1
|
Morrow CB, Kamath V, Dickerson BC, Eldaief M, Rezaii N, Wong B, McGinnis S, Darby R, Staffaroni AM, Lapid MI, Pascual B, Rojas JC, Masdeu JC, Tsapkini K, Huey ED, Fisher DW, Pantelyat A, Balaji A, Sah E, Litvan I, Rascovsky K, Ghoshal N, Domoto-Reilly K, Kornak J, Onyike CU. Neuropsychiatric symptoms cluster and fluctuate over time in behavioral variant frontotemporal dementia. Psychiatry Clin Neurosci 2025. [PMID: 40079430 DOI: 10.1111/pcn.13810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 01/21/2025] [Accepted: 02/20/2025] [Indexed: 03/15/2025]
Abstract
AIM Cognitive and behavioral phenomena define behavioral variant frontotemporal dementia (bvFTD), but neuropsychiatric symptoms (NPS) outside the core criteria are common throughout the illness. Identifying how NPS cluster in bvFTD may guide development of future therapies. METHODS Participants (n = 354) with sporadic and genetic bvFTD were enrolled in the ARTFL LEFFTDS Longitudinal Frontotemporal Lobar Degeneration Consortium. Dementia stage was defined as early (CDR® plus NACC FTLD ≤1) or advanced (CDR® plus NACC FTLD ≥1). Baseline and annual follow-up visit data were analyzed to compare NPS across stages of bvFTD. Psychiatric states were captured using the Neuropsychiatric Inventory-Questionnaire and Clinician Judgment of Symptoms. Polychoric cluster analysis was used to describe NPS clusters. RESULTS NPS were highly prevalent (≥90%) in early and late bvFTD. Four NPS clusters were identified based on magnitude of factor loadings: affective, disinhibited, compulsive, and psychosis. Neuropsychiatric symptoms fluctuated across visits. In the affective cluster, depression showed the least visit-to-visit stability. In the disinhibited cluster, elation showed the least stability. Symptoms in the psychosis and compulsive clusters (hallucinations, delusions, obsessions/compulsions, and hyperorality) were largely stable, persisting from visit-to-visit in more than 50% of cases. Symptoms in the affective and disinhibited cluster were associated with the highest caregiver burden, while symptoms in the obsessive cluster were associated with the most functional impairment. CONCLUSION NPS in bvFTD are frequent and cluster into four discrete groups. The fluctuating nature of some NPS in bvFTD suggests that they may not be reliable markers of disease progression or stage.
Collapse
Affiliation(s)
- Christopher B Morrow
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Vidyulata Kamath
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Bradford C Dickerson
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Charlestown, Massachusetts, USA
| | - Mark Eldaief
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Charlestown, Massachusetts, USA
| | - Neguine Rezaii
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Charlestown, Massachusetts, USA
| | - Bonnie Wong
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Charlestown, Massachusetts, USA
| | - Scott McGinnis
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Charlestown, Massachusetts, USA
| | - Ryan Darby
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Adam M Staffaroni
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
| | - Maria I Lapid
- Department of Psychiatry and Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Belen Pascual
- Department of Neurology, Houston Methodist Research Institute, Houston, Texas, USA
| | - Julio C Rojas
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
| | - Joseph C Masdeu
- Department of Neurology, Houston Methodist Research Institute, Houston, Texas, USA
| | - Kyrana Tsapkini
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Edward D Huey
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Daniel W Fisher
- Department of Neurology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Alexander Pantelyat
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Akshata Balaji
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Eric Sah
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Irene Litvan
- Department of Neurosciences, University of California, San Diego, La Jolla, California, USA
| | - Katya Rascovsky
- Department of Neurology and Penn Frontotemporal Degeneration Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Nupur Ghoshal
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kimiko Domoto-Reilly
- Department of Neurology, University of Washington School of Medicine, Seattle, Washington, USA
| | - John Kornak
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California, USA
| | - Chiadi U Onyike
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Chou T, Kochanowski BJ, Hayden A, Borron BM, Barbeiro MC, Xu J, Kim JW, Zhang X, Bouchard RR, Phan KL, Goodman WK, Dougherty DD. A Low-Intensity Transcranial Focused Ultrasound Parameter Exploration Study of the Ventral Capsule/Ventral Striatum. Neuromodulation 2025; 28:146-154. [PMID: 38691076 DOI: 10.1016/j.neurom.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 05/03/2024]
Abstract
OBJECTIVES Deep brain stimulation (DBS) of the ventral capsule/ventral striatum (VC/VS) is effective for treatment-resistant obsessive-compulsive disorder (OCD); however, DBS is associated with neurosurgical risks. Transcranial focused ultrasound (tFUS) is a newer form of noninvasive (ie, nonsurgical) stimulation that can modulate deeper regions, such as the VC/VS. tFUS parameters have just begun to be studied and have often not been compared in the same participants. We explored the effects of three VC/VS tFUS protocols and an entorhinal cortex (ErC) tFUS session on the VC/VS and cortico-striato-thalamo-cortical circuit (CSTC) in healthy individuals for later application to patients with OCD. MATERIALS AND METHODS Twelve individuals participated in a total of 48 sessions of tFUS in this exploratory multisite, within-subject parameter study. We collected resting-state, reward task, and arterial spin-labeled (ASL) magnetic resonance imaging scans before and after ErC tFUS and three VC/VS tFUS sessions with different pulse repetition frequencies (PRFs), pulse widths (PWs), and duty cycles (DCs). RESULTS VC/VS protocol A (PRF = 10 Hz, PW = 5 ms, 5% DC) was associated with increased putamen activation during a reward task (p = 0.003), and increased VC/VS resting-state functional connectivity (rsFC) with the anterior cingulate cortex (p = 0.022) and orbitofrontal cortex (p = 0.004). VC/VS protocol C (PRF = 125 Hz, PW = 4 ms, 50% DC) was associated with decreased VC/VS rsFC with the putamen (p = 0.017), and increased VC/VS rsFC with the globus pallidus (p = 0.008). VC/VS protocol B (PRF = 125 Hz, PW = 0.4 ms, 5% DC) was not associated with changes in task-related CSTC activation or rsFC. None of the protocols affected CSTC ASL perfusion. CONCLUSIONS This study began to explore the multidimensional parameter space of an emerging form of noninvasive brain stimulation, tFUS. Our preliminary findings in a small sample suggest that VC/VS tFUS should continue to be investigated for future noninvasive treatment of OCD.
Collapse
Affiliation(s)
- Tina Chou
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA, USA.
| | - Brian J Kochanowski
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA, USA
| | - Ashley Hayden
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA, USA
| | - Benjamin M Borron
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA, USA
| | - Miguel C Barbeiro
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA, USA
| | - Junqian Xu
- Department of Radiology, Baylor College of Medicine, Houston, TX, USA; Department of Psychiatry, Baylor College of Medicine, Houston, TX, USA
| | - Joo-Won Kim
- Department of Radiology, Baylor College of Medicine, Houston, TX, USA; Department of Psychiatry, Baylor College of Medicine, Houston, TX, USA
| | - Xuefeng Zhang
- Department of Psychiatry, Baylor College of Medicine, Houston, TX, USA
| | - Richard R Bouchard
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kinh Luan Phan
- Department of Psychiatry and Behavioral Health, Ohio State University College of Medicine, Columbus, OH, USA
| | - Wayne K Goodman
- Department of Psychiatry, Baylor College of Medicine, Houston, TX, USA
| | - Darin D Dougherty
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
3
|
Sretavan K, Braun H, Liu Z, Bullock D, Palnitkar T, Patriat R, Chandrasekaran J, Brenny S, Johnson MD, Widge AS, Harel N, Heilbronner SR. A Reproducible Pipeline for Parcellation of the Anterior Limb of the Internal Capsule. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:1249-1261. [PMID: 39053578 DOI: 10.1016/j.bpsc.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND The anterior limb of the internal capsule (ALIC) is a white matter structure that connects the prefrontal cortex (PFC) to the brainstem, thalamus, and subthalamic nucleus. It is a target for deep brain stimulation for obsessive-compulsive disorder. There is strong interest in improving deep brain stimulation targeting by using diffusion tractography to reconstruct and target specific ALIC fiber pathways, but this methodology is susceptible to errors and lacks validation. To address these limitations, we developed a novel diffusion tractography pipeline that generates reliable and biologically validated ALIC white matter reconstructions. METHODS Following algorithm development and refinement, we analyzed 43 control participants, each with 2 sets of 3T magnetic resonance imaging data and a subset of 5 control participants with 7T data from the Human Connectome Project. We generated 22 segmented ALIC fiber bundles (11 per hemisphere) based on PFC regions of interest, and we analyzed the relationships among bundles. RESULTS We successfully reproduced the topographies established by previous anatomical work using images acquired at both 3T and 7T. Quantitative assessment demonstrated significantly smaller intraparticipant variability than interparticipant variability for both test and retest groups across all but one PFC region. We examined the overlap between fibers from different PFC regions and a response tract for obsessive-compulsive disorder deep brain stimulation, and we reconstructed the PFC hyperdirect pathway using a modified version of our pipeline. CONCLUSIONS Our diffusion magnetic resonance imaging algorithm reliably generates biologically validated ALIC white matter reconstructions, thereby allowing for more precise modeling of fibers for neuromodulation therapies.
