stimulation (p < 0.001 for each). CGRP and PACAP-38 levels were no different in the active group and the sham group after tDCS. CONCLUSIONS tDCS was shown to be efficacious in migraine prophylaxis and a valuable option for migraine and MRM treatment. The absence of changes in serum CGRP and PACAP-38 levels suggests that tDCS efficacy may stem from distinct cerebral electrophysiological mechanisms.
Collapse
Affiliation(s)
- Buse Rahime Hasırcı Bayır
- Haydarpaşa Numune Reasearch and Training Hospital, Istanbul, Turkey; Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.
| | - Serkan Aksu
- Department of Physiology, Muğla Sıtkı Koçman University, Muğla, Turkey; Department of Physiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Haşim Gezegen
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Zerrin Karaaslan
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Hande Yüceer
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Tuba Cerrahoğlu Şirin
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey; Şişli Etfal Research and Training Hospital, Istanbul, Turkey
| | - Cem İsmail Küçükali
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Adnan Kurt
- Department of Physiology, School of Medicine, Koç University, Istanbul, Turkey
| | - Sacit Karamürsel
- Department of Physiology, School of Medicine, Koç University, Istanbul, Turkey
| | - Vuslat Yılmaz
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Betül Baykan
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey; Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
5
|
Bian N, Yuan Y, Li X. Effects of Transcranial Ultrasound Stimulation on Blood Oxygen Metabolism and Brain Rhythms in Nitroglycerin-Induced Migraine Mice. Neuromodulation 2024; 27:824-834. [PMID: 38506766 DOI: 10.1016/j.neurom.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 03/21/2024]
Abstract
OBJECTIVES In this study, we aimed to investigate the regulatory mechanism of transcranial ultrasound stimulation (TUS) on nitroglycerin-induced migraine in mice. MATERIALS AND METHODS The experiment was divided into four groups, namely, the normal saline control group (n = 9), ultrasound stimulation control group (n = 6), nitroglycerin-induced migraine group (n = 9), and ultrasound stimulation group (n = 9). The behavior, blood oxygen metabolism, and brain rhythm distribution of the four groups were analyzed. RESULTS We found that after TUS, the movement time and speed of mice with migraine are modulated to those of the control groups, and the number of head scratching and grooming events is significantly reduced. TUS increased the deoxygenated hemoglobin, and the power of the 4-to-40 Hz frequency band of local field potentials in the cortex of migraine mice. TUS also decreased the expression of plasma calcitonin gene-related peptide and cortical c-Fos protein. CONCLUSIONS Ultrasound stimulation can regulate brain rhythm and blood oxygen metabolism and reduce migraine symptoms in mice. The regulatory mechanism may be related to reducing calcitonin gene-related peptide in blood vessels.
Collapse
Affiliation(s)
- Nannan Bian
- School of Electrical Engineering, Yanshan University, Qinhuangdao, China; Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao, China
| | - Yi Yuan
- School of Electrical Engineering, Yanshan University, Qinhuangdao, China; Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao, China
| | - Xiaoli Li
- School of Electrical Engineering, Yanshan University, Qinhuangdao, China; Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao, China.
| |
Collapse
|
6
|
Kumpf U, Palm U, Eder J, Ezim H, Stadler M, Burkhardt G, Dechantsreiter E, Padberg F. TDCS at home for depressive disorders: an updated systematic review and lessons learned from a prematurely terminated randomized controlled pilot study. Eur Arch Psychiatry Clin Neurosci 2023; 273:1403-1420. [PMID: 37191697 PMCID: PMC10185954 DOI: 10.1007/s00406-023-01620-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 05/04/2023] [Indexed: 05/17/2023]
Abstract
The application of transcranial direct current stimulation (tDCS) at home for the treatment of major depressive disorder (MDD) is the subject of current clinical trials. This is due to its positive safety profile, cost-effectiveness, and potential scalability for a wide outreach in clinical practice. Here, we provide a systematic review of the available studies and also a report on the results of a randomized controlled trial (RCT) on tDCS at home for the treatment of MDD. This trial had to be prematurely terminated due to safety concerns. The HomeDC trial is a double-blinded, placebo-controlled, parallel-group study. Patients with MDD (DSM-5) were randomized to active or sham tDCS. Patients conducted tDCS at home for 6 weeks with 5 sessions/week (30 min at 2 mA) anode over F3, cathode over F4. Sham tDCS resembled active tDCS, with ramp-in and ramp-out periods, but without intermittent stimulation. The study was prematurely terminated due to an accumulation of adverse events (AEs, skin lesions), so that only 11 patients were included. Feasibility was good. Safety monitoring was not sufficient enough to detect or prevent AEs within an appropriate timeframe. Regarding antidepressant effects, the reduction in depression scales over time was significant. However, active tDCS was not superior to sham tDCS in this regard. Both the conclusions from this review and the HomeDC trial show that there are several critical issues with the use of tDCS at home that need to be addressed. Nevertheless the array of transcranial electric simulation (TES) methods that this mode of application offers, including tDCS, is highly interesting and warrants further investigation in high quality RCTs. TRIAL REGISTRATION www. CLINICALTRIALS gov . TRIAL REGISTRATION NUMBER NCT05172505. Registration date: 12/13/2021, https://clinicaltrials.gov/ct2/show/NCT05172505 . *Consider, if feasible to do so, reporting the number of records identified from each database or register searched (rather than the total number across all databases/registers) **If automation tools were used, indicate how many records were excluded by a human and how many were excluded by automation tools From: Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372:n71. https://doi.org/10.1136/bmj.n71 . For more information, visit: http://www.prisma-statement.org/.
