1
|
Chua MMJ, Pinzon AM, Neudorfer C, Ng PR, Blitz SE, Meyer GM, Butenko K, Dembek TA, Boutet A, Yang AZ, Schwartz M, Germann J, Lipsman N, Lozano A, Behzadi F, McDannold NJ, Rolston JD, Guttmann CRG, Fox MD, Cosgrove R, Horn A. Optimal focused ultrasound lesion location in essential tremor. SCIENCE ADVANCES 2025; 11:eadp0532. [PMID: 40367166 PMCID: PMC12077504 DOI: 10.1126/sciadv.adp0532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/08/2025] [Indexed: 05/16/2025]
Abstract
Magnetic resonance-guided focused ultrasound (MRgFUS) thalamotomy is an effective treatment for medically refractory essential tremor. We investigate ablation sites and potential tracts associated with optimal tremor control and side effects based on the analysis of 351 cases from three international hospitals. Lesions were segmented on day 1 thin-cut T2 axial images, mapped to standard Montreal Neurological Institute space, and used to derive probabilistic maps and tracts associated with tremor improvement and side effects. Lesioning of a specific subregion within the ventral intermediate nucleus and the cerebellothalamic tract was associated with optimal tremor improvements. Some lesion locations and tracts were associated with differential side effects. Overlaps with the optimal tremor improvement sites accounted for variance in clinical improvements in out-of-sample cases. Efficacy of this location was further confirmed by test-retest cases that underwent two MRgFUS procedures. We identify and validate a target area for optimal tremor control and sites of avoidance associated with side effects.
Collapse
Affiliation(s)
- Melissa M. J. Chua
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Alfredo Morales Pinzon
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Clemens Neudorfer
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Patrick R. Ng
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Sarah E. Blitz
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Garance M. Meyer
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Konstantin Butenko
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Till A. Dembek
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | | | | | - Michael Schwartz
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | | | - Nir Lipsman
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Andres Lozano
- University Health Network, Toronto, ON, Canada
- Krembil Research Institute, Toronto, ON, Canada
| | - Fardad Behzadi
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Nathan J. McDannold
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - John D. Rolston
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Charles R. G. Guttmann
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael D. Fox
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Rees Cosgrove
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Andreas Horn
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Institute for Network Stimulation, Department of Stereotactic and Functional Neurosurgery, University Hospital Cologne, Germany
| |
Collapse
|
2
|
Mehta K, Noecker AM, McIntyre CC. Comparison of structural connectomes for modeling deep brain stimulation pathway activation. Neuroimage 2025; 312:121211. [PMID: 40222498 PMCID: PMC12090019 DOI: 10.1016/j.neuroimage.2025.121211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 03/20/2025] [Accepted: 04/11/2025] [Indexed: 04/15/2025] Open
Abstract
INTRODUCTION Structural connectivity models of the brain are commonly employed to identify pathways that are directly activated during deep brain stimulation (DBS). However, various connectomes differ in the technical parameters, parcellation schemes, and methodological approaches used in their construction. OBJECTIVE The goal of this study was to compare and quantify variability in DBS pathway activation predictions when using different structural connectomes, while using identical electrode placements and stimulation volumes in the brain. APPROACH We analyzed four example structural connectomes: 1) Horn normative connectome (whole brain), 2) Yeh population-averaged tract-to-region pathway atlas (whole brain), 3) Petersen histology-based pathway atlas (subthalamic focused), and 4) Majtanik histology-based pathway atlas (anterior thalamus focused). DBS simulations were performed with each connectome, at four generalized locations for DBS electrode placement: 1) subthalamic nucleus, 2) anterior nucleus of thalamus, 3) ventral capsule, and 4) ventral intermediate nucleus of thalamus. RESULTS The choice of connectome used in the simulations resulted in notably distinct pathway activation predictions, and quantitative analysis indicated little congruence in the predicted patterns of brain network connectivity. The Horn and Yeh tractography-based connectomes provided estimates of DBS connectivity for any stimulation location in the brain, but have limitations in their anatomical validity. The Petersen and Majtanik histology-based connectomes are more anatomically realistic, but are only applicable to specific DBS targets because of their limited representation of pathways. SIGNIFICANCE The widely varying and inconsistent inferences of DBS network connectivity raises substantial concern regarding the general reliability of connectomic DBS studies, especially those that lack anatomical and/or electrophysiological validation in their analyses.