Collapse
Affiliation(s)
- Karianne Sretavan
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota; Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota
| | - Henry Braun
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota
| | - Zoe Liu
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | - Daniel Bullock
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | - Tara Palnitkar
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota
| | - Remi Patriat
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota
| | - Jayashree Chandrasekaran
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota
| | - Samuel Brenny
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota
| | - Matthew D Johnson
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Alik S Widge
- Department of Psychiatry, University of Minnesota, Minneapolis, Minnesota
| | - Noam Harel
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota; Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota
| | | |
Collapse
|
4
|
Knebel J, McClure RK, Kennedy MLH. Assessing the Pharmacotherapy and Clinical Outcomes After Deep Brain Stimulation for Treatment-Refractory Obsessive-Compulsive Disorder: A Case-Cohort Study. J Clin Med 2024; 13:6549. [PMID: 39518688 PMCID: PMC11546672 DOI: 10.3390/jcm13216549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/16/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Background: In the search for effective treatments for refractive obsessive-compulsive disorder (OCD), deep brain stimulation (DBS) serves as an alternative option for those with minimal response to pharmacotherapy. The rarity of reports regarding DBS use for OCD is attributed to the invasive nature of the procedure: placement of electrodes within targeted areas of the brain to provide neuromodulation. This treatment of last resort may decrease functional impairment and pharmacologic complications for a debilitating mental illness. This study compares the pharmacotherapy utilization and treatment outcomes of five treatment-refractory OCD patients after the placement of DBS with those of a matched cohort. Methods: This retrospective, single-center, case-cohort study reviewed the electronic medical records of five subjects treated with DBS for treatment-refractory OCD and compared them to a similar treatment-refractory cohort whose OCD was treated without the use of DBS. Control subjects were matched by age, sex, years since diagnosis, number of previous medication class trials, and additional clinical factors. Inclusion criteria were defined as those that are at least eighteen years of age, assigned a primary diagnosis of OCD per the ICD-10 classification, and received DBS treatment for refractory OCD. Exclusion criteria included comorbid psychotic disorders, unstable neurological or coagulation disorder(s), and/or an eating disorder diagnosis. The primary endpoint was the change in the number of psychotropic medications two years after implantation for the DBS cohort and two years after psychiatric decompensation for the comparator cohort. Secondary endpoints included: Y-BOCS (the Yale-Brown Obsessive-Compulsive Scale) changes over time, duration quantity of psychotropic medication classes prescribed, and additional symptomology scale changes. Results: Patients receiving DBS were more likely to be on fewer medications and trialed fewer medications after treatment. One out of the five patients was found to be a responder in Y-BOCS scoring after DBS treatment. A reduction in anxiety and depression symptoms was also seen in the HAM-A and HAM-D scales for those that received DBS. Conclusions: A reduction in psychiatric medications trialed during therapy was observed, as well as varying reductions in OCD, anxiety, and depression symptomology following DBS. Results from this study indicate that DBS implantation may contribute to a reduction in polypharmacy while displaying DBS's potential impact on comorbid anxiety and depression symptoms. Given that the small sample size limits generalizability, additional prospective, randomized trials comparing the efficacy of DBS for OCD-specific symptomology and its overall impact on pharmacotherapy are needed in order to further establish the role of DBS as an accepted treatment option for OCD.
Collapse
Affiliation(s)
- Joshua Knebel
- Department of Pharmacy Practice, University of the Incarnate Word, San Antonio, TX 78209, USA
| | - Robert K. McClure
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC 27599, USA;
| | | |
Collapse
|
5
|
Morrow CB, Kamath V, Dickerson BC, Eldaief M, Rezaii N, Wong B, McGinnis S, Darby R, Staffaroni AM, Lapid MI, Pascual B, Rojas JC, Masdeu JC, Tsapkini K, Huey ED, Fisher DW, Pantelyat A, Balaji A, Sah E, Litvan I, Rascovsky K, Ghoshal N, Domoto-Reilly K, Kornak J, Onyike CU. Neuropsychiatric Symptoms Cluster and Fluctuate Over Time in Behavioral Variant Frontotemporal Dementia. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.26.24314180. [PMID: 39398998 PMCID: PMC11469469 DOI: 10.1101/2024.09.26.24314180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Objectives Cognitive and behavioral phenomena define behavioral variant frontotemporal dementia (bvFTD), but neuropsychiatric symptoms (NPS) outside the core criteria are common throughout the illness. Identifying how NPS cluster in bvFTD may clarify the underlying neurobiology of bvFTD-related NPS and guide development of therapies. Methodology Participants (N=354) with sporadic and genetic bvFTD were enrolled in the ARTFL LEFFTDS Longitudinal Frontotemporal Lobar Degeneration Consortium. Dementia stage was defined as early (CDR® plus NACC FTLD ≤ 1) or advanced (CDR® plus NACC FTLD ≥ 1). Baseline and annual follow-up visit data were analyzed to compare NPS across stages of bvFTD. Psychiatric states were captured using the Neuropsychiatric Inventory-Questionnaire and Clinician Judgement of Symptoms. Polychoric cluster analysis was used to describe NPS clusters. Results NPS were highly prevalent (≥ 90%) in early and late bvFTD. Four NPS clusters were identified based on magnitude of factor loadings: affective, disinhibited, compulsive, and psychosis. Neuropsychiatric symptoms fluctuated across visits. In the affective cluster, depression and anxiety showed the least visit-to-visit stability. In the disinhibited cluster, elation showed the least stability. Symptoms in the psychosis and compulsive clusters (hallucinations, delusions, obsessions/compulsions, and hyperorality) were largely stable, persisting from visit-to-visit in more than 50% of cases. Conclusion NPS in bvFTD are frequent and cluster into four discrete groups in bvFTD. These clusters may result from specific neural network disruptions that could serve as targets for future interventions. The fluctuating nature of NPS in bvFTD suggests that they are not reliable markers of disease progression or stage.