Collapse
Affiliation(s)
- Ulrike Kumpf
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University Munich, Nussbaumstr. 7, 80336, Munich, Germany.
| | - Ulrich Palm
- Medicalpark Chiemseeblick, Bernau-Felden, Germany
| | - Julia Eder
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University Munich, Nussbaumstr. 7, 80336, Munich, Germany
| | - Harry Ezim
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University Munich, Nussbaumstr. 7, 80336, Munich, Germany
| | - Matthias Stadler
- Faculty of Psychology and Educational Sciences Ludwig Maximilian University Munich, Munich, Germany
| | - Gerrit Burkhardt
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University Munich, Nussbaumstr. 7, 80336, Munich, Germany
| | - Esther Dechantsreiter
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University Munich, Nussbaumstr. 7, 80336, Munich, Germany
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University Munich, Nussbaumstr. 7, 80336, Munich, Germany
| |
Collapse
|
7
|
Pohl H, Sandor PS, Moisa M, Ruff CC, Schoenen J, Luechinger R, O'Gorman R, Riederer F, Gantenbein AR, Michels L. Occipital transcranial direct current stimulation in episodic migraine patients: effect on cerebral perfusion. Sci Rep 2023; 13:13944. [PMID: 37626074 PMCID: PMC10457373 DOI: 10.1038/s41598-023-39659-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Cerebral blood flow differs between migraine patients and healthy controls during attack and the interictal period. This study compares the brain perfusion of episodic migraine patients and healthy controls and investigates the influence of anodal transcranial direct current stimulation (tDCS) over the occipital cortex. We included healthy adult controls and episodic migraineurs. After a 28-day baseline period and the baseline visit, migraine patients received daily active or sham anodal tDCS over the occipital lobe for 28 days. All participants underwent a MRI scan at baseline; migraineurs were also scanned shortly after the stimulation period and about five months later. At baseline, brain perfusion of migraine patients and controls differed in several areas; among the stimulated areas, perfusion was increased in the cuneus of healthy controls. At the first visit, the active tDCS group had an increased blood flow in regions processing visual stimuli and a decreased perfusion in other areas. Perfusion did not differ at the second follow-up visit. The lower perfusion level in migraineurs in the cuneus indicates a lower preactivation level. Anodal tDCS over the occipital cortex increases perfusion of several areas shortly after the stimulation period, but not 5 months later. An increase in the cortical preactivation level could mediate the transient reduction of the migraine frequency.Trial registration: NCT03237754 (registered at clincicaltrials.gov; full date of first trial registration: 03/08/2017).
Collapse
Affiliation(s)
- Heiko Pohl
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Peter S Sandor
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
- Department of Neurology and Neurorehabilitation, ZURZACH Care, Bad Zurzach, Switzerland
| | - Marius Moisa
- Zurich Center for Neuroeconomics (ZNE), Department of Economics, University of Zurich, Zurich, Switzerland
| | - Christian C Ruff
- Zurich Center for Neuroeconomics (ZNE), Department of Economics, University of Zurich, Zurich, Switzerland
| | - Jean Schoenen
- Headache Research Unit, Department of Neurology-Citadelle Hospital, University of Liège, Liège, Belgium
| | - Roger Luechinger
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Ruth O'Gorman
- Center for MR-Research, University Children's Hospital, Zurich, Switzerland
- Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Franz Riederer
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
- Department of Neurology, Clinic Hietzing, Vienna, Austria
- Karl Landsteiner Institute for Epilepsy Research and Cognitive Neurology, Vienna, Austria
| | - Andreas R Gantenbein
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
- Department of Neurology and Neurorehabilitation, ZURZACH Care, Bad Zurzach, Switzerland
| | - Lars Michels
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, 8091, Zurich, Switzerland.
- Clinical Neuroscience Center, University Hospital Zurich, Zurich, Switzerland.
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland.
| |
Collapse
|
8
|
Chen YL, Chen Q, Li LW, Hua C, Zhang XY, Zheng H. Non-invasive brain stimulation treatments for migraine prophylaxis: a network meta-analysis of randomized controlled trials. Acta Neurol Belg 2023; 123:1481-1493. [PMID: 37184609 DOI: 10.1007/s13760-023-02277-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 05/05/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND AND OBJECTIVES Migraine is a major public health problem owing to its long disease duration and disease relapse. Non-invasive brain stimulation treatments were reported effective for the management of migraine, but the comparative effectiveness of three main NIBSs, rTMS, nVNS, and tDCS, has not been studied. We aimed to explore the relative efficacy of rTMS, tDCS, and nVNS in migraine prophylaxis by using network meta-analysis (NMA). METHODS We searched OVID Medline, Embase, Cochrane Controlled Register of Trials, and Web of Science from inception to 1 January 2022. Randomized controlled trials that reported the efficacy of rTMS, tDCS or nVNS in the prophylactic treatment of migraine were included. The primary outcome was monthly migraine frequency, and secondary outcomes were headache intensity and the impact of headaches on daily life. The relative effects of the treatments in contrast to the others were measured by using standard mean difference (SMD). RESULTS We included 31 trials with 1659 participants. Fourteen trials were rated as low risk of bias. The results showed that tDCS (SMD - 1.58; 95%CI, - 2.38 to - 0.79; P-score = 0.92) had the largest effect on migraine frequency when compared with sham interventions in reducing monthly migraine frequency, and tDCS had a larger effect than rTMS (SMD - 0.62; 95%CI, - 1.81 to 0.57) and nVNS (SMD - 1.39; 95%CI, - 3.27 to 0.49). tDCS had also the largest effect in reducing pain intensity when compared with sham intervention (SMD - 1.49; 95%CI, - 2.46 to - 0.52) and rTMS (SMD - 0.48; 95%CI, - 2.06 to 1.09). CONCLUSIONS For the prophylactic treatment of migraine, tDCS was relatively more effective than rTMS and nVNS. Head-to-head comparison trials are needed to confirm the findings.