Collapse
Affiliation(s)
- Ketan Mehta
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Angela M Noecker
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Cameron C McIntyre
- Department of Biomedical Engineering, Duke University, Durham, NC, United States; Department of Neurosurgery, Duke University, Durham, NC, United States.
| |
Collapse
|
3
|
Remore LG, Gagliardi D, Borellini L, Fasano A, Faso VL, Cogiamanian F, Mailand E, Valcamonica G, Pirola E, Schisano L, Ampollini AM, Bertani GA, Fiore G, D'Ammando A, Tariciotti L, Marfia G, Navone SE, Barbieri S, Locatelli M. Exploring the relationship between dystonia and STN-DBS in Parkinson's disease: insights from a single-centre cohort. Neurol Sci 2025:10.1007/s10072-025-08230-7. [PMID: 40374982 DOI: 10.1007/s10072-025-08230-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 05/02/2025] [Indexed: 05/18/2025]
Abstract
INTRODUCTION Motor side effects may emerge after deep brain stimulation (DBS) of the subthalamic nucleus (STN) in Parkinson's disease (PD) patients. Out of 60 PD patients, we observed 16 patients displaying de novo dystonic symptoms after the implantation and 11 dystonic PD patients without benefit from the stimulation. We hypothesized that a common neural pathway may cause dystonia in both conditions. Our study aims to investigate the clinical and connectivity substrates of dystonia after STN-DBS. METHODS We divided our cohort into four groups: 16 patients displaying dystonia after STN-DBS, 11 patients with previously known dystonia not improving after surgery, 14 patients with dystonic symptoms relieved by the stimulation and 19 controls who never experienced dystonia. MANOVA was used to compare clinical data and the distance of the active contact center from the STN border among the four groups. Finally, we reconstructed the "sour" spots for dystonic symptoms and the associated structural and functional connectivity using a Parkinsonian normative connectome. RESULTS De novo dystonic and not-improved dystonic patients had a statistically significant longer PD duration before surgery (p = 0.001) and a greater active contact-STN distance (p < 0.001). Moreover, the "sour" spots were similar in both groups and structural and functional connectivity profiles were associated with brain areas correlated with dystonia pathophysiology (cerebellum, midbrain, parietal and temporal cortices). CONCLUSIONS We formulated a two-hit model for dystonia after STN-DBS: a clinical feature of Parkinsonian patients causes predisposing altered plasticity contributing to dystonic symptoms development when coupled with the stimulation of dystonia-related subcortical and cortical structures.
Collapse
Affiliation(s)
- Luigi G Remore
- Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.