Collapse
Affiliation(s)
- Christopher B Morrow
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Vidyulata Kamath
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Bradford C Dickerson
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA
| | - Mark Eldaief
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA
| | - Neguine Rezaii
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA
| | - Bonnie Wong
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA
| | - Scott McGinnis
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA
| | - Ryan Darby
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN
| | - Adam M Staffaroni
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA
| | - Maria I Lapid
- Department of Psychiatry and Neurology, Mayo Clinic, Rochester, MN
| | - Belen Pascual
- Department of Neurology, Houston Methodist Research Institute, Houston, TX
| | - Julio C Rojas
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA
| | - Joseph C Masdeu
- Department of Neurology, Houston Methodist Research Institute, Houston, TX
| | - Kyrana Tsapkini
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Edward D Huey
- Alpert Medical School of Brown University, Department of Psychiatry and Human Behavior Providence, RI
| | - Daniel W Fisher
- Department of Neurology, University of Washington School of Medicine, Seattle, WA
| | - Alexander Pantelyat
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Akshata Balaji
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Eric Sah
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
- Sidney Kimmel Medical College, Thomas Jefferson University
| | - Irene Litvan
- Department of Neurosciences, UC San Diego, La Jolla, CA
| | - Katya Rascovsky
- Department of Neurology and Penn Frontotemporal Degeneration Center University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Nupur Ghoshal
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
| | - Kimiko Domoto-Reilly
- Department of Neurology, University of Washington School of Medicine, Seattle, WA
| | - John Kornak
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA
| | - Chiadi U Onyike
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
6
|
Meyer GM, Hollunder B, Li N, Butenko K, Dembek TA, Hart L, Nombela C, Mosley P, Akram H, Acevedo N, Borron BM, Chou T, Castaño Montoya JP, Strange B, Barcia JA, Tyagi H, Castle DJ, Smith AH, Choi KS, Kopell BH, Mayberg HS, Sheth SA, Goodman WK, Leentjens AFG, Richardson RM, Rossell SL, Bosanac P, Cosgrove GR, Kuhn J, Visser-Vandewalle V, Figee M, Dougherty DD, Siddiqi SH, Zrinzo L, Joyce E, Baldermann JC, Fox MD, Neudorfer C, Horn A. Deep Brain Stimulation for Obsessive-Compulsive Disorder: Optimal Stimulation Sites. Biol Psychiatry 2024; 96:101-113. [PMID: 38141909 PMCID: PMC11190041 DOI: 10.1016/j.biopsych.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 12/25/2023]
Abstract
BACKGROUND Deep brain stimulation (DBS) is a promising treatment option for treatment-refractory obsessive-compulsive disorder (OCD). Several stimulation targets have been used, mostly in and around the anterior limb of the internal capsule and ventral striatum. However, the precise target within this region remains a matter of debate. METHODS Here, we retrospectively studied a multicenter cohort of 82 patients with OCD who underwent DBS of the ventral capsule/ventral striatum and mapped optimal stimulation sites in this region. RESULTS DBS sweet-spot mapping performed on a discovery set of 58 patients revealed 2 optimal stimulation sites associated with improvements on the Yale-Brown Obsessive Compulsive Scale, one in the anterior limb of the internal capsule that overlapped with a previously identified OCD-DBS response tract and one in the region of the inferior thalamic peduncle and bed nucleus of the stria terminalis. Critically, the nucleus accumbens proper and anterior commissure were associated with beneficial but suboptimal clinical improvements. Moreover, overlap with the resulting sweet- and sour-spots significantly estimated variance in outcomes in an independent cohort of 22 patients from 2 additional DBS centers. Finally, beyond obsessive-compulsive symptoms, stimulation of the anterior site was associated with optimal outcomes for both depression and anxiety, while the posterior site was only associated with improvements in depression. CONCLUSIONS Our results suggest how to refine targeting of DBS in OCD and may be helpful in guiding DBS programming in existing patients.
Collapse
Affiliation(s)
- Garance M Meyer
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
| | - Barbara Hollunder
- Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany; Einstein Center for Neurosciences Berlin, Charité Universitätsmedizin Berlin, Berlin, Germany; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ningfei Li
- Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Konstantin Butenko
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Till A Dembek
- Department of Neurology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Lauren Hart
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Cristina Nombela
- Biological and Health Psychology, School of Psychology, Universidad Autónoma de Madrid, Madrid, Spain
| | - Philip Mosley
- Clinical Brain Networks Group, QIMR Berghofer Medical Research Institute, Herston, Brisbane, Queensland, Australia; Neurosciences Queensland, St. Andrew's War Memorial Hospital, Spring Hill, Queensland, Australia; Queensland Brain Institute, University of Queensland, St. Lucia, Brisbane, Queensland, Australia; Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation Health and Biosecurity, Herston, Queensland, Australia
| | - Harith Akram
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, United Kingdom; National Hospital for Neurology and Neurosurgery, University College London Queen Square Institute of Neurology, London, United Kingdom
| | - Nicola Acevedo
- Centre for Mental Health, Swinburne University, Melbourne, Victoria, Australia; St. Vincent's Hospital, Melbourne, Victoria, Australia
| | - Benjamin M Borron
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Tina Chou
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Juan Pablo Castaño Montoya
- Department of Neurosurgery, Hospital Clínico San Carlos, Instituto de Investigacion Sanitaria San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - Bryan Strange
- Laboratory for Clinical Neuroscience, Center for Biomedical Technology, Universidad Politécnica de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Juan A Barcia
- Department of Neurosurgery, Hospital Clínico San Carlos, Instituto de Investigacion Sanitaria San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - Himanshu Tyagi
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, United Kingdom; National Hospital for Neurology and Neurosurgery, University College London Queen Square Institute of Neurology, London, United Kingdom
| | - David J Castle
- University of Tasmania and Centre for Mental Health Service Innovation, Tasmania, Australia; State-wide Mental Health Service, Tasmania, Australia
| | - Andrew H Smith
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ki Sueng Choi
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Brian H Kopell
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Helen S Mayberg
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Sameer A Sheth
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas; Department of Psychiatry and Behavioral Science, Baylor College of Medicine, Houston, Texas
| | - Wayne K Goodman
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas; Department of Psychiatry and Behavioral Science, Baylor College of Medicine, Houston, Texas
| | - Albert F G Leentjens
- Department of Psychiatry, Maastricht University Medical Center, Maastricht, the Netherlands
| | - R Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Susan L Rossell
- Centre for Mental Health, Swinburne University, Melbourne, Victoria, Australia; St. Vincent's Hospital, Melbourne, Victoria, Australia
| | - Peter Bosanac
- St. Vincent's Hospital, Melbourne, Victoria, Australia; Department of Psychiatry, University of Melbourne, Melbourne, Victoria, Australia
| | - G Rees Cosgrove
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jens Kuhn
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, Johanniter Hospital Oberhausen, EVKLN, Oberhausen, Germany
| | - Veerle Visser-Vandewalle
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Martijn Figee
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Darin D Dougherty
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Shan H Siddiqi
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ludvic Zrinzo
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, United Kingdom; National Hospital for Neurology and Neurosurgery, University College London Queen Square Institute of Neurology, London, United Kingdom
| | - Eileen Joyce
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, United Kingdom; National Hospital for Neurology and Neurosurgery, University College London Queen Square Institute of Neurology, London, United Kingdom
| | - Juan Carlos Baldermann
- Department of Neurology, Faculty of Medicine, University of Cologne, Cologne, Germany; Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Michael D Fox
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Clemens Neudorfer
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Andreas Horn
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany; Einstein Center for Neurosciences Berlin, Charité Universitätsmedizin Berlin, Berlin, Germany; Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
7
|
Baldi S, Schuhmann T, Goossens L, Schruers KRJ. Individualized, connectome-based, non-invasive stimulation of OCD deep-brain targets: A proof-of-concept. Neuroimage 2024; 288:120527. [PMID: 38286272 DOI: 10.1016/j.neuroimage.2024.120527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/09/2023] [Accepted: 01/26/2024] [Indexed: 01/31/2024] Open
Abstract
Treatment-resistant obsessive-compulsive disorder (OCD) generally improves with deep-brain stimulation (DBS), thought to modulate neural activity at both the implantation site and in connected brain regions. However, its invasive nature, side-effects, and lack of customization, make non-invasive treatments preferable. Harnessing the established remote effects of cortical transcranial magnetic stimulation (TMS), connectivity-based approaches have emerged for depression that aim at influencing distant regions connected to the stimulation site. We here investigated whether effective OCD DBS targets (here subthalamic nucleus [STN] and nucleus accumbens [NAc]) could be modulated non-invasively with TMS. In a proof-of-concept study with nine healthy individuals, we used 7T magnetic resonance imaging (MRI) and probabilistic tractography to reconstruct the fiber tracts traversing manually segmented STN/NAc. Two TMS targets were individually selected based on the strength of their structural connectivity to either the STN, or both the STN and NAc. In a sham-controlled, within-subject cross-over design, TMS was administered over the personalized targets, located around the precentral and middle frontal gyrus. Resting-state functional 3T MRI was acquired before, and at 5 and 25 min after stimulation to investigate TMS-induced changes in the functional connectivity of the STN and NAc with other regions of the brain. Static and dynamic seed-to-voxel correlation analyses were conducted. TMS over both targets was able to modulate the functional connectivity of the STN and NAc, engaging both overlapping and distinct regions, and unfolding following different temporal dynamics. Given the relevance of the engaged connected regions to OCD pathology, we argue that a personalized, connectivity-based procedure is worth investigating as potential treatment for refractory OCD.