Collapse
Affiliation(s)
- Yi-Lin Chen
- The Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, No.1166 Liutai Avenue, Wenjiang District, Chengdu, 610000, China
| | - Qian Chen
- The Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, No.1166 Liutai Avenue, Wenjiang District, Chengdu, 610000, China
| | - Li-Wen Li
- The Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, No.1166 Liutai Avenue, Wenjiang District, Chengdu, 610000, China
| | - Can Hua
- The Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, No.1166 Liutai Avenue, Wenjiang District, Chengdu, 610000, China
| | - Xin-Yue Zhang
- The Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, No.1166 Liutai Avenue, Wenjiang District, Chengdu, 610000, China
| | - Hui Zheng
- The Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, No.1166 Liutai Avenue, Wenjiang District, Chengdu, 610000, China.
| |
Collapse
|
9
|
Messina R, Christensen RH, Cetta I, Ashina M, Filippi M. Imaging the brain and vascular reactions to headache treatments: a systematic review. J Headache Pain 2023; 24:58. [PMID: 37221469 DOI: 10.1186/s10194-023-01590-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/28/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND Neuroimaging studies have made an important contribution to our understanding of headache pathophysiology. This systematic review aims to provide a comprehensive overview and critical appraisal of mechanisms of actions of headache treatments and potential biomarkers of treatment response disclosed by imaging studies. MAIN BODY We performed a systematic literature search on PubMed and Embase databases for imaging studies investigating central and vascular effects of pharmacological and non-pharmacological treatments used to abort and prevent headache attacks. Sixty-three studies were included in the final qualitative analysis. Of these, 54 investigated migraine patients, 4 cluster headache patients and 5 patients with medication overuse headache. Most studies used functional magnetic resonance imaging (MRI) (n = 33) or molecular imaging (n = 14). Eleven studies employed structural MRI and a few used arterial spin labeling (n = 3), magnetic resonance spectroscopy (n = 3) or magnetic resonance angiography (n = 2). Different imaging modalities were combined in eight studies. Despite of the variety of imaging approaches and results, some findings were consistent. This systematic review suggests that triptans may cross the blood-brain barrier to some extent, though perhaps not sufficiently to alter the intracranial cerebral blood flow. Acupuncture in migraine, neuromodulation in migraine and cluster headache patients, and medication withdrawal in patients with medication overuse headache could promote headache improvement by reverting headache-affected pain processing brain areas. Yet, there is currently no clear evidence for where each treatment acts, and no firm imaging predictors of efficacy. This is mainly due to a scarcity of studies and heterogeneous treatment schemes, study designs, subjects, and imaging techniques. In addition, most studies used small sample sizes and inadequate statistical approaches, which precludes generalizable conclusions. CONCLUSION Several aspects of headache treatments remain to be elucidated using imaging approaches, such as how pharmacological preventive therapies work, whether treatment-related brain changes may influence therapy effectiveness, and imaging biomarkers of clinical response. In the future, well-designed studies with homogeneous study populations, adequate sample sizes and statistical approaches are needed.
Collapse
Affiliation(s)
- R Messina
- Neuroimaging Research Unit, Division of Neuroscience and Neurology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy.
| | - R H Christensen
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Glostrup, Denmark
| | - I Cetta
- Neuroimaging Research Unit, Division of Neuroscience and Neurology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
| | - M Ashina
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Glostrup, Denmark
| | - M Filippi
- Neuroimaging Research Unit, Division of Neuroscience and Neurology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
| |
Collapse
|
10
|
Pohl H, Wyss P, Sandor PS, Schoenen J, Luechinger R, O'Gorman R, Riederer F, Gantenbein AR, Michels L. The longitudinal influence of tDCS on occipital GABA and glutamate/glutamine levels in episodic migraineurs. J Neurosci Res 2023; 101:815-825. [PMID: 36688271 DOI: 10.1002/jnr.25161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 01/24/2023]
Abstract
This study investigated differences in the concentration of gamma-aminobutyric acid (GABA) and the combination of glutamine and glutamate (as GLX) in the early visual cortex of patients with episodic migraine and the influence of transcranial direct current stimulation (tDCS) on GABA and GLX. In this single-blind, sham-controlled trial, we randomly assigned patients with episodic migraine to receive daily anodal tDCS or sham stimulation. In addition, we included healthy controls. We acquired proton MR spectroscopy data of the visual cortex with 3 Tesla MRI at baseline and from migraine patients directly after the stimulation period and 4 months later. In 22 migraineurs and 25 controls, the GABA and the GLX concentrations did not differ at baseline between the groups. tDCS resulted in reduced concentrations of GABA but not GLX or the migraine frequency directly after the stimulation period, but not 4 months later. The changes in the levels of GABA in the early visual cortex of patients with episodic migraine in the interictal period suggest an effect of tDCS that allowed for subsequent changes in the migraine frequency. However, we might have missed relevant variations in the concentrations of these neurotransmitters during the follow-up period, as changes in migraine frequency appeared after the first MRI and disappeared before the second.
Collapse
Affiliation(s)
- Heiko Pohl
- Department of Neurology, University of Zurich, Zurich, Switzerland.,Clinical Neuroscience Center, University Hospital Zurich, Zurich, Switzerland
| | - Patrik Wyss
- Department of Radiology, Swiss Paraplegic Centre, Nottwil, Switzerland
| | - Peter S Sandor
- Department of Neurology, University of Zurich, Zurich, Switzerland.,Department of Neurology and Neurorehabilitation, ZURZACH Care, Bad Zurzach, Switzerland
| | - Jean Schoenen
- Headache Research Unit, Department of Neurology-Citadelle Hospital, University of Liège, Liège, Belgium
| | - Roger Luechinger
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Ruth O'Gorman
- Children's Research Center, University Children's Hospital, Zurich, Switzerland.,Center for MR-Research, University Children's Hospital, Zurich, Switzerland
| | - Franz Riederer
- Department of Neurology, University of Zurich, Zurich, Switzerland.,Karl Landsteiner Institute for Epilepsy Research and Cognitive Neurology, Vienna, Austria.,Department of Neurology, Clinic Hietzing, Vienna, Austria
| | - Andreas R Gantenbein
- Department of Neurology, University of Zurich, Zurich, Switzerland.,Department of Neurology and Neurorehabilitation, ZURZACH Care, Bad Zurzach, Switzerland
| | - Lars Michels
- Clinical Neuroscience Center, University Hospital Zurich, Zurich, Switzerland.,Department of Neuroradiology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
11
|
Erdoğan ET, Küçük Z, Eskikurt G, Kurt A, Ermutlu N, Karamürsel S. Single Session Anodal Transcranial Direct Current Stimulation on Different Cortical Areas. J PSYCHOPHYSIOL 2022. [DOI: 10.1027/0269-8803/a000311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract. Transcranial direct current stimulation (tDCS) studies in healthy volunteers have shown conflicting results in terms of modulation in pain thresholds. The aim of this study was to investigate how single session anodal tDCS and modulated tDCS (mtDCS) of distinct cortical areas affected pain and perception thresholds in healthy participants. Five different stimulation conditions were applied at different cortical sites to 20 healthy volunteers to investigate the effects of tDCS and mtDCS (20 Hz) on pain and perception thresholds. TDCS over the motor cortex (M1), mtDCS over the motor cortex, tDCS over the dorsolateral prefrontal cortex (DLPFC), mtDCS of the DLPFC, and mtDCS over the occipital cortex were the stimulation conditions. All of the stimulations were anodal. The stimulations were given in a randomized order at 20-minute intervals. For comparison, electrical pain and perception thresholds were obtained from the right middle finger before and during the tDCS. After each measurement, participants were asked to give a score to their pain. In repeated measures analysis of variance (RM-ANOVA) test, the Condition × Time interaction showed no significant influence on changes in pain, perception thresholds, and pain scores ( p = .48, p = .89, and p = .50, respectively). However, regardless of the condition types, there was a significant difference in pain and perceptual thresholds during tDCS ( p = .01, p = .025, respectively). Our findings did not support difference in pain and perception modulation by a single session anodal tDCS over M1 and DLPFC compared to the occipital cortex in healthy volunteers. The increase in all thresholds during tDCS, irrespective of conditions, and peripheral sensations, including an active control group, taken together, suggest a placebo effect of active tDCS. Future studies about pain and perception in healthy subjects should consider the level of experimental pain and a strong placebo effect.
Collapse
Affiliation(s)
- Ezgi Tuna Erdoğan
- Department of Physiology, School of Medicine, Koç University, Istanbul, Turkey
| | - Zeynep Küçük
- Department of Psychology, Faculty of Science and Literature, Halic University, Istanbul, Turkey
| | - Gökçer Eskikurt
- Department of Physiology, Faculty of Medicine, Istinye University, Istanbul, Turkey
| | - Adnan Kurt
- Department of Physiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Numan Ermutlu
- Department of Physiology, Faculty of Medicine, Istanbul Health and Technology University, Istanbul, Turkey
| | - Sacit Karamürsel
- Department of Physiology, School of Medicine, Koç University, Istanbul, Turkey
| |
Collapse
|
12
|
Aksu S, Şirin TC, Hasırcı Bayır BR, Ulukan Ç, Soyata AZ, Kurt A, Karamürsel S, Baykan B. Long-Term Prophylactic Transcranial Direct Current Stimulation Ameliorates Allodynia and Improves Clinical Outcomes in Individuals With Migraine. Neuromodulation 2022:S1094-7159(22)00759-0. [DOI: 10.1016/j.neurom.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/27/2022] [Accepted: 06/28/2022] [Indexed: 10/15/2022]
|
13
|
Hong P, Liu Y, Wan Y, Xiong H, Xu Y. Transcranial direct current stimulation for migraine: a systematic review and meta-analysis of randomized controlled trials. CNS Neurosci Ther 2022; 28:992-998. [PMID: 35437933 PMCID: PMC9160451 DOI: 10.1111/cns.13843] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) is a promising method for migraine treatment. In this study, we investigated the efficacy and safety of tDCS for migraine by conducting a systematic review and meta-analysis of randomized controlled trials (RCTs). METHODS We searched PubMed, EMBASE, Cochrane Library, and Web of Science up to December 02, 2021 for RCTs reporting tDCS for migraine treatment. Two authors independently evaluated the eligibility of the retrieved trials and extracted relevant data. Outcomes for the quantitative synthesis were reduction in migraine days per month and adverse events. RESULTS Eleven RCTs that included 425 patients with migraine were evaluated in the meta-analysis. The efficacy and safety of anodal or cathodal stimulation targeting different brain areas, including primary motor cortex (M1), primary sensory cortex (S1), dorsolateral prefrontal cortex (DLPFC), and visual cortex (VC), were assessed in the RCTs enrolled. We found that tDCS with M1 and VC activation could reduce No. of migraine days per month in patients with migraine. Meanwhile, tDCS with VC inhibition could also reduce No. of migraine days per month in patients with migraine. However, there were no differences in the incidence of adverse events between the two groups. CONCLUSION tDCS activates M1 or activates/inhibits VC which could improve migraine symptoms. tDCS is an effective, preventive, and safe treatment for migraine.