| | - Delia Gagliardi
- Neuropathophysiology Unit, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Linda Borellini
- Neuropathophysiology Unit, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
- Division of Neurology, University of Toronto, Toronto, ON, Canada
- Krembil Brain Institute, Neuroscience, Toronto, ON, Canada
| | - Valeria Lo Faso
- Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Filippo Cogiamanian
- Neuropathophysiology Unit, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Enrico Mailand
- Neuropathophysiology Unit, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Gloria Valcamonica
- Neuropathophysiology Unit, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elena Pirola
- Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Luigi Schisano
- Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Antonella M Ampollini
- Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giulio A Bertani
- Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giorgio Fiore
- Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Antonio D'Ammando
- Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Leonardo Tariciotti
- Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Giovanni Marfia
- Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Laboratory of Experimental Neurosurgery and Cell Therapy, Unit of Neurosurgery, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefania Elena Navone
- Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Laboratory of Experimental Neurosurgery and Cell Therapy, Unit of Neurosurgery, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Sergio Barbieri
- Neuropathophysiology Unit, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marco Locatelli
- Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
4
|
Borgheai SB, Howell B, Isbaine F, Noecker AM, Opri E, Risk BB, McIntyre CC, Miocinovic S. Evaluation of DBS computational modeling methodologies using in-vivo electrophysiology in Parkinson's disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.05.05.25326314. [PMID: 40385436 PMCID: PMC12083610 DOI: 10.1101/2025.05.05.25326314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Deep brain stimulation (DBS) is an effective therapy for Parkinson's disease (PD) and other neuropsychiatric disorders, but its outcomes vary due to differences in patient selection, electrode placement, and programming. Optimizing DBS parameter settings requires postoperative adjustments through a trial-and-error process, which is complex and time-consuming. As such, researchers have been developing patient-specific computational models to help guide DBS programming. Despite growing interest in image-guided DBS technology, and recent adoption into clinical practice, the direct validation of the prediction accuracy remains limited. The objective of this study was to establish a comparative framework for validating the accuracy of various DBS computational modeling methodologies in predicting the activation of clinically relevant pathways using in vivo measurements from PD patients undergoing subthalamic (STN) DBS surgery. Our prior work assessed the accuracy of driving force (DF) models in native space by predicting activation of the corticospinal/bulbar tract (CSBT) and cortico-subthalamic hyperdirect pathway (HDP) using very short- (<2 ms) and short-latency (2-4 ms) cortical evoked potentials (cEPs). In this study, we extended our previous work by comparing the accuracy of five computational modeling variations for predicting the activation of HDP and CSBT based on three key factors: modeling method (DF vs. Volume of Tissue Activated [VTA]), imaging space (native vs. normative), and anatomical representation (pathway vs. volume). The model performances were quantified using the coefficient of determination (R2) between the cEP amplitudes and percent pathway activation or percent volume (structure) overlap. We compared model accuracy for 11 PD patients. The DF-Native-Pathway model was the most accurate method for quantitatively predicting experimental subcortical pathway activations. Additionally, our analysis showed that using normative brain space, instead of native (i.e., patient-specific) space, significantly diminished the accuracy of model predictions. Although the DF and VTA modeling methods exhibited comparable accuracy for the hyperdirect pathway, they diverged significantly in their predictions for the corticospinal tract. In conclusion, we believe that the choice of methodology should depend on the specific application and the required level of precision in clinical, surgical, or research settings. These findings offer valuable guidance for developing more accurate models, facilitating reliable DBS outcome predictions, and advancing both clinical practice and research.
Collapse
Affiliation(s)
| | - Bryan Howell
- Department of Biomedical Engineering, Duke University, Durham, NC
| | - Faical Isbaine
- Department of Neurosurgery, Emory University, Atlanta, GA
| | - Angela M Noecker
- Department of Biomedical Engineering, Duke University, Durham, NC
| | - Enrico Opri
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI
| | - Benjamin B Risk
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA
| | - Cameron C McIntyre
- Department of Biomedical Engineering, Duke University, Durham, NC
- Department of Neurosurgery, Duke University, Durham, NC
| | - Svjetlana Miocinovic
- Department of Neurology, Emory University, Atlanta, GA
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA
| |
Collapse
|
5
|
Cole ER, Miocinovic S. Are we ready for automated deep brain stimulation programming? Parkinsonism Relat Disord 2025; 134:107347. [PMID: 40016056 DOI: 10.1016/j.parkreldis.2025.107347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/17/2025] [Accepted: 02/20/2025] [Indexed: 03/01/2025]
Abstract
Deep brain stimulation (DBS) requires individualized programming of stimulation parameters, a time-consuming process performed manually by clinicians with specialized training. This process limits DBS accessibility, delays treatment, and constrains the potential for next-generation technology to improve patient outcomes. This review describes technological advancements that could automate DBS programming, focusing on Parkinson's disease biomarkers that can provide objective outcome measurement and algorithms that can quickly and automatically identify optimal DBS settings. We first define key performance criteria for an automated programming system, including effectiveness, efficiency, and ease of use, and then describe and evaluate each component with respect to these criteria. We conclude that the state of current research provides a strong foundation for developing automated DBS programming. The primary remaining obstacle lies in identifying and deploying the best combination of available techniques that will overcome the high entry barrier needed for wide-scale clinical deployment and adoption.