Collapse
Affiliation(s)
- Samantha Baldi
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands.
| | - Teresa Schuhmann
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands; Maastricht Brain Imaging Centre, Maastricht, the Netherlands
| | - Liesbet Goossens
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Koen R J Schruers
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
8
|
Allawala A, Bijanki KR, Oswalt D, Mathura RK, Adkinson J, Pirtle V, Shofty B, Robinson M, Harrison MT, Mathew SJ, Goodman WK, Pouratian N, Sheth SA, Borton DA. Prefrontal network engagement by deep brain stimulation in limbic hubs. Front Hum Neurosci 2024; 17:1291315. [PMID: 38283094 PMCID: PMC10813208 DOI: 10.3389/fnhum.2023.1291315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/26/2023] [Indexed: 01/30/2024] Open
Abstract
Prefrontal circuits in the human brain play an important role in cognitive and affective processing. Neuromodulation therapies delivered to certain key hubs within these circuits are being used with increasing frequency to treat a host of neuropsychiatric disorders. However, the detailed neurophysiological effects of stimulation to these hubs are largely unknown. Here, we performed intracranial recordings across prefrontal networks while delivering electrical stimulation to two well-established white matter hubs involved in cognitive regulation and depression: the subcallosal cingulate (SCC) and ventral capsule/ventral striatum (VC/VS). We demonstrate a shared frontotemporal circuit consisting of the ventromedial prefrontal cortex, amygdala, and lateral orbitofrontal cortex where gamma oscillations are differentially modulated by stimulation target. Additionally, we found participant-specific responses to stimulation in the dorsal anterior cingulate cortex and demonstrate the capacity for further tuning of neural activity using current-steered stimulation. Our findings indicate a potential neurophysiological mechanism for the dissociable therapeutic effects seen across the SCC and VC/VS targets for psychiatric neuromodulation and our results lay the groundwork for personalized, network-guided neurostimulation therapy.
Collapse
Affiliation(s)
- Anusha Allawala
- School of Engineering, Brown University, Providence, RI, United States
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Kelly R. Bijanki
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Denise Oswalt
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, United States
| | - Raissa K. Mathura
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Joshua Adkinson
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Victoria Pirtle
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Ben Shofty
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, United States
| | - Meghan Robinson
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Matthew T. Harrison
- Division of Applied Mathematics, Brown University, Providence, RI, United States
| | - Sanjay J. Mathew
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States
| | - Wayne K. Goodman
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States
| | - Nader Pouratian
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, TX, United States
| | - Sameer A. Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - David A. Borton
- School of Engineering, Brown University, Providence, RI, United States
- Department of Veterans Affairs, Center for Neurorestoration and Neurotechnology, Providence, RI, United States
| |
Collapse
|
9
|
Fanty L, Yu J, Chen N, Fletcher D, Hey G, Okun M, Wong J. The current state, challenges, and future directions of deep brain stimulation for obsessive compulsive disorder. Expert Rev Med Devices 2023; 20:829-842. [PMID: 37642374 DOI: 10.1080/17434440.2023.2252732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/27/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023]
Abstract
INTRODUCTION Obsessive-compulsive disorder (OCD) is clinically and pathologically heterogenous, with symptoms often refractory to first-line treatments. Deep brain stimulation (DBS) for the treatment of refractory OCD provides an opportunity to adjust and individualize neuromodulation targeting aberrant circuitry underlying OCD. The tailoring of DBS therapy may allow precision in symptom control based on patient-specific pathology. Progress has been made in understanding the potential targets for DBS intervention; however, a consensus on an optimal target has not been agreed upon. AREAS COVERED A literature review of DBS for OCD was performed by querying the PubMed database. The following topics were covered: the evolution of DBS targeting in OCD, the concept of an underlying unified connectomic network, current DBS targets, challenges facing the field, and future directions which could advance personalized DBS in this challenging population. EXPERT OPINION To continue the increasing efficacy of DBS for OCD, we must further explore the optimal DBS response across clinical profiles and neuropsychiatric domains of OCD as well as how interventions targeting multiple points in an aberrant circuit, multiple aberrant circuits, or a connectivity hub impact clinical response. Additionally, biomarkers would be invaluable in programming adjustments and creating a closed-loop paradigm to address symptom fluctuation in daily life.
Collapse
Affiliation(s)
- Lauren Fanty
- Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, USA
| | - Jun Yu
- Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, USA
| | - Nita Chen
- Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, USA
| | - Drew Fletcher
- College of Medicine, University of Florida Health Science Center, Gainesville, FL, USA
| | - Grace Hey
- Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, USA
- College of Medicine, University of Florida Health Science Center, Gainesville, FL, USA
| | - Michael Okun
- Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, USA
| | - Josh Wong
- Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, USA
| |
Collapse
|
10
|
Zhang W, Xiong B, Wu Y, Xiao L, Wang W. Local field potentials in major depressive and obsessive-compulsive disorder: a frequency-based review. Front Psychiatry 2023; 14:1080260. [PMID: 37181878 PMCID: PMC10169609 DOI: 10.3389/fpsyt.2023.1080260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 04/10/2023] [Indexed: 05/16/2023] Open
Abstract
Objectives The purpose of this paper is to provide a mini-review covering the recent progress in human and animal studies on local field potentials (LFPs) of major depressive disorder (MDD) and obsessive-compulsive disorder (OCD). Materials and methods PubMed and EMBASE were searched to identify related studies. Inclusion criteria were (1) reported the LFPs on OCD or MDD, (2) published in English, and (3) human or animal studies. Exclusion criteria were (1) review or meta-analysis or other literature types without original data and (2) conference abstract without full text. Descriptive synthesis of data was performed. Results Eight studies on LFPs of OCD containing 22 patients and 32 rats were included: seven were observational studies with no controls, and one animal study included a randomized and controlled phase. Ten studies on LFPs of MDD containing 71 patients and 52 rats were included: seven were observational studies with no controls, one study with control, and two animal studies included a randomized and controlled phase. Conclusion The available studies revealed that different frequency bands were associated with specific symptoms. Low frequency activity seemed to be closely related to OCD symptoms, whereas LFPs findings in patients with MDD were more complicated. However, limitations of recent studies restrict the drawing of definite conclusions. Combined with other measures such as Electroencephalogram, Electrocorticography, or Magnetoencephalography and long-term recordings in various physiological states (rest state, sleep state, task state) could help to improve the understanding of potential mechanisms.
Collapse
Affiliation(s)
| | | | | | | | - Wei Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
11
|
Guinjoan SM. Personalized Definition of Surgical Targets in Major Depression and Obsessive-Compulsive Disorder: A Potential Role for Low-Intensity Focused Ultrasound? PERSONALIZED MEDICINE IN PSYCHIATRY 2023; 37-38:100100. [PMID: 36969502 PMCID: PMC10034711 DOI: 10.1016/j.pmip.2023.100100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Major Depressive Disorder (MDD) and Obsessive-Compulsive Disorder (OCD) are common and potentially incapacitating conditions. Even when recognized and adequately treated, in over a third of patients with these conditions the response to first-line pharmacological and psychotherapeutic measures is not satisfactory. After more assertive measures including pharmacological augmentation (and in the case of depression, transcranial magnetic stimulation, electroconvulsive therapy, or treatment with ketamine or esketamine), a significant number of individuals remain severely symptomatic. In these persons, different ablation and deep-brain stimulation (DBS) psychosurgical techniques have been employed. However, apart from the cost and potential morbidity associated with surgery, on average only about half of patients show adequate response, which limits the widespread application of these potentially life-saving interventions. Possible reasons are considered for the wide variation in outcomes across different series of patients with MDD or OCD exposed to ablative or DBS psychosurgery, including interindividual anatomical and etiological variability. Low-intensity focused ultrasound (LIFU) is an emerging technique that holds promise in its ability to achieve anatomically circumscribed, noninvasive, and reversible neuromodulation of deep brain structures. A possible role for LIFU in the personalized presurgical definition of neuromodulation targets in the individual patient is discussed, including a proposed roadmap for clinical trials addressed at testing whether this technique can help to improve psychosurgical outcomes.
