1
|
Yousef O, Abbas A, Abdelmeseh M, Qafesha RM, Nabil Y, Elrosasy A, Negida A, Berman BD. Subthalamic nucleus versus globus pallidus internus deep brain stimulation in the treatment of dystonia: A systematic review and meta-analysis of safety and efficacy. J Clin Neurosci 2025; 132:110958. [PMID: 39647323 DOI: 10.1016/j.jocn.2024.110958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/10/2024] [Accepted: 11/28/2024] [Indexed: 12/10/2024]
Abstract
OBJECTIVE This systematic review and meta-analysis aimed to compare the efficacy and safety of deep brain stimulation (DBS) targeting subthalamic nucleus (STN) versus the globus pallidus internus (GPI) in the treatment of dystonia. METHODS A comprehensive search strategy was implemented up to July 2024, across five databases, identifying studies relevant to STN-DBS and GPI-DBS in dystonia. Eligibility criteria included randomized controlled trials (RCTs) and observational studies comparing the two interventions. Two independent reviewers conducted the screening and data extraction. The risk of bias was assessed using RoB-2 for RCTs and the Newcastle-Ottawa Scale for cohort studies. Statistical analysis involved meta-analysis using Review Manager, with heterogeneity assessed by I2 and Chi-square tests. Subgroup and sensitivity analyses were performed. RESULTS Five studies, involving 154 patients, were included. No significant difference was found between STN-DBS and GPI-DBS in Burke-Fahn-Marsden Dystonia Rating Scale motor and disability (BFMDRS-M and BFMDRS-D) scores at 1 months, 6 and 12 months. STN-DBS showed significant improvement in mental health (SMD = 0.43, 95 % CI: [0.05, 0.8], P = 0.03). STN-DBS also showed significant improvement in Hamilton Anxiety Rating Scale (HAMA) (SMD = -2.7, 95 % CI: [-5.38, -0.02], P = 0.05). No significant difference was found in Hamilton Depression Rating Scale (HAMD) scores. CONCLUSIONS Both STN-DBS and GPI-DBS can improve motor symptoms in dystonia, with STN-DBS potentially resulting in more superior mental health benefits. Future research should address long-term outcomes, and regional effectiveness, and include diverse populations to enhance generalizability.
Collapse
Affiliation(s)
- Obai Yousef
- Medical Research Group of Egypt (MRGE), Negida Academy, Arlington, MA, USA; Faculty of Medicine, Tartous University, Syria.
| | - Abdallah Abbas
- Medical Research Group of Egypt (MRGE), Negida Academy, Arlington, MA, USA; Faculty of Medicine, Al-Azhar University, Damietta, Egypt
| | - Maickel Abdelmeseh
- Medical Research Group of Egypt (MRGE), Negida Academy, Arlington, MA, USA; Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Ruaa Mustafa Qafesha
- Medical Research Group of Egypt (MRGE), Negida Academy, Arlington, MA, USA; Faculty of Medicine, Al-Quds University, Jerusalem, Palestine
| | - Yehia Nabil
- Medical Research Group of Egypt (MRGE), Negida Academy, Arlington, MA, USA; Faculty of Medicine, Zagazig University, Egypt
| | - Amr Elrosasy
- Medical Research Group of Egypt (MRGE), Negida Academy, Arlington, MA, USA; Faculty of Medicine, Cairo University, Cairo Egypt
| | - Ahmed Negida
- Medical Research Group of Egypt (MRGE), Negida Academy, Arlington, MA, USA; Department of Neurology, Virginia Commonwealth University, Richmond, VA, USA
| | - Brian D Berman
- Department of Neurology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
2
|
Wu Y, Li Y, Li H, Wang T, Huang P, Wu Y, Sun B, Pan Y, Li D. Prediction of subthalamic stimulation efficacy on isolated dystonia via support vector regression. Heliyon 2024; 10:e31475. [PMID: 38818146 PMCID: PMC11137530 DOI: 10.1016/j.heliyon.2024.e31475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024] Open
Abstract
Introduction Deep brain stimulation (DBS) of subthalamic nucleus (STN) has been well-established and increasingly applied in patients with isolated dystonia. Nevertheless, the surgical efficacy varies among patients. This study aims to explore the factors affecting clinical outcomes of STN-DBS on isolated dystonia and establish a well-performed prediction model. Methods In this prospective study, thirty-two dystonia patients were recruited and received bilateral STN-DBS at our center. Their baseline characteristics and up to one-year follow-up outcomes were assessed. Implanted electrodes of each subject were reconstructed with their contact coordinates and activated volumes calculated. We explored correlations between distinct clinical characteristics and surgical efficacy. Those features were then trained for the model in outcome prediction via support vector regression (SVR) algorithm and testified through cross-validation. Results Patients demonstrated an average clinical improvement of 56 ± 25 % after STN-DBS, significantly affected by distinct symptom forms and activated volumes. The optimal targets and activated volumes were concentratedly located at the dorsal posterior region to STN. Most patients had a rapid response to STN-DBS, and their motor score improvement within one week was highly associated with long-term outcomes. The trained SVR model, contributed by distinct weights of features, could reach a maximum prediction accuracy with mean errors of 11 ± 7 %. Conclusion STN-DBS demonstrated significant and rapid therapeutic effects in patients with isolated dystonia, by possibly affecting the pallidofugal fibers. Early improvement highly indicates the ultimate outcomes. SVR proves valid in outcome prediction. Patients with predominant phasic and generalized symptoms, shorter disease duration, and younger onset age may be more favorable to STN-DBS in the long run.
Collapse
Affiliation(s)
- Yunhao Wu
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Li
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongxia Li
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Wang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng Huang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiwen Wu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bomin Sun
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yixin Pan
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dianyou Li
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
AlMajali M, Patel MS, Patel NK, Zhang JK, Tapia C, Bucholz RD, Chand P. A Technique of Deep Brain Stimulation of the Globus Pallidus Interna for Dystonia Under General Anesthesia With Sevoflurane. Cureus 2023; 15:e40819. [PMID: 37485182 PMCID: PMC10362972 DOI: 10.7759/cureus.40819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2023] [Indexed: 07/25/2023] Open
Abstract
Background Globus pallidus interna (GPi) deep brain stimulation (DBS) is an established surgical procedure that confers a benefit in medication refractory dystonia. Patients with generalized dystonia require general anesthesia (GA) for the surgery as their movements may hinder the surgical procedure. General anesthetics tend to dampen the microelectrode recordings (MERs) from the GPi. Methods We describe our experience with a series of consecutive patients with dystonia who underwent bilateral GPi DBS using standard DBS and MER under GA using sevoflurane as the maintenance general anesthetic drug. All patients had Medtronic 3,387 leads implanted and connected to an RC battery. Patients underwent sequential programming of the DBS after the surgery. Results The mean age of the 13 patients who underwent DBS of the GPi for dystonia was 46.5 years with a range from 29 to 71 years. Every patient in our case series received various doses of (1.37% to 2.11%) inhaled sevoflurane for anesthesia maintenance. Sevoflurane provided adequate anesthesia and allowed accurate MERs from the GPi. No adverse effects were encountered. On follow-up and sequential DBS programming, patients had significant improvements in dystonia attesting to the accuracy of the electrode placements. Conclusions We report our experience using sevoflurane for maintenance of GA for bilateral GPi DBS for dystonia. The main benefits identified have been adequate anesthesia and reduction of dystonia-related movements to allow the performance of the DBS surgery. The MER signals from the GPi were not suppressed by sevoflurane. This allowed accurate mapping and placement of the DBS implants in the GPi.
Collapse
Affiliation(s)
| | - Mayur S Patel
- Neurosurgery, The Ohio State University Wexner Medical Center, Columbus, USA
| | - Niel K Patel
- Internal Medicine, University of California San Diego, San Diego, USA
- Internal Medicine, Saint Louis University School of Medicine, St. Louis, USA
| | | | | | - Richard D Bucholz
- Neurological Surgery, Saint Louis University School of Medicine, Saint Louis, USA
| | - Pratap Chand
- Neurology, Saint Louis University School of Medicine, Saint Louis, USA
| |
Collapse
|
4
|
Dai L, Xu W, Song Y, Huang P, Li N, Hollunder B, Horn A, Wu Y, Zhang C, Sun B, Li D. Subthalamic deep brain stimulation for refractory Gilles de la Tourette's syndrome: clinical outcome and functional connectivity. J Neurol 2022; 269:6116-6126. [PMID: 35861855 PMCID: PMC9553760 DOI: 10.1007/s00415-022-11266-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Deep brain stimulation (DBS) is a promising novel approach for managing refractory Gilles de la Tourette's syndrome (GTS). The subthalamic nucleus (STN) is the most common DBS target for treating movement disorders, and smaller case studies have reported the efficacy of bilateral STN-DBS treatment for relieving tic symptoms. However, management of GTS and treatment mechanism of STN-DBS in GTS remain to be elucidated. METHODS Ten patients undergoing STN-DBS were included. Tics severity was evaluated using the Yale Global Tic Severity Scale. The severities of comorbid psychiatric symptoms of obsessive-compulsive behavior (OCB), attention-deficit/hyperactivity disorder, anxiety, and depression; social and occupational functioning; and quality of life were assessed. Volumes of tissue activated were used as seed points for functional connectivity analysis performed using a control dataset. RESULTS The overall tics severity significantly reduced, with 62.9% ± 26.2% and 58.8% ± 27.2% improvements at the 6- and 12-months follow-up, respectively. All three patients with comorbid OCB showed improvement in their OCB symptoms at both the follow-ups. STN-DBS treatment was reasonably well tolerated by the patients with GTS. The most commonly reported side effect was light dysarthria. The stimulation effect of STN-DBS might regulate these symptoms through functional connectivity with the thalamus, pallidum, substantia nigra pars reticulata, putamen, insula, and anterior cingulate cortices. CONCLUSIONS STN-DBS was associated with symptomatic improvement in severe and refractory GTS without significant adverse events. The STN is a promising DBS target by stimulating both sensorimotor and limbic subregions, and specific brain area doses affect treatment outcomes.
Collapse
Affiliation(s)
- Lulin Dai
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenying Xu
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunhai Song
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurosurgery, Shanghai Children's Medical Center, Affiliated to the Medical School of Shanghai Jiao Tong University, Shanghai, China
| | - Peng Huang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ningfei Li
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Barbara Hollunder
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas Horn
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
- MGH Neurosurgery and Center for Neurotechnology and Neurorecovery (CNTR) at MGH Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Yiwen Wu
- Department of Neurology, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chencheng Zhang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Research Center for Brain Science and Brain-Inspired Technology, Shanghai, China.
| | - Bomin Sun
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Dianyou Li
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
Lu Y, Chang L, Li J, Luo B, Dong W, Qiu C, Zhang W, Ruan Y. The Effects of Different Anesthesia Methods on the Treatment of Parkinson’s Disease by Bilateral Deep Brain Stimulation of the Subthalamic Nucleus. Front Neurosci 2022; 16:917752. [PMID: 35692425 PMCID: PMC9178204 DOI: 10.3389/fnins.2022.917752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 04/26/2022] [Indexed: 11/21/2022] Open
Abstract
Background Subthalamic nucleus deep brain stimulation (STN–DBS) surgery for Parkinson’s disease (PD) is routinely performed at medical centers worldwide. However, it is debated whether general anesthesia (GA) or traditional local anesthetic (LA) is superior. Purpose This study aims to compare the effects of LA and GA operation methods on clinical improvement in patients with PD, such as motor and non-motor symptoms, after STN–DBS surgery at our center. Method A total of 157 patients with PD were retrospectively identified as having undergone surgery under LA (n = 81) or GA (n = 76) states. In this study, the Unified Parkinson’s Disease Rating Scale Motor Score (UPDRS-III) in three states, levodopa-equivalent-daily-dose (LEDD), surgical duration, intraoperative microelectrode recording (iMER) signal length, postoperative intracranial volume, electrode implantation error, neuropsychological function, quality of life scores, and complication rates were collected and compared. All patients with PD were routinely followed up at 6, 12, 18, and 24 months postoperatively. Result Overall improvement in UPDRS-III was demonstrated at postoperative follow-up, and there was no significant difference between the two groups in medication-off, stimulation-off state and medication-off, stimulation-on state. However, UPDRS-III scores in medication-on, stimulation-on state under GA was significantly lower than that in the LA group. During postoperative follow-up, LEDD in the LA group (6, 12, 18, and 24 months, postoperatively) was significantly lower than in the GA group. However, there were no significant differences at baseline or 1-month between the two groups. The GA group had a shorter surgical duration, lower intracranial volume, and longer iMER signal length than the LA group. However, there was no significant group difference in electrode implantation accuracy and complication rates. Additionally, the Hamilton Anxiety Scale (HAMA) was significantly lower in the GA group than the LA group at 1-month follow-up, but this difference disappeared at longer follow-up. Besides, there was no significant group difference in the 39-item Parkinson’s Disease Questionnaire (PDQ-39) scale scores. Conclusion Although both groups showed overall motor function improvement without a significant postoperative difference, the GA group seemed superior in surgical duration, intracranial volume, and iMER signal length. As the accuracy of electrode implantation can be ensured by iMER monitoring, DBS with GA will become more widely accepted.
Collapse
Affiliation(s)
- Yue Lu
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Lei Chang
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jinwen Li
- Department of Anesthesiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Bei Luo
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wenwen Dong
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chang Qiu
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wenbin Zhang
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Wenbin Zhang,
| | - Yifeng Ruan
- Department of Anesthesiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
- Yifeng Ruan,
| |
Collapse
|
6
|
Zhang P, Li D, Liu J, Chen S, Tan Y, Zhou H. Temporary Stimulation Switch-off Successfully Applied in a Dystonic Camptocormia Patient. Mov Disord Clin Pract 2022; 9:255-258. [PMID: 35146066 PMCID: PMC8810441 DOI: 10.1002/mdc3.13397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 10/20/2021] [Accepted: 12/03/2021] [Indexed: 01/05/2023] Open
Affiliation(s)
- Pingchen Zhang
- Department of Neurology & Collaborative Innovation Center for Brain ScienceRuijin Hospital Affiliated to Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Dianyou Li
- Department of Functional NeurosurgeryRuijin Hospital Affiliated to Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Jun Liu
- Department of Neurology & Collaborative Innovation Center for Brain ScienceRuijin Hospital Affiliated to Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Shengdi Chen
- Department of Neurology & Collaborative Innovation Center for Brain ScienceRuijin Hospital Affiliated to Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Yuyan Tan
- Department of Neurology & Collaborative Innovation Center for Brain ScienceRuijin Hospital Affiliated to Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Haiyan Zhou
- Department of Neurology & Collaborative Innovation Center for Brain ScienceRuijin Hospital Affiliated to Shanghai Jiaotong University School of MedicineShanghaiChina
| |
Collapse
|