1
|
Runge J, Nagel JM, Blahak C, Kinfe TM, Heissler HE, Schrader C, Wolf ME, Saryyeva A, Krauss JK. Does Temporary Externalization of Electrodes After Deep Brain Stimulation Surgery Result in a Higher Risk of Infection? Neuromodulation 2024; 27:565-571. [PMID: 37804281 DOI: 10.1016/j.neurom.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 08/14/2023] [Accepted: 08/22/2023] [Indexed: 10/09/2023]
Abstract
OBJECTIVES Deep brain stimulation (DBS) is a well-established surgical therapy for movement disorders that comprises implantation of stimulation electrodes and a pacemaker. These procedures can be performed separately, leaving the possibility of externalizing the electrodes for local field potential recording or testing multiple targets for therapeutic efficacy. It is still debated whether the temporary externalization of DBS electrodes leads to an increased risk of infection. We therefore aimed to assess the risk of infection during and after lead externalization in DBS surgery. MATERIALS AND METHODS In this retrospective study, we analyzed a consecutive series of 624 DBS surgeries, including 266 instances with temporary externalization of DBS electrodes for a mean of 6.1 days. Patients were available for follow-up of at least one year, except in 15 instances. In 14 patients with negative test stimulation, electrodes were removed. All kinds of infections related to implantation of the neurostimulation system were accounted for. RESULTS Overall, infections occurred in 22 of 624 surgeries (3.5%). Without externalization of electrodes, infections were noted after 7 of 358 surgeries (2.0%), whereas with externalization, 15 of 252 infections were found (6.0%). This difference was significant (p = 0.01), but it did not reach statistical significance when comparing groups within different diagnoses. The rate of infection with externalized electrodes was highest in psychiatric disorders (9.1%), followed by Parkinson's disease (7.3%), pain (5.7%), and dystonia (5.5%). The duration of the externalization of the DBS electrodes was comparable in patients who developed an infection (6.1 ± 3.1 days) with duration in those who did not (6.0 ± 3.5 days). CONCLUSIONS Although infection rates were relatively low in our study, there was a slightly higher infection rate when DBS electrodes were externalized. On the basis of our results, the indication for electrode externalization should be carefully considered, and patients should be informed about the possibility of a higher infection risk when externalization of DBS electrodes is planned.
Collapse
Affiliation(s)
- Joachim Runge
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany.
| | - Johanna M Nagel
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | | | - Thomas M Kinfe
- Division of Functional Neurosurgery, Friedrich-Alexander University, Erlangen-Nürnberg, Germany
| | - Hans E Heissler
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | | | - Marc E Wolf
- Department of Neurology, Katharinenhospital Stuttgart, Stuttgart, Germany
| | - Assel Saryyeva
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Joachim K Krauss
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| |
Collapse
|
2
|
Spindler P, Braun F, Truckenmüller P, Wasilewski D, Faust K, Schneider GH, Trampuz A, Conen A, Kühn AA, Vajkoczy P, Prinz V. Surgical Site Infections Associated With Implanted Pulse Generators for Deep Brain Stimulation: Meta-Analysis and Systematic Review. Neuromodulation 2023; 26:280-291. [PMID: 35970765 DOI: 10.1016/j.neurom.2022.03.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/18/2022] [Accepted: 03/14/2022] [Indexed: 02/07/2023]
Abstract
OBJECTIVES The aim of this study was to identify and systematically analyze relevant literature on surgical site infections (SSIs) associated with implantable pulse generator (IPG) procedures for deep brain stimulation (DBS). MATERIALS AND METHODS In compliance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, we conducted a systematic review and meta-analyses of 58 studies that reported SSI rates of 11,289 patients and 15,956 IPG procedures. A meta-analysis of proportions was performed to estimate the pooled proportion of SSIs across DBS procedures in general and to estimate the proportion of SSIs that occur at the IPG pocket. Moreover, a meta-analysis of odds ratio (OR) was conducted on those studies that reported their results of applying topical vancomycin powder during closure of the IPG wound. Results are presented as rates and OR with 95% CIs. RESULTS The pooled proportion of SSIs was 4.9% (95% CI, 4.1%-6.1%) among all DBS procedures. The dominant SSI localization was the IPG pocket in 61.2% (95% CI, 53.4%-68.5%). A trend toward a beneficial effect of vancomycin powder over standard wound closure was found with an OR of 0.46 (95% CI, 0.21-1.02). Most studies (79.1%) that reported their treatment strategy in case of SSI had a strict protocol of removal of the IPG, followed by antimicrobial treatment and reimplantation of the IPG once the SSI had been eradicated. CONCLUSIONS The IPG pocket was identified as the main site of SSI after DBS procedures. Most studies recommend complete IPG removal, antimicrobial treatment, and reimplantation of an IPG once the SSI has been eradicated. Future studies are needed to clarify the role of alternative approaches (eg, topical vancomycin powder) in the prevention of SSI associated with IPG.
Collapse
Affiliation(s)
- Philipp Spindler
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Franziska Braun
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Peter Truckenmüller
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - David Wasilewski
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Katharina Faust
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Gerd-Helge Schneider
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Andrej Trampuz
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Anna Conen
- Clinic for Infectious Diseases and Infection Prevention, Department of Infectious Diseases and Hospital Hygiene, Kantonsspital Aarau, Aarau, Switzerland
| | - Andrea A Kühn
- Department of Neurology, Movement Disorder Section, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Vincent Prinz
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Department of Neurosurgery, University Hospital, Goethe University, Frankfurt am Main, Germany.
| |
Collapse
|
3
|
Surgical and Hardware-Related Adverse Events of Deep Brain Stimulation: A Ten-Year Single-Center Experience. Neuromodulation 2022; 25:296-304. [PMID: 35125149 DOI: 10.1016/j.neurom.2021.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/16/2021] [Accepted: 12/08/2021] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Although deep brain stimulation (DBS) is effective for treating a number of neurological and psychiatric indications, surgical and hardware-related adverse events (AEs) can occur that affect quality of life. This study aimed to give an overview of the nature and frequency of those AEs in our center and to describe the way they were managed. Furthermore, an attempt was made at identifying possible risk factors for AEs to inform possible future preventive measures. MATERIALS AND METHODS Patients undergoing DBS-related procedures between January 2011 and July 2020 were retrospectively analyzed to inventory AEs. The mean follow-up time was 43 ± 31 months. Univariate logistic regression analysis was used to assess the predictive value of selected demographic and clinical variables. RESULTS From January 2011 to July 2020, 508 DBS-related procedures were performed including 201 implantations of brain electrodes in 200 patients and 307 implantable pulse generator (IPG) replacements in 142 patients. Surgical or hardware-related AEs following initial implantation affected 40 of 200 patients (20%) and resolved without permanent sequelae in all instances. The most frequent AEs were surgical site infections (SSIs) (9.95%, 20/201) and wire tethering (2.49%, 5/201), followed by hardware failure (1.99%, 4/201), skin erosion (1.0%, 2/201), pain (0.5%, 1/201), lead migration (0.52%, 2/386 electrode sites), and hematoma (0.52%, 2/386 electrode sites). The overall rate of AEs for IPG replacement was 5.6% (17/305). No surgical, ie, staged or nonstaged, electrode fixation, or patient-related risk factors were identified for SSI or wire tethering. CONCLUSIONS Major AEs including intracranial surgery-related AEs or AEs requiring surgical removal or revision of hardware are rare. In particular, aggressive treatment is required in SSIs involving multiple sites or when Staphylococcus aureus is identified. For future benchmarking, the development of a uniform reporting system for surgical and hardware-related AEs in DBS surgery would be useful.
Collapse
|
4
|
Abstract
PURPOSE OF REVIEW Deep brain stimulation (DBS) is a rapidly expanding surgical modality for the treatment of patients with movement disorders. Its ability to be adjusted, titrated, and optimized over time has given it a significant advantage over traditional more invasive surgical procedures. Therefore, the success and popularity of this procedure have led to the discovery of new indications and therapeutic targets as well as advances in surgical techniques. The aim of this review is to highlight the important updates in DBS surgery and to exam the anesthesiologist's role in providing optimal clinical management. RECENT FINDINGS New therapeutic indications have a significant implication on perioperative anesthesia management. In addition, new technologies like frameless stereotaxy and intraoperative magnetic resonance imaging to guide electrode placement have altered the need for intraoperative neurophysiological monitoring and hence increased the use of general anesthesia. With an expanding number of patients undergoing DBS implantation, patients with preexisting DBS increasingly require anesthesia for unrelated surgery and the anesthesiologist must be aware of the considerations for perioperative management of these devices and potential complications. SUMMARY DBS will continue to grow and evolve requiring adaptation and modification to the anesthetic management of these patients.
Collapse
Affiliation(s)
- Michael Dinsmore
- Department of Anesthesia and Pain Management, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|