Collapse
Affiliation(s)
- Salvador M Guinjoan
- Laureate Institute for Brain Research and Department of Psychiatry, Oklahoma University Health Sciences Center at Tulsa
| |
Collapse
|
12
|
Gadot R, Najera R, Hirani S, Anand A, Storch E, Goodman WK, Shofty B, Sheth SA. Efficacy of deep brain stimulation for treatment-resistant obsessive-compulsive disorder: systematic review and meta-analysis. J Neurol Neurosurg Psychiatry 2022; 93:jnnp-2021-328738. [PMID: 36127157 DOI: 10.1136/jnnp-2021-328738] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 05/22/2022] [Indexed: 11/03/2022]
Abstract
Deep brain stimulation (DBS) is an established and growing intervention for treatment-resistant obsessive-compulsive disorder (TROCD). We assessed current evidence on the efficacy of DBS in alleviating OCD and comorbid depressive symptoms including newly available evidence from recent trials and a deeper risk of bias analysis than previously available. PubMed and EMBASE databases were systematically queried using Preferred Reporting Items for Systematic reviews and Meta-Analyses guidelines. We included studies reporting primary data on multiple patients who received DBS therapy with outcomes reported through the Yale-Brown Obsessive-Compulsive Scale (Y-BOCS). Primary effect measures included Y-BOCS mean difference and per cent reduction as well as responder rate (≥35% Y-BOCS reduction) at last follow-up. Secondary effect measures included standardised depression scale reduction. Risk of bias assessments were performed on randomised controlled (RCTs) and non-randomised trials. Thirty-four studies from 2005 to 2021, 9 RCTs (n=97) and 25 non-RCTs (n=255), were included in systematic review and meta-analysis based on available outcome data. A random-effects model indicated a meta-analytical average 14.3 point or 47% reduction (p<0.01) in Y-BOCS scores without significant difference between RCTs and non-RCTs. At last follow-up, 66% of patients were full responders to DBS therapy. Sensitivity analyses indicated a low likelihood of small study effect bias in reported outcomes. Secondary analysis revealed a 1 standardised effect size (Hedges' g) reduction in depressive scale symptoms. Both RCTs and non-RCTs were determined to have a predominantly low risk of bias. A strong evidence base supports DBS for TROCD in relieving both OCD and comorbid depression symptoms in appropriately selected patients.
Collapse
Affiliation(s)
- Ron Gadot
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Ricardo Najera
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Samad Hirani
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Adrish Anand
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Eric Storch
- Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA
| | - Wayne K Goodman
- Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA
| | - Ben Shofty
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Sameer A Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
13
|
Kammen A, Cavaleri J, Lam J, Frank AC, Mason X, Choi W, Penn M, Brasfield K, Van Noppen B, Murray SB, Lee DJ. Neuromodulation of OCD: A review of invasive and non-invasive methods. Front Neurol 2022; 13:909264. [PMID: 36016538 PMCID: PMC9397524 DOI: 10.3389/fneur.2022.909264] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/19/2022] [Indexed: 12/27/2022] Open
Abstract
Early research into neural correlates of obsessive compulsive disorder (OCD) has focused on individual components, several network-based models have emerged from more recent data on dysfunction within brain networks, including the the lateral orbitofrontal cortex (lOFC)-ventromedial caudate, limbic, salience, and default mode networks. Moreover, the interplay between multiple brain networks has been increasingly recognized. As the understanding of the neural circuitry underlying the pathophysiology of OCD continues to evolve, so will too our ability to specifically target these networks using invasive and noninvasive methods. This review discusses the rationale for and theory behind neuromodulation in the treatment of OCD.
Collapse
Affiliation(s)
- Alexandra Kammen
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Jonathon Cavaleri
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Jordan Lam
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, United States
| | - Adam C. Frank
- Department of Psychiatry, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Xenos Mason
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Wooseong Choi
- Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Marisa Penn
- Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Kaevon Brasfield
- Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Barbara Van Noppen
- Department of Psychiatry, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Stuart B. Murray
- Department of Psychiatry, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Darrin Jason Lee
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
14
|
Ruan H, Wang Y, Li Z, Tong G, Wang Z. A Systematic Review of Treatment Outcome Predictors in Deep Brain Stimulation for Refractory Obsessive-Compulsive Disorder. Brain Sci 2022; 12:brainsci12070936. [PMID: 35884742 PMCID: PMC9316868 DOI: 10.3390/brainsci12070936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/06/2022] [Accepted: 07/15/2022] [Indexed: 12/04/2022] Open
Abstract
Obsessive-compulsive disorder (OCD) is a chronic and debilitating mental disorder. Deep brain stimulation (DBS) is a promising approach for refractory OCD patients. Research aiming at treatment outcome prediction is vital to provide optimized treatments for different patients. The primary purpose of this systematic review was to collect and synthesize studies on outcome prediction of OCD patients with DBS implantations in recent years. This systematic review (PROSPERO registration number: CRD42022335585) followed the PRISMA (Preferred Reporting Items for Systematic Review and Meta-analysis) guidelines. The search was conducted using three different databases with the following search terms related to OCD and DBS. We identified a total of 3814 articles, and 17 studies were included in our review. A specific tract confirmed by magnetic resonance imaging (MRI) was predictable for DBS outcome regardless of implant targets, but inconsistencies still exist. Current studies showed various ways of successful treatment prediction. However, considering the heterogeneous results, we hope that future studies will use larger cohorts and more precise approaches for predictors and establish more personalized ways of DBS surgeries.
Collapse
Affiliation(s)
- Hanyang Ruan
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China; (H.R.); (Y.W.); (Z.L.); (G.T.)
| | - Yang Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China; (H.R.); (Y.W.); (Z.L.); (G.T.)
| | - Zheqin Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China; (H.R.); (Y.W.); (Z.L.); (G.T.)
| | - Geya Tong
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China; (H.R.); (Y.W.); (Z.L.); (G.T.)
| | - Zhen Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China; (H.R.); (Y.W.); (Z.L.); (G.T.)
- Institute of Psychological and Behavioral Science, Shanghai Jiao Tong University, Shanghai 200030, China
- Shanghai Key Laboratory of Psychotic Disorders (No. 13dz2260500), Shanghai 200030, China
- Correspondence: ; Tel.: +86-180-1731-1286
| |
Collapse
|
15
|
Mosley PE, Velakoulis D, Farrand S, Marsh R, Mohan A, Castle D, Sachdev PS. Deep brain stimulation for treatment-refractory obsessive-compulsive disorder should be an accepted therapy in Australia. Aust N Z J Psychiatry 2022; 56:430-436. [PMID: 34263654 DOI: 10.1177/00048674211031482] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Deep brain stimulation has shown promise for the treatment of severe, treatment-refractory obsessive-compulsive disorder. With the recent publication of the first Australian, randomised, sham-controlled trial of deep brain stimulation for obsessive-compulsive disorder, there are now four placebo-controlled trials demonstrating the efficacy of this therapy. Together with recent data identifying a biological substrate of effective stimulation that can predict response and that has been successfully reproduced, studies comparing and finding equivalent efficacy among different targets, as well as recent, large, open trials supporting the long-term effectiveness of deep brain stimulation, we argue that this should now be considered an accepted therapy for a select group of patients in the Australasian setting. We call on the Royal Australian and New Zealand College of Psychiatrists to revise their memorandum describing deep brain stimulation for obsessive-compulsive disorder as an 'experimental' treatment and recognise that it has proven efficacy. We stress that this should remain a therapy offered only to those with high treatment-refractory illnesses and only at specialised centres where there is an experienced multidisciplinary team involved in work-up, implantation and follow-up and also where frameworks are in place to provide careful clinical governance and ensure appropriate fully informed consent.
Collapse
Affiliation(s)
- Philip E Mosley
- Clinical Brain Networks Group, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia.,Neurosciences Queensland, St Andrew's War Memorial Hospital, Spring Hill, QLD, Australia.,Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia.,Faculty of Medicine, The University of Queensland, Herston, QLD, Australia.,Biomedical Informatics Group, CSIRO, Herston, QLD, Australia
| | - Dennis Velakoulis
- Neuropsychiatry, Royal Melbourne Hospital, Parkville, VIC, Australia.,Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Parkville, VIC, Australia
| | - Sarah Farrand
- Neuropsychiatry, Royal Melbourne Hospital, Parkville, VIC, Australia.,Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Parkville, VIC, Australia
| | - Rodney Marsh
- Neurosciences Queensland, St Andrew's War Memorial Hospital, Spring Hill, QLD, Australia.,Faculty of Medicine, The University of Queensland, Herston, QLD, Australia
| | - Adith Mohan
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, University of New South Wales, Sydney, NSW, Australia.,Neuropsychiatric Institute, The Prince of Wales Hospital, Randwick, NSW, Australia
| | - David Castle
- Centre for Complex Interventions, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, University of New South Wales, Sydney, NSW, Australia.,Neuropsychiatric Institute, The Prince of Wales Hospital, Randwick, NSW, Australia
| |
Collapse
|
16
|
Yu Q, Guo X, Zhu Z, Feng C, Jiang H, Zheng Z, Zhang J, Zhu J, Wu H. White Matter Tracts Associated With Deep Brain Stimulation Targets in Major Depressive Disorder: A Systematic Review. Front Psychiatry 2022; 13:806916. [PMID: 35573379 PMCID: PMC9095936 DOI: 10.3389/fpsyt.2022.806916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Background Deep brain stimulation (DBS) has been proposed as a last-resort treatment for major depressive disorder (MDD) and has shown potential antidepressant effects in multiple clinical trials. However, the clinical effects of DBS for MDD are inconsistent and suboptimal, with 30-70% responder rates. The currently used DBS targets for MDD are not individualized, which may account for suboptimal effect. Objective We aim to review and summarize currently used DBS targets for MDD and relevant diffusion tensor imaging (DTI) studies. Methods A literature search of the currently used DBS targets for MDD, including clinical trials, case reports and anatomy, was performed. We also performed a literature search on DTI studies in MDD. Results A total of 95 studies are eligible for our review, including 51 DBS studies, and 44 DTI studies. There are 7 brain structures targeted for MDD DBS, and 9 white matter tracts with microstructural abnormalities reported in MDD. These DBS targets modulate different brain regions implicated in distinguished dysfunctional brain circuits, consistent with DTI findings in MDD. Conclusions In this review, we propose a taxonomy of DBS targets for MDD. These results imply that clinical characteristics and white matter tracts abnormalities may serve as valuable supplements in future personalized DBS for MDD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Junming Zhu
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hemmings Wu
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
17
|
Hollunder B, Rajamani N, Siddiqi SH, Finke C, Kühn AA, Mayberg HS, Fox MD, Neudorfer C, Horn A. Toward personalized medicine in connectomic deep brain stimulation. Prog Neurobiol 2022; 210:102211. [PMID: 34958874 DOI: 10.1016/j.pneurobio.2021.102211] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/15/2021] [Accepted: 12/22/2021] [Indexed: 02/08/2023]
Abstract
At the group-level, deep brain stimulation leads to significant therapeutic benefit in a multitude of neurological and neuropsychiatric disorders. At the single-patient level, however, symptoms may sometimes persist despite "optimal" electrode placement at established treatment coordinates. This may be partly explained by limitations of disease-centric strategies that are unable to account for heterogeneous phenotypes and comorbidities observed in clinical practice. Instead, tailoring electrode placement and programming to individual patients' symptom profiles may increase the fraction of top-responding patients. Here, we propose a three-step, circuit-based framework with the aim of developing patient-specific treatment targets that address the unique symptom constellation prevalent in each patient. First, we describe how a symptom network target library could be established by mapping beneficial or undesirable DBS effects to distinct circuits based on (retrospective) group-level data. Second, we suggest ways of matching the resulting symptom networks to circuits defined in the individual patient (template matching). Third, we introduce network blending as a strategy to calculate optimal stimulation targets and parameters by selecting and weighting a set of symptom-specific networks based on the symptom profile and subjective priorities of the individual patient. We integrate the approach with published literature and conclude by discussing limitations and future challenges.
Collapse
Affiliation(s)
- Barbara Hollunder
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany; Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Nanditha Rajamani
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Shan H Siddiqi
- Center for Brain Circuit Therapeutics, Brigham & Women's Hospital, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Carsten Finke
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany; Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andrea A Kühn
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany; Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany; NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Helen S Mayberg
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael D Fox
- Center for Brain Circuit Therapeutics, Brigham & Women's Hospital, Boston, MA, USA
| | - Clemens Neudorfer
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany; Center for Brain Circuit Therapeutics, Brigham & Women's Hospital, Boston, MA, USA; Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Andreas Horn
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany; Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany; Center for Brain Circuit Therapeutics, Brigham & Women's Hospital, Boston, MA, USA; Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
18
|
Widge AS, Zhang F, Gosai A, Papadimitrou G, Wilson-Braun P, Tsintou M, Palanivelu S, Noecker AM, McIntyre CC, O’Donnell L, McLaughlin NCR, Greenberg BD, Makris N, Dougherty DD, Rathi Y. Patient-specific connectomic models correlate with, but do not reliably predict, outcomes in deep brain stimulation for obsessive-compulsive disorder. Neuropsychopharmacology 2022; 47:965-972. [PMID: 34621015 PMCID: PMC8882183 DOI: 10.1038/s41386-021-01199-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/11/2021] [Accepted: 09/23/2021] [Indexed: 12/15/2022]
Abstract
Deep brain stimulation (DBS) of the ventral internal capsule/ventral striatum (VCVS) is an emerging treatment for obsessive-compulsive disorder (OCD). Recently, multiple studies using normative connectomes have correlated DBS outcomes to stimulation of specific white matter tracts. Those studies did not test whether these correlations are clinically predictive, and did not apply cross-validation approaches that are necessary for biomarker development. Further, they did not account for the possibility of systematic differences between DBS patients and the non-diagnosed controls used in normative connectomes. To address these gaps, we performed patient-specific diffusion imaging in 8 patients who underwent VCVS DBS for OCD. We delineated tracts connecting thalamus and subthalamic nucleus (STN) to prefrontal cortex via VCVS. We then calculated which tracts were likely activated by individual patients' DBS settings. We fit multiple statistical models to predict both OCD and depression outcomes from tract activation. We further attempted to predict hypomania, a VCVS DBS complication. We assessed all models' performance on held-out test sets. With this best-practices approach, no model predicted OCD response, depression response, or hypomania above chance. Coefficient inspection partly supported prior reports, in that capture of tracts projecting to cingulate cortex was associated with both YBOCS and MADRS response. In contrast to prior reports, however, tracts connected to STN were not reliably correlated with response. Thus, patient-specific imaging and a guideline-adherent analysis were unable to identify a tractographic target with sufficient effect size to drive clinical decision-making or predict individual outcomes. These findings suggest caution in interpreting the results of normative connectome studies.
Collapse
Affiliation(s)
- Alik S. Widge
- grid.17635.360000000419368657Department of Psychiatry, University of Minnesota, Minneapolis, MN USA
| | - Fan Zhang
- grid.62560.370000 0004 0378 8294Department of Radiology, Brigham and Womens Hospital, Boston, MA USA
| | - Aishwarya Gosai
- grid.32224.350000 0004 0386 9924Department of Psychiatry, Massachusetts General Hospital, Boston, MA USA
| | - George Papadimitrou
- grid.32224.350000 0004 0386 9924Department of Psychiatry, Massachusetts General Hospital, Boston, MA USA
| | - Peter Wilson-Braun
- grid.32224.350000 0004 0386 9924Department of Psychiatry, Massachusetts General Hospital, Boston, MA USA
| | - Magdalini Tsintou
- grid.32224.350000 0004 0386 9924Department of Psychiatry, Massachusetts General Hospital, Boston, MA USA
| | - Senthil Palanivelu
- grid.32224.350000 0004 0386 9924Department of Psychiatry, Massachusetts General Hospital, Boston, MA USA
| | - Angela M. Noecker
- grid.67105.350000 0001 2164 3847Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH USA
| | - Cameron C. McIntyre
- grid.67105.350000 0001 2164 3847Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH USA
| | - Lauren O’Donnell
- grid.62560.370000 0004 0378 8294Department of Radiology, Brigham and Womens Hospital, Boston, MA USA
| | - Nicole C. R. McLaughlin
- grid.40263.330000 0004 1936 9094Department of Psychiatry and Human Behavior, Alpert Medical School, Brown University, Providence, RI USA ,grid.273271.20000 0000 8593 9332Butler Hospital, Providence, RI USA
| | - Benjamin D. Greenberg
- grid.40263.330000 0004 1936 9094Department of Psychiatry and Human Behavior, Alpert Medical School, Brown University, Providence, RI USA ,grid.273271.20000 0000 8593 9332Butler Hospital, Providence, RI USA ,Center for Neurorestoration and Neurotechnology, VA Providence Healthcare System, Providence, RI USA
| | - Nikolaos Makris
- grid.32224.350000 0004 0386 9924Department of Psychiatry, Massachusetts General Hospital, Boston, MA USA
| | - Darin D. Dougherty
- grid.32224.350000 0004 0386 9924Department of Psychiatry, Massachusetts General Hospital, Boston, MA USA
| | - Yogesh Rathi
- grid.62560.370000 0004 0378 8294Department of Radiology, Brigham and Womens Hospital, Boston, MA USA ,grid.32224.350000 0004 0386 9924Department of Psychiatry, Massachusetts General Hospital, Boston, MA USA
| |
Collapse
|
19
|
Surgical and Hardware-Related Adverse Events of Deep Brain Stimulation: A Ten-Year Single-Center Experience. Neuromodulation 2022; 25:296-304. [PMID: 35125149 DOI: 10.1016/j.neurom.2021.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/16/2021] [Accepted: 12/08/2021] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Although deep brain stimulation (DBS) is effective for treating a number of neurological and psychiatric indications, surgical and hardware-related adverse events (AEs) can occur that affect quality of life. This study aimed to give an overview of the nature and frequency of those AEs in our center and to describe the way they were managed. Furthermore, an attempt was made at identifying possible risk factors for AEs to inform possible future preventive measures. MATERIALS AND METHODS Patients undergoing DBS-related procedures between January 2011 and July 2020 were retrospectively analyzed to inventory AEs. The mean follow-up time was 43 ± 31 months. Univariate logistic regression analysis was used to assess the predictive value of selected demographic and clinical variables. RESULTS From January 2011 to July 2020, 508 DBS-related procedures were performed including 201 implantations of brain electrodes in 200 patients and 307 implantable pulse generator (IPG) replacements in 142 patients. Surgical or hardware-related AEs following initial implantation affected 40 of 200 patients (20%) and resolved without permanent sequelae in all instances. The most frequent AEs were surgical site infections (SSIs) (9.95%, 20/201) and wire tethering (2.49%, 5/201), followed by hardware failure (1.99%, 4/201), skin erosion (1.0%, 2/201), pain (0.5%, 1/201), lead migration (0.52%, 2/386 electrode sites), and hematoma (0.52%, 2/386 electrode sites). The overall rate of AEs for IPG replacement was 5.6% (17/305). No surgical, ie, staged or nonstaged, electrode fixation, or patient-related risk factors were identified for SSI or wire tethering. CONCLUSIONS Major AEs including intracranial surgery-related AEs or AEs requiring surgical removal or revision of hardware are rare. In particular, aggressive treatment is required in SSIs involving multiple sites or when Staphylococcus aureus is identified. For future benchmarking, the development of a uniform reporting system for surgical and hardware-related AEs in DBS surgery would be useful.
Collapse
|
20
|
Bouwens van der Vlis TA, Samanci Y, Ackermans L, Schruers KR, Temel Y, Leentjens AF, Dincer A, Peker S. Network analysis in Gamma Knife capsulotomy for intractable obsessive-compulsive disorder. BRAIN AND SPINE 2022; 2:100892. [PMID: 36248148 PMCID: PMC9562250 DOI: 10.1016/j.bas.2022.100892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 11/19/2022]
Affiliation(s)
- Tim A.M. Bouwens van der Vlis
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, the Netherlands
- Corresponding author. Department of Neurosurgery, Maastricht University Medical Center, Maastricht (MUMC+) PO Box 5800, 6202 AZ, Maastricht, the Netherlands
| | - Yavuz Samanci
- Department of Neurosurgery, School of Medicine, Koç University, Istanbul, Turkey
| | - Linda Ackermans
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, the Netherlands
- School of Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Koen R.J. Schruers
- School of Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
- Department of Psychiatry and Psychology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Y. Temel
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, the Netherlands
- School of Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Albert F.G. Leentjens
- School of Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
- Department of Psychiatry and Psychology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Alp Dincer
- Department of Radiology, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Turkey
| | - Selçuk Peker
- Department of Neurosurgery, School of Medicine, Koç University, Istanbul, Turkey
| |
Collapse
|
21
|
Baldermann JC, Schüller T, Kohl S, Voon V, Li N, Hollunder B, Figee M, Haber SN, Sheth SA, Mosley PE, Huys D, Johnson KA, Butson C, Ackermans L, Bouwens van der Vlis T, Leentjens AFG, Barbe M, Visser-Vandewalle V, Kuhn J, Horn A. Connectomic Deep Brain Stimulation for Obsessive-Compulsive Disorder. Biol Psychiatry 2021; 90:678-688. [PMID: 34482949 DOI: 10.1016/j.biopsych.2021.07.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 01/17/2023]
Abstract
Obsessive-compulsive disorder is among the most disabling psychiatric disorders. Although deep brain stimulation is considered an effective treatment, its use in clinical practice is not fully established. This is, at least in part, due to ambiguity about the best suited target and insufficient knowledge about underlying mechanisms. Recent advances suggest that changes in broader brain networks are responsible for improvement of obsessions and compulsions, rather than local impact at the stimulation site. These findings were fueled by innovative methodological approaches using brain connectivity analyses in combination with neuromodulatory interventions. Such a connectomic approach for neuromodulation constitutes an integrative account that aims to characterize optimal target networks. In this critical review, we integrate findings from connectomic studies and deep brain stimulation interventions to characterize a neural network presumably effective in reducing obsessions and compulsions. To this end, we scrutinize methodologies and seemingly conflicting findings with the aim to merge observations to identify common and diverse pathways for treating obsessive-compulsive disorder. Ultimately, we propose a unified network that-when modulated by means of cortical or subcortical interventions-alleviates obsessive-compulsive symptoms.
Collapse
Affiliation(s)
- Juan Carlos Baldermann
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
| | - Thomas Schüller
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Sina Kohl
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Valerie Voon
- Department of Psychiatry, Cambridge University, Cambridge, United Kingdom
| | - Ningfei Li
- Department of Neurology, Movement Disorders and Neuromodulation Section, Charité - University Medicine Berlin, Berlin, Germany
| | - Barbara Hollunder
- Department of Neurology, Movement Disorders and Neuromodulation Section, Charité - University Medicine Berlin, Berlin, Germany; Einstein Center for Neurosciences, Charité - University Medicine Berlin, Berlin, Germany; Faculty of Philosophy, Humboldt University of Berlin, Berlin School of Mind and Brain, Berlin, Germany
| | - Martijn Figee
- Department of Psychiatry, Mount Sinai Hospital, New York, New York
| | - Suzanne N Haber
- Department of Pharmacology and Physiology, University of Rochester School of Medicine, Rochester, New York; Basic Neuroscience Division, Harvard Medical School, McLean Hospital, Belmont, Massachusetts
| | - Sameer A Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas
| | - Philip E Mosley
- Systems Neuroscience Group, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia; Queensland Brain Institute, University of Queensland, St Lucia, Queensland, Australia
| | - Daniel Huys
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Kara A Johnson
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida
| | - Christopher Butson
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah; Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah
| | - Linda Ackermans
- School of Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | | | - Albert F G Leentjens
- School of Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Michael Barbe
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Veerle Visser-Vandewalle
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jens Kuhn
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Department of Psychiatry, Psychotherapy and Psychosomatic, Johanniter Hospital Oberhausen, Oberhausen, Germany
| | - Andreas Horn
- Department of Neurology, Movement Disorders and Neuromodulation Section, Charité - University Medicine Berlin, Berlin, Germany
| |
Collapse
|
22
|
Li N, Hollunder B, Baldermann JC, Kibleur A, Treu S, Akram H, Al-Fatly B, Strange BA, Barcia JA, Zrinzo L, Joyce EM, Chabardes S, Visser-Vandewalle V, Polosan M, Kuhn J, Kühn AA, Horn A. A Unified Functional Network Target for Deep Brain Stimulation in Obsessive-Compulsive Disorder. Biol Psychiatry 2021; 90:701-713. [PMID: 34134839 DOI: 10.1016/j.biopsych.2021.04.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/26/2021] [Accepted: 04/12/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Multiple deep brain stimulation (DBS) targets have been proposed for treating intractable obsessive-compulsive disorder (OCD). Here, we investigated whether stimulation effects of different target sites would be mediated by one common or several segregated functional brain networks. METHODS First, seeding from active electrodes of 4 OCD patient cohorts (N = 50) receiving DBS to anterior limb of the internal capsule or subthalamic nucleus zones, optimal functional connectivity profiles for maximal Yale-Brown Obsessive Compulsive Scale improvements were calculated and cross-validated in leave-one-cohort-out and leave-one-patient-out designs. Second, we derived optimal target-specific connectivity patterns to determine brain regions mutually predictive of clinical outcome for both targets and others predictive for either target alone. Functional connectivity was defined using resting-state functional magnetic resonance imaging data acquired in 1000 healthy participants. RESULTS While optimal functional connectivity profiles showed both commonalities and differences between target sites, robust cross-predictions of clinical improvements across OCD cohorts and targets suggested a shared network. Connectivity to the anterior cingulate cortex, insula, and precuneus, among other regions, was predictive regardless of stimulation target. Regions with maximal connectivity to these commonly predictive areas included the insula, superior frontal gyrus, anterior cingulate cortex, and anterior thalamus, as well as the original stereotactic targets. CONCLUSIONS Pinpointing the network modulated by DBS for OCD from different target sites identified a set of brain regions to which DBS electrodes associated with optimal outcomes were functionally connected-regardless of target choice. On these grounds, we establish potential brain areas that could prospectively inform additional or alternative neuromodulation targets for obsessive-compulsive disorder.
Collapse
Affiliation(s)
- Ningfei Li
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Movement Disorders and Neuromodulation Unit, Department of Neurology, Berlin, Germany.
| | - Barbara Hollunder
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Movement Disorders and Neuromodulation Unit, Department of Neurology, Berlin, Germany; Charité - Universitätsmedizin Berlin, Einstein Center for Neurosciences Berlin, Berlin, Germany; Berlin School of Mind and Brain, Faculty of Philosophy, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Juan Carlos Baldermann
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne; Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Astrid Kibleur
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut des Neurosciences (AK, SC, MP), Grenoble; and OpenMind Innovation (AK), Paris, France; OpenMind Innovation, Paris, France
| | - Svenja Treu
- Laboratory for Clinical Neuroscience, Centre for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain
| | - Harith Akram
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom; National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Trust (UCLH), London, United Kingdom
| | - Bassam Al-Fatly
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Movement Disorders and Neuromodulation Unit, Department of Neurology, Berlin, Germany
| | - Bryan A Strange
- Laboratory for Clinical Neuroscience, Centre for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain
| | - Juan A Barcia
- Neurosurgery Department, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - Ludvic Zrinzo
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom; National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Trust (UCLH), London, United Kingdom
| | - Eileen M Joyce
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom; National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Trust (UCLH), London, United Kingdom
| | - Stephan Chabardes
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut des Neurosciences (AK, SC, MP), Grenoble; and OpenMind Innovation (AK), Paris, France
| | | | - Mircea Polosan
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut des Neurosciences (AK, SC, MP), Grenoble; and OpenMind Innovation (AK), Paris, France
| | - Jens Kuhn
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, Johanniter Hospital Oberhausen, Evangelisches Klinikum Niederrhein, Oberhausen, Germany
| | - Andrea A Kühn
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Movement Disorders and Neuromodulation Unit, Department of Neurology, Berlin, Germany; Charité - Universitätsmedizin Berlin, Einstein Center for Neurosciences Berlin, Berlin, Germany; Berlin School of Mind and Brain, Faculty of Philosophy, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas Horn
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Movement Disorders and Neuromodulation Unit, Department of Neurology, Berlin, Germany; Charité - Universitätsmedizin Berlin, Einstein Center for Neurosciences Berlin, Berlin, Germany
| |
Collapse
|
23
|
Coenen VA, Döbrössy MD, Teo SJ, Wessolleck J, Sajonz BEA, Reinacher PC, Thierauf-Emberger A, Spittau B, Leupold J, von Elverfeldt D, Schlaepfer TE, Reisert M. Diverging prefrontal cortex fiber connection routes to the subthalamic nucleus and the mesencephalic ventral tegmentum investigated with long range (normative) and short range (ex-vivo high resolution) 7T DTI. Brain Struct Funct 2021; 227:23-47. [PMID: 34482443 PMCID: PMC8741702 DOI: 10.1007/s00429-021-02373-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/24/2021] [Indexed: 11/30/2022]
Abstract
Uncertainties
concerning anatomy and function of cortico-subcortical projections have arisen during the recent years. A clear distinction between cortico-subthalamic (hyperdirect) and cortico-tegmental projections (superolateral medial forebrain bundle, slMFB) so far is elusive. Deep Brain Stimulation (DBS) of the slMFB (for major depression, MD and obsessive compulsive disorders, OCD) has on the one hand been interpreted as actually involving limbic (prefrontal) hyperdirect pathways. On the other hand slMFB’s stimulation region in the mesencephalic ventral tegmentum is said to impact on other structures too, going beyond the antidepressant (or anti OCD) efficacy of sole modulation of the cortico-tegmental reward-associated pathways. We have here used a normative diffusion MRT template (HCP, n = 80) for long-range tractography and augmented this dataset with ex-vivo high resolution data (n = 1) in a stochastic brain space. We compared this data with histological information and used the high resolution ex-vivo data set to scrutinize the mesencephalic tegmentum for small fiber pathways present. Our work resolves an existing ambiguity between slMFB and prefrontal hyperdirect pathways which—for the first time—are described as co-existent. DBS of the slMFB does not appear to modulate prefrontal hyperdirect cortico-subthalamic but rather cortico-tegmental projections. Smaller fiber structures in the target region—as far as they can be discerned—appear not to be involved in slMFB DBS. Our work enfeebles previous anatomical criticism and strengthens the position of the slMFB DBS target for its use in MD and OCD.
Collapse
Affiliation(s)
- Volker A Coenen
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Breisacher STraße 64, 79106, Freiburg, Germany. .,Medical Faculty of Freiburg University, Freiburg, Germany. .,Center for Deep Brain Stimulation, Medical Center of Freiburg University, Freiburg, Germany. .,Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Freiburg, Germany.
| | - Máté D Döbrössy
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Breisacher STraße 64, 79106, Freiburg, Germany.,Medical Faculty of Freiburg University, Freiburg, Germany.,Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Freiburg, Germany
| | - Shi Jia Teo
- Medical Faculty of Freiburg University, Freiburg, Germany.,Department of Diagnostic and Interventional Radiology, Medical Physics, Medical Center, University of Freiburg, Freiburg, Germany
| | - Johanna Wessolleck
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Breisacher STraße 64, 79106, Freiburg, Germany.,Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Freiburg, Germany
| | - Bastian E A Sajonz
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Breisacher STraße 64, 79106, Freiburg, Germany.,Medical Faculty of Freiburg University, Freiburg, Germany
| | - Peter C Reinacher
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Breisacher STraße 64, 79106, Freiburg, Germany.,Medical Faculty of Freiburg University, Freiburg, Germany.,Fraunhofer Institute for Laser Technology (ILT), Aachen, Germany
| | - Annette Thierauf-Emberger
- Medical Faculty of Freiburg University, Freiburg, Germany.,Institute of Forensic Medicine, Medical Center of Freiburg University, Freiburg, Germany
| | - Björn Spittau
- Anatomy and Cell Biology, Medical School OWL, Bielefeld University, Bielefeld, Germany.,Institute for Anatomy and Cell Biology, Department of Molecular Embryologie, Faculty of Medicine, Freiburg University, Freiburg, Germany
| | - Jochen Leupold
- Medical Faculty of Freiburg University, Freiburg, Germany.,Department of Diagnostic and Interventional Radiology, Medical Physics, Medical Center, University of Freiburg, Freiburg, Germany
| | - Dominik von Elverfeldt
- Medical Faculty of Freiburg University, Freiburg, Germany.,Department of Diagnostic and Interventional Radiology, Medical Physics, Medical Center, University of Freiburg, Freiburg, Germany
| | - Thomas E Schlaepfer
- Medical Faculty of Freiburg University, Freiburg, Germany.,Center for Deep Brain Stimulation, Medical Center of Freiburg University, Freiburg, Germany.,Division of Interventional Biological Psychiatry, Department of Psychiatry and Psychotherapy, Medical Center of Freiburg University, Freiburg, Germany
| | - Marco Reisert
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Breisacher STraße 64, 79106, Freiburg, Germany.,Medical Faculty of Freiburg University, Freiburg, Germany.,Department of Diagnostic and Interventional Radiology, Medical Physics, Medical Center, University of Freiburg, Freiburg, Germany
| |
Collapse
|