Collapse
Affiliation(s)
- Peiwei Hong
- Department of Geriatric Medicine and NeurologyWest China School of Public Health and West China Fourth HospitalSichuan UniversityChengduPeople’s Republic of China
- Department of NeurologyWest China HospitalSichuan UniversityChengduPeople’s Republic of China
| | - Yao Liu
- Xindu Hospital of Traditional Chinese MedicineChengdu Medical CollegeChengduSichuanPeople’s Republic of China
| | - Yang Wan
- Department of Geriatric Medicine and NeurologyWest China School of Public Health and West China Fourth HospitalSichuan UniversityChengduPeople’s Republic of China
| | - Hai Xiong
- Department of Geriatric Medicine and NeurologyWest China School of Public Health and West China Fourth HospitalSichuan UniversityChengduPeople’s Republic of China
- Medical College of Tibet UniversityLhasaPeople’s Republic of China
| | - Yanming Xu
- Department of NeurologyWest China HospitalSichuan UniversityChengduPeople’s Republic of China
| |
Collapse
|
14
|
Ornello R, Rosignoli C, Caponnetto V, Pistoia F, Ferrara M, D'Atri A, Sacco S. Effectiveness of Transcranial Direct Current Stimulation and Monoclonal Antibodies Acting on the CGRP as a Combined Treatment for Migraine (TACTIC): Protocol for a Randomized, Double-Blind, Sham-Controlled Trial. Front Neurol 2022; 13:890364. [PMID: 35620782 PMCID: PMC9127506 DOI: 10.3389/fneur.2022.890364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
Background Migraine is a recurrent headache disorder that has a still unclear pathophysiology, involving several circuits of both the central and peripheral nervous system. Monoclonal antibodies acting on the calcitonin gene-related (CGRP) pathway (CGRP-MAbs) are the first drugs specifically designed for migraine; those drugs act peripherally on the trigeminal ganglion without entering the blood-brain barrier. Conversely, neuromodulation techniques such as transcranial direct current stimulation (tDCS) act centrally by increasing or decreasing the neuronal firing rate of brain cortical areas. The aim of the study will be to evaluate whether tDCS, in addition to CGRP-MAbs, is an effective add-on treatment in reducing headache frequency, intensity and acute medication use in patients with migraine. To demonstrate the biological effects of tDCS, the electroencephalographic (EEG) power changes after tDCS will be assessed. Methods We will include patients with migraine on treatment with CGRP-MAbs and reporting ≥8 monthly migraine days. During a prospective 28-day baseline period, patients will fill in a headache diary and questionnaires to evaluate migraine-related disability, anxiety and depressive symptoms, sleep quality, and health-related quality of life. Subjects will be randomly assigned in a 1:1 ratio to active or sham tDCS. The stimulation protocol will consist in five daily sessions, the cathodes will be applied bilaterally above the occipital areas, with the reference anode electrodes positioned above the primary motor areas. Before the first, and immediately after the last stimulation session, patients will perform a 10-min resting EEG recording. During a 28-day follow-up period following tDCS, patients will have to fill in a headache diary and questionnaires identical to those of the baseline period. Discussion This trial will evaluate the efficacy of an add-on treatment acting on the brain in patients with migraine, who are already treated with peripherally acting drugs, showing how tDCS acts in restoring the dysfunctional brain networks typical of the migraine patient. Clinical Trial Registration NCT05161871.
Collapse
Affiliation(s)
- Raffaele Ornello
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Chiara Rosignoli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Valeria Caponnetto
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Francesca Pistoia
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Michele Ferrara
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Aurora D'Atri
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Simona Sacco
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
15
|
Cheng YC, Zeng BY, Hung CM, Su KP, Wu YC, Tu YK, Lin PY, Stubbs B, Carvalho AF, Liang CS, Chen TY, Hsu CW, Brunoni AR, Suen MW, Shiue YL, Tseng PT, Wu MK, Li CT. Effectiveness and acceptability of noninvasive brain and nerve stimulation techniques for migraine prophylaxis: a network meta-analysis of randomized controlled trials. J Headache Pain 2022; 23:28. [PMID: 35184742 PMCID: PMC8903676 DOI: 10.1186/s10194-022-01401-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/07/2022] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Current pharmacologic prophylactic strategies for migraine have exhibited limited efficacy, with response rates as low as 40%-50%. In addition to the limited efficacy, the acceptability of those pharmacologic prophylactic strategies were unacceptable. Although noninvasive brain/nerve stimulation strategies may be effective, the evidence has been inconsistent. The aim of this network meta-analysis (NMA) was to compare strategies of noninvasive brain/nerve stimulation for migraine prophylaxis with respect to their effectiveness and acceptability. METHODS The PubMed, Embase, ScienceDirect, ProQuest, ClinicalTrials.gov , ClinicalKey, Cochrane CENTRAL, Web of Science, and ClinicalTrials.gov databases were systematically searched to date of June 4th, 2021 for randomized controlled trials (RCTs). Patients with diagnosis of migraine, either episodic migraine or chronic migraine, were included. All NMA procedures were conducted under the frequentist model. RESULTS Nineteen RCTs were included (N = 1493; mean age = 38.2 years; 82.0% women). We determined that the high frequency repetitive transcranial magnetic stimulation (rTMS) over C3 yielded the most decreased monthly migraine days among all the interventions [mean difference = - 8.70 days, 95% confidence intervals (95%CIs): - 14.45 to - 2.95 compared to sham/control groups]. Only alternating frequency (2/100 Hz) transcutaneous occipital nerve stimulation (tONS) over the Oz (RR = 0.36, 95%CIs: 0.16 to 0.82) yielded a significantly lower drop-out rate than the sham/control groups did. CONCLUSIONS The current study provided a new direction for the design of more methodologically robust and larger RCTs based on the findings of the potentially beneficial effect on migraine prophylaxis in participants with migraine by different noninvasive brain/nerve stimulation, especially the application of rTMS and tONS. TRIAL REGISTRATION CRD42021252638. The current study had been approval by the Institutional Review Board of the Tri-Service General Hospital, National Defense Medical Center (TSGHIRB No. B-109-29).
Collapse
Affiliation(s)
- Yu-Chen Cheng
- Department of Neurology, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan
- Department of Neurology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Division of Community & Rehabilitation Psychiatry, Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Bing-Yan Zeng
- Department of Internal Medicine, E-DA Dachang Hospital, Kaohsiung, Taiwan
| | - Chao-Ming Hung
- Division of General Surgery, Department of Surgery, E-Da Cancer Hospital, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Kuan-Pin Su
- Department of Psychiatry & Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
- An-Nan Hospital, China Medical University, Tainan, Taiwan
| | - Yi-Cheng Wu
- Department of Sports Medicine, Landseed International Hospital, Taoyuan, Taiwan
| | - Yu-Kang Tu
- Institute of Epidemiology & Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Pao-Yen Lin
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No.123, Dapi Rd., Niaosong Dist, Kaohsiung City, 833, Taiwan
- Institute for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Brendon Stubbs
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Physiotherapy Department, South London and Maudsley NHS Foundation Trust, London, UK
- Positive Ageing Research Institute (PARI), Faculty of Health, Social Care Medicine and Education, Anglia Ruskin University, Chelmsford, UK
| | - Andre F Carvalho
- Innovation in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, VIC, Australia
| | - Chih-Sung Liang
- Department of Psychiatry, Beitou branch, Tri-Service General Hospital; School of Medicine, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Tien-Yu Chen
- Department of Psychiatry, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Chih-Wei Hsu
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No.123, Dapi Rd., Niaosong Dist, Kaohsiung City, 833, Taiwan
| | - Andre R Brunoni
- Service of Interdisciplinary Neuromodulation, National Institute of Biomarkers in Psychiatry, Laboratory of Neurosciences (LIM-27), Departamento e Instituto de Psiquiatria, Faculdade de Medicina da USP, São Paulo, Brazil
- Departamento de Ciências Médicas, Faculdade de Medicina da USP, São Paulo, Brazil
| | - Mein-Woei Suen
- Department of Psychology, College of Medical and Health Science, Asia University, Taichung, Taiwan
- Gender Equality Education and Research Center, Asia University, Taichung, Taiwan
- Department of Medical Research, Asia University Hospital, Asia University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Yow-Ling Shiue
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Ping-Tao Tseng
- Department of Psychology, College of Medical and Health Science, Asia University, Taichung, Taiwan.
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan.
- Prospect Clinic for Otorhinolaryngology & Neurology, No. 252, Nanzixin Road, Nanzi District, Kaohsiung City, 81166, Taiwan.
| | - Ming-Kung Wu
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No.123, Dapi Rd., Niaosong Dist, Kaohsiung City, 833, Taiwan.
| | - Cheng-Ta Li
- Division of Community & Rehabilitation Psychiatry, Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
- Division of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, No. 201, Sec. 2, Shipai Road, Beitou District, Taipei City, 11267, Taiwan.
- Institute of Brain Science and Brain Research Center, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Functional Neuroimaging and Brain Stimulation Lab, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Road, Beitou District, Taipei City, 11267, Taiwan.
| |
Collapse
|
16
|
Long-term prophylactic efficacy of transcranial direct current stimulation in chronic migraine. A randomised, patient-assessor blinded, sham-controlled trial. Brain Stimul 2022; 15:441-453. [DOI: 10.1016/j.brs.2022.02.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/31/2022] [Accepted: 02/20/2022] [Indexed: 12/14/2022] Open
|
17
|
Ornello R, Caponnetto V, Ratti S, D'Aurizio G, Rosignoli C, Pistoia F, Ferrara M, Sacco S, D'Atri A. Which is the best transcranial direct current stimulation protocol for migraine prevention? A systematic review and critical appraisal of randomized controlled trials. J Headache Pain 2021; 22:144. [PMID: 34837963 PMCID: PMC8903540 DOI: 10.1186/s10194-021-01361-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/17/2021] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) could counteract the pathophysiological triggers of migraine attacks by modulating cortical excitability. Several pilot randomized controlled trials (RCTs) assessed the efficacy of tDCS for migraine prevention. We reviewed and summarized the state of the art of tDCS protocols for migraine prevention, discussing study results according to the stimulations parameters and patients' populations. MAIN BODY We combined the keywords 'migraine', 'headache', 'transcranial direct current stimulation', and 'tDCS' and searched Pubmed, Scopus, and Web of Science, from the beginning of indexing to June 22, 2021. We only included RCTs comparing the efficacy of active tDCS with sham tDCS to decrease migraine frequency, intensity, and/or acute drug utilization. The risk of bias of each RCT was assessed by using the RoB-2 tool (Cochrane Collaboration). Thirteen RCTs (from 2011 to 2021) were included in the review. The included patients ranged from 13 to 135. RCTs included patients with any migraine (n=3), chronic migraine (n=6), episodic migraine (n=3) or menstrual migraine (n=1). Six RCTs used cathodal and five anodal tDCS, while two RCTs compared the efficacy of both cathodal and anodal tDCS with that of sham. In most of the cathodal stimulation trials, the target areas were the occipital regions, with reference on central or supraorbital areas. In anodal RCTs, the anode was usually placed above the motor cortical areas and the cathode on supraorbital areas. All RCTs adopted repeated sessions (from 5 to 28) at variable intervals, while the follow-up length spanned from 1 day up to 12 months. Efficacy results were variable but overall positive. According to the RoB-2 tool, only four of the 13 RCTs had a low risk of bias, while the others presented some concerns. CONCLUSIONS Both anodal and cathodal tDCS are promising for migraine prevention. However, there is a need for larger and rigorous RCTs and standardized procedures. Additionally, the potential benefits and targeted neurostimulation protocols should be assessed for specific subgroups of patients.
Collapse
Affiliation(s)
- Raffaele Ornello
- Neuroscience Section, Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, L'Aquila, Italy
| | - Valeria Caponnetto
- Neuroscience Section, Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, L'Aquila, Italy
| | - Susanna Ratti
- Neuroscience Section, Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, L'Aquila, Italy
| | - Giulia D'Aurizio
- Neuroscience Section, Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, L'Aquila, Italy
| | - Chiara Rosignoli
- Neuroscience Section, Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, L'Aquila, Italy
| | - Francesca Pistoia
- Neuroscience Section, Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, L'Aquila, Italy
| | - Michele Ferrara
- Neuroscience Section, Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, L'Aquila, Italy
| | - Simona Sacco
- Neuroscience Section, Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Aurora D'Atri
- Neuroscience Section, Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
18
|
Schading S, Pohl H, Gantenbein A, Luechinger R, Sandor P, Riederer F, Freund P, Michels L. Tracking tDCS induced grey matter changes in episodic migraine: a randomized controlled trial. J Headache Pain 2021; 22:139. [PMID: 34800989 PMCID: PMC8605508 DOI: 10.1186/s10194-021-01347-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/27/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Occipital transcranial direct current stimulation (tDCS) is an effective and safe treatment for migraine attack prevention. Structural brain alterations have been found in migraineurs in regions related to pain modulation and perception, including occipital areas. However, whether these structural alterations can be dynamically modulated through tDCS treatment is understudied. OBJECTIVE To track longitudinally grey matter volume changes in occipital areas in episodic migraineurs during and up to five months after occipital tDCS treatment in a single-blind, and sham-controlled study. METHODS 24 episodic migraineurs were randomized to either receive verum or sham occipital tDCS treatment for 28 days. To investigate dynamic grey matter volume changes patients underwent structural MRI at baseline (prior to treatment), 1.5 months and 5.5 months (after completion of treatment). 31 healthy controls were scanned with the same MRI protocol. Morphometry measures assessed rate of changes over time and between groups by means of tensor-based morphometry. RESULTS Before treatment, migraineurs reported 5.6 monthly migraine days on average. A cross-sectional analysis revealed grey matter volume increases in the left lingual gyrus in migraineurs compared to controls. Four weeks of tDCS application led to a reduction of 1.9 migraine days/month and was paralleled by grey matter volume decreases in the left lingual gyrus in the treatment group; its extent overlapping with that seen at baseline. CONCLUSION This study shows that migraineurs have increased grey matter volume in the lingual gyrus, which can be modified by tDCS. Tracking structural plasticity in migraineurs provides a potential neuroimaging biomarker for treatment monitoring. TRIAL REGISTRATION ClinicalTrials.gov , NCT03237754 . Registered 03 August 2017 - retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT03237754 .
Collapse
Affiliation(s)
- Simon Schading
- Spinal Cord Injury Centre Balgrist, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Heiko Pohl
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Andreas Gantenbein
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
- ZURZACH Care, Bad Zurzach, Switzerland
| | - Roger Luechinger
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Peter Sandor
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
- ZURZACH Care, Bad Zurzach, Switzerland
| | - Franz Riederer
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
- Neurological Center Rosenhügel and Karl Landsteiner Institute for Epilepsy Research and Cognitive Neurology, Vienna, Austria
| | - Patrick Freund
- Spinal Cord Injury Centre Balgrist, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London, UK
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Lars Michels
- Department of Neuroradiology, University Hospital Zurich, Frauenklinikstrasse 10, 8091, Zurich, Switzerland.
| |
Collapse
|
19
|
Evers S. Non-Invasive Neurostimulation Methods for Acute and Preventive Migraine Treatment-A Narrative Review. J Clin Med 2021; 10:3302. [PMID: 34362086 PMCID: PMC8347785 DOI: 10.3390/jcm10153302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/18/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022] Open
Abstract
Neurostimulation methods have now been studied for more than 20 years in migraine treatment. They can be divided into invasive and non-invasive methods. In this narrative review, the non-invasive methods are presented. The most commonly studied and used methods are vagal nerve stimulation, electric peripheral nerve stimulation, transcranial magnetic stimulation, and transcranial direct current stimulation. Other stimulation techniques, including mechanical stimulation, play only a minor role. Nearly all methods have been studied for acute attack treatment and for the prophylactic treatment of migraine. The evidence of efficacy is poor for most procedures, since no stimulation device is based on consistently positive, blinded, controlled trials with a sufficient number of patients. In addition, most studies on these devices enrolled patients who did not respond sufficiently to oral drug treatment, and so the role of neurostimulation in an average population of migraine patients is unknown. In the future, it is very important to conduct large, properly blinded and controlled trials performed by independent researchers. Otherwise, neurostimulation methods will only play a very minor role in the treatment of migraine.
Collapse
Affiliation(s)
- Stefan Evers
- Faculty of Medicine, University of Münster, 48153 Münster, Germany;
- Department of Neurology, Lindenbrunn Hospital, 31863 Coppenbrügge, Germany
| |
Collapse
|
20
|
Lloyd J, Biloshytska M, Andreou AP, Lambru G. Noninvasive Neuromodulation in Headache: An Update. Neurol India 2021; 69:S183-S193. [PMID: 34003164 DOI: 10.4103/0028-3886.315998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Background Migraine is a common disabling primary headache condition. Although strives have been made in treatment, there remains an unmet need for safe, effective acute, and preventative treatments. The promising concept of neuromodulation of relevant neuronal targets in a noninvasive fashion for the treatment of primary headache disorders has led to the trial of numerous devices over the years. Objective We aimed to review the evidence on current neuromodulation treatments available for the management of primary headache disorders. Methods Randomized controlled trial as well as open-label and real-world studies on central and peripheral cephalic and noncephalic neuromodulation modalities in primary headaches were critically reviewed. Results The current evidence suggests a role of single-pulse transcranial magnetic stimulation, supraorbital nerve stimulation, and remote noncephalic electrical stimulation as migraine abortive treatments, with stronger evidence in episodic rather than in chronic migraine. Single-pulse transcranial magnetic stimulation and supraorbital nerve stimulation also hold promising evidence in episodic migraine prevention and initial positive evidence in chronic migraine prevention. More evidence should clarify the therapeutic role of the external vagus nerve stimulation and transcranial direct current stimulation in migraine. However, external vagus nerve stimulation may be effective in the acute treatment of episodic but not chronic cluster headache, in the prevention of hemicrania continua and paroxysmal hemicrania but not of short-lasting neuralgiform headache attacks. The difficulty in setting up sham-controlled studies has thus far prevented the publication of robust trials. This limitation along with the cost of these therapies has meant that their use is limited in most countries. Conclusion Neuromodulation is a promising nonpharmacological treatment approach for primary headaches. More studies with appropriate blinding strategies and reduction of device cost may allow more widespread approval of these treatments and in turn increase clinician's experience in neuromodulation.
Collapse
Affiliation(s)
- Joseph Lloyd
- Headache Research-Wolfson CARD, Institute of Psychology, Psychiatry and Neuroscience, King's College London, London, UK
| | - Maryna Biloshytska
- Headache Research-Wolfson CARD, Institute of Psychology, Psychiatry and Neuroscience, King's College London, London, UK
| | - Anna P Andreou
- Department of Functional Neurosurgery and Neuromodulation, Romodanov Neurosurgery Institute, National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine; The Headache Service, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Giorgio Lambru
- The Headache Service, Guy's and St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
21
|
Cerrahoğlu Şirin T, Aksu S, Hasirci Bayir BR, Ulukan Ç, Karamürsel S, Kurt A, Baykan B. Is Allodynia a Determinant Factor in the Effectiveness of Transcranial Direct Current Stimulation in the Prophylaxis of Migraine? Neuromodulation 2021; 24:899-909. [PMID: 34058041 DOI: 10.1111/ner.13409] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/08/2021] [Accepted: 04/07/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Allodynia, the clinical marker of central sensitization, affects even simple daily living activities and increases the tendency for migraine to be more resistant to treatment and have a chronic course. Migraine that impairs quality of life can often be treated with variable pharmaceutical agents, but with various side effects. Transcranial direct current stimulation (tDCS) is a potential alternative treatment for migraine prophylaxis. MATERIALS AND METHODS Seventy-seven patients diagnosed with migraine (48 with allodynia and 29 without allodynia) were included in the study. Randomly, 41 of the 77 patients received sham stimulation and 36 patients underwent three sessions of anodal left primary motor cortex stimulation for 2 mA, 20 min. Migraine attack characteristics (frequency, severity, and duration) and analgesic drug use were followed with headache diaries for one month after the stimulation. RESULTS After tDCS, migraine attack frequency (p = 0.021), the number of headache days (p = 0.005), duration of attacks (p = 0.008), and symptomatic analgesic drug use (p = 0.007) decreased in patients receiving active tDCS, compared to the sham group. The therapeutic gain of tDCS was calculated as 44% (95% confidence interval [CI]: 22-60%) for headache days and 76% (95% CI: 55-86) for headache duration. Response to tDCS treatment was higher in patients without allodynia (60% vs. 24%; p = 0.028) and allodynia came out as an independent predictor of response to tDCS with logistic regression analysis. Side effects were rare and similar to the sham group. CONCLUSIONS tDCS is a safe, efficacious, and fast method for migraine prophylaxis. However, the administration of tDCS before allodynia occurs, that is, before central sensitization develops, will provide increased responsiveness to the treatment. SIGNIFICANCE tDCS is more effective before the development of allodynia, but it also improves the quality of life even after the development of allodynia.
Collapse
Affiliation(s)
- Tuba Cerrahoğlu Şirin
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.,Department of Neuroscience, Graduate School of Health Sciences, Istanbul University, Istanbul, Turkey
| | - Serkan Aksu
- Department of Physiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Buse Rahime Hasirci Bayir
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.,Department of Neuroscience, Graduate School of Health Sciences, Istanbul University, Istanbul, Turkey
| | - Çağrı Ulukan
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Sacit Karamürsel
- Department of Physiology, School of Medicine, Koc Universitesi, Istanbul, Turkey
| | - Adnan Kurt
- Department of Physiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Betül Baykan
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
22
|
Michels L, Koirala N, Groppa S, Luechinger R, Gantenbein AR, Sandor PS, Kollias S, Riederer F, Muthuraman M. Structural brain network characteristics in patients with episodic and chronic migraine. J Headache Pain 2021; 22:8. [PMID: 33657996 PMCID: PMC7927231 DOI: 10.1186/s10194-021-01216-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/28/2021] [Indexed: 12/28/2022] Open
Abstract
Background Migraine is a primary headache disorder that can be classified into an episodic (EM) and a chronic form (CM). Network analysis within the graph-theoretical framework based on connectivity patterns provides an approach to observe large-scale structural integrity. We test the hypothesis that migraineurs are characterized by a segregated network. Methods 19 healthy controls (HC), 17 EM patients and 12 CM patients were included. Cortical thickness and subcortical volumes were computed, and topology was analyzed using a graph theory analytical framework and network-based statistics. We further used support vector machines regression (SVR) to identify whether these network measures were able to predict clinical parameters. Results Network based statistics revealed significantly lower interregional connectivity strength between anatomical compartments including the fronto-temporal, parietal and visual areas in EM and CM when compared to HC. Higher assortativity was seen in both patients’ group, with higher modularity for CM and higher transitivity for EM compared to HC. For subcortical networks, higher assortativity and transitivity were observed for both patients’ group with higher modularity for CM. SVR revealed that network measures could robustly predict clinical parameters for migraineurs. Conclusion We found global network disruption for EM and CM indicated by highly segregated network in migraine patients compared to HC. Higher modularity but lower clustering coefficient in CM is suggestive of more segregation in this group compared to EM. The presence of a segregated network could be a sign of maladaptive reorganization of headache related brain circuits, leading to migraine attacks or secondary alterations to pain. Supplementary Information The online version contains supplementary material available at 10.1186/s10194-021-01216-8.
Collapse
Affiliation(s)
- Lars Michels
- Department of Neuroradiology, University Hospital Zurich, Sternwartstr. 6, CH-8091, Zurich, Switzerland.
| | - Nabin Koirala
- Haskins Laboratories, New Haven, Connecticut, USA.,Section of Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing unit, Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Sergiu Groppa
- Section of Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing unit, Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Roger Luechinger
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Andreas R Gantenbein
- Department of Neurology and Neurorehabilitation, RehaClinic, Bad Zurzach, CH-5330, Switzerland.,Department of Neurology, University Hospital Zurich, CH-8091, Zurich, Switzerland
| | - Peter S Sandor
- Department of Neurology and Neurorehabilitation, RehaClinic, Bad Zurzach, CH-5330, Switzerland.,Department of Neurology, University Hospital Zurich, CH-8091, Zurich, Switzerland
| | - Spyros Kollias
- Department of Neuroradiology, University Hospital Zurich, Sternwartstr. 6, CH-8091, Zurich, Switzerland
| | - Franz Riederer
- Department of Neurology, Clinic Hietzing and Karl Landsteiner Institute for Clinical Epilepsy Research and Cognitive Neurology, Wolkerssbergenstrasse 1, AT-1130, Vienna, Austria.,University of Zurich, Faculty of Medicine, Rämistrasse 100, CH-8091, Zurich, Switzerland
| | - Muthuraman Muthuraman
- Section of Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing unit, Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|