Collapse
Affiliation(s)
- Eric R Cole
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Svjetlana Miocinovic
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
6
|
Aibar-Durán JÁ, González N, Mirapeix RM, Sánchez-Mateos NM, Arsequell CR, Pichot MB, Belvís Nieto R, Fenoy GP, de Quintana Schmidt C, Hernandez FM, Fernández FS, Rodríguez Rodríguez R. Deep brain stimulation for chronic refractory cluster headache: A case series about long-term outcomes and connectivity analysis. Headache 2025; 65:473-483. [PMID: 39601224 DOI: 10.1111/head.14875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/27/2024] [Accepted: 08/31/2024] [Indexed: 11/29/2024]
Abstract
OBJECTIVE The aim of this study was to provide long-term clinical results-including "sweet spot" identification and connectomic imaging analysis-in a series of patients treated with deep brain stimulation for refractory chronic cluster headache. BACKGROUND Deep brain stimulation is a relatively recent indication for the treatment of refractory chronic cluster headache. This indication has generated substantial debate in recent years due to uncertainty surrounding the mechanism of action and the lack of long-term efficacy data. METHODS Case retrospective series of adult patients diagnosed with refractory chronic cluster headache and treated with deep brain stimulation. Demographic and clinical data were registered preoperatively and at 3, 6, 12, and 24 months. The primary endpoint was reduction in headache load, a composite score of frequency, severity, and duration of each attack. Imaging analyses (sweet spot and connectomic analyses) were performed to identify the brain regions most closely correlated with the reduction in headache load and to identify the structural networks involved. Treatment response was categorized according to the reduction in headache load, as follows: poor (<30% reduction), partial (30-50%), or high (>50%). RESULTS A total of 14 patients were included, with a mean (standard deviation [SD]) age of 42.4 (10.7) years and mean (SD) headache duration of 8.0 (5.8) years. Headache load scores decreased significantly from baseline to Month 24: mean (SD) 424.2 (325.9) versus 135.9 (155.7) (p = 0.001). In most patients (eight patients [58.0%]), headache load scores decreased by 50% after treatment. The other six patients showed either a partial (three [21.0%]) or poor (three [21.0%]) response. The optimized sweet spot was the lateral ventral tegmental area ((Montreal Neurological Institute) MNI coordinates of the center of mass: x = ± 9.0 mm, y = -10.6 mm, z = -3.5 mm). The connectomic analysis pointed to the probable implication of corticorubral tracts. CONCLUSION These findings suggest that a substantial proportion of patients with refractory chronic cluster headache obtain significant long-term clinical benefits from deep brain stimulation. Good responders were characterized by a robust improvement in headache load within 3-6 months after surgery. The lateral ventral tegmental area was identified as the best target for this indication, with the likely participation of corticorubral tracts.
Collapse
Affiliation(s)
- Juan Ángel Aibar-Durán
- Neurosurgery Department, Functional Neurosurgery Section, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Headache and Neuralgia Committee, Hospital de la Santa Creu i Sant Pau, Hospital del Marc-Parc Salut, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Institut Recerca Sant Pau (IR Sant Pau), Barcelona, Spain
| | - Nerea González
- Image Engineering, Universitat Pompeu-Fabra (UPF), Barcelona, Spain
| | - Rosa M Mirapeix
- Human Anatomy Unit of the Universitat Autònoma de Ba rcelona (UAB), Barcelona, Spain
| | - Noemi Morollón Sánchez-Mateos
- Headache and Neuralgia Committee, Hospital de la Santa Creu i Sant Pau, Hospital del Marc-Parc Salut, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Institut Recerca Sant Pau (IR Sant Pau), Barcelona, Spain
- Neurology Department, Headache-Neuralgia Section, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Clara Roig Arsequell
- Neurosurgery Department, Functional Neurosurgery Section, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Maria Borrell Pichot
- Neurology Department, Headache-Neuralgia Section, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Robert Belvís Nieto
- Headache and Neuralgia Committee, Hospital de la Santa Creu i Sant Pau, Hospital del Marc-Parc Salut, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Institut Recerca Sant Pau (IR Sant Pau), Barcelona, Spain
- Neurology Department, Headache-Neuralgia Section, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | | | - Cristian de Quintana Schmidt
- Neurosurgery Department, Functional Neurosurgery Section, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Institut Recerca Sant Pau (IR Sant Pau), Barcelona, Spain
| | - Fernando Muñoz Hernandez
- Neurosurgery Department, Functional Neurosurgery Section, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Institut Recerca Sant Pau (IR Sant Pau), Barcelona, Spain
| | | | - Rodrigo Rodríguez Rodríguez
- Neurosurgery Department, Functional Neurosurgery Section, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Headache and Neuralgia Committee, Hospital de la Santa Creu i Sant Pau, Hospital del Marc-Parc Salut, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Institut Recerca Sant Pau (IR Sant Pau), Barcelona, Spain
| |
Collapse
|
7
|
Santyr B, Boutet A, Ajala A, Germann J, Qiu J, Fasano A, Lozano AM, Kucharczyk W. Emerging Techniques for the Personalization of Deep Brain Stimulation Programming. Can J Neurol Sci 2025:1-13. [PMID: 39963066 DOI: 10.1017/cjn.2025.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025]
Abstract
The success of deep brain stimulation (DBS) relies on applying carefully titrated therapeutic stimulation at specific targets. Once implanted, the electrical stimulation parameters at each electrode contact can be modified. Iteratively adjusting the stimulation parameters enables testing for the optimal stimulation settings. Due to the large parameter space, the currently employed empirical testing of individual parameters based on acute clinical response is not sustainable. Within the constraints of short clinical visits, optimization is particularly challenging when clinical features lack immediate feedback, as seen in DBS for dystonia and depression and with the cognitive and axial side effects of DBS for Parkinson's disease. A personalized approach to stimulation parameter selection is desirable as the increasing complexity of modern DBS devices also expands the number of available parameters. This review describes three emerging imaging and electrophysiological methods of personalizing DBS programming. Normative connectome-base stimulation utilizes large datasets of normal or disease-matched connectivity imaging. The stimulation location for an individual patient can then be varied to engage regions associated with optimal connectivity. Electrophysiology-guided open- and closed-loop stimulation capitalizes on the electrophysiological recording capabilities of modern implanted devices to individualize stimulation parameters based on biomarkers of success or symptom onset. Finally, individual functional MRI (fMRI)-based approaches use fMRI during active stimulation to identify parameters resulting in characteristic patterns of functional engagement associated with long-term treatment response. Each method provides different but complementary information, and maximizing treatment efficacy likely requires a combined approach.
Collapse
Affiliation(s)
- Brendan Santyr
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Department of Clinical Neurological Sciences, Western University, London, ON, Canada
| | - Alexandre Boutet
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Joint Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | | | - Jürgen Germann
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Krembil Brain Institute, Toronto, ON, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, Canada
| | | | - Alfonso Fasano
- Krembil Brain Institute, Toronto, ON, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, Canada
- Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Centre, Toronto Western Hospital, UHN, Toronto, ON, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Krembil Brain Institute, Toronto, ON, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, Canada
| | - Walter Kucharczyk
- Joint Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
8
|
Li WY, Qu WR, Li Y, Wang SY, Liu DM, Deng LX, Wang Y. DBS in the restoration of motor functional recovery following spinal cord injury. Front Neurol 2024; 15:1442281. [PMID: 39697443 PMCID: PMC11652279 DOI: 10.3389/fneur.2024.1442281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/21/2024] [Indexed: 12/20/2024] Open
Abstract
The landscape of therapeutic deep brain stimulation (DBS) for locomotor function recovery is rapidly evolving. This review provides an overview of electrical neuromodulation effects on spinal cord injury (SCI), focusing on DBS for motor functional recovery in human and animal models. We highlight research providing insight into underlying cellular and molecular mechanisms. A literature review via Web of Science and PubMed databases from 1990 to May 29, 2024, reveals a growing body of evidence for therapeutic DBS in SCI recovery. Advances in techniques like optogenetics and whole-brain tractogram have helped elucidate DBS mechanisms. Neuronal targets sites for SCI functional recovery include the mesencephalic locomotor region (MLR), cuneiform nucleus (CNF), and nucleus raphe magnus (NRG), with pedunculopontine nucleus (PPN), periaqueductal gray (PAG), and nucleus ventroposterolateral thalami (VPL) for post-injury functional recovery treatment. Radiologically guided DBS optimization and combination therapy with classical rehabilitation have become an effective therapeutic method, though ongoing interventional trials are needed to enhance understanding and validate DBS efficacy in SCI. On the pre-clinical front, standardization of pre-clinical approaches are essential to enhance the quality of evidence on DBS safety and efficacy. Mapping brain targets and optimizing DBS protocols, aided by combined DBS and medical imaging, are critical endeavors. Overall, DBS holds promise for neurological and functional recovery after SCI, akin to other electrical stimulation approaches.
Collapse
Affiliation(s)
- Wen-yuan Li
- Mudanjiang North Medicine Resource Development and Application Collaborative Innovation Center, Mudanjiang, China
- Institute of Neural Tissue Engineering, Mudanjiang University of Medicine, Mudanjiang, China
| | - Wen-rui Qu
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Yi Li
- Mudanjiang North Medicine Resource Development and Application Collaborative Innovation Center, Mudanjiang, China
- Institute of Neural Tissue Engineering, Mudanjiang University of Medicine, Mudanjiang, China
| | - Shu-ying Wang
- Mudanjiang North Medicine Resource Development and Application Collaborative Innovation Center, Mudanjiang, China
- Institute of Neural Tissue Engineering, Mudanjiang University of Medicine, Mudanjiang, China
| | - Dong-ming Liu
- Department of Neurology, Mudanjiang First People’s Hospital, Mudanjiang, China
| | - Ling-xiao Deng
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Ying Wang
- Mudanjiang North Medicine Resource Development and Application Collaborative Innovation Center, Mudanjiang, China
- Institute of Neural Tissue Engineering, Mudanjiang University of Medicine, Mudanjiang, China
| |
Collapse
|
9
|
Rodriguez-Rojas R, Máñez-Miró JU, Pineda-Pardo JA, Del Álamo M, Martínez-Fernández R, Obeso JA. Functional anatomy of the subthalamic nucleus and the pathophysiology of cardinal features of Parkinson's disease unraveled by focused ultrasound ablation. SCIENCE ADVANCES 2024; 10:eadr9891. [PMID: 39576853 PMCID: PMC11584003 DOI: 10.1126/sciadv.adr9891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/23/2024] [Indexed: 11/24/2024]
Abstract
The subthalamic nucleus (STN) modulates basal ganglia output and plays a fundamental role in the pathophysiology of Parkinson's disease (PD). Blockade/ablation of the STN improves motor signs in PD. We assessed the topography of focused ultrasound subthalamotomy (n = 39) by voxel-based lesion-symptom mapping to identify statistically validated brain voxels with the optimal effect against each cardinal feature and their respective cortical connectivity patterns by diffusion-weighted tractography. Bradykinesia and rigidity amelioration were associated with ablation of the rostral motor STN subregion connected to the supplementary motor and premotor cortices, whereas antitremor effect was explained by lesioning the posterolateral STN projection to the primary motor cortex. These findings were corroborated prospectively in another PD cohort (n = 12). This work concurs with recent deep brain stimulation findings that suggest different corticosubthalamic circuits underlying each PD cardinal feature. Our results provide sound evidence in humans of segregated anatomy of subthalamic-cortical connections and their distinct role in PD pathophysiology and normal motor control.
Collapse
Affiliation(s)
- Rafael Rodriguez-Rojas
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Facultad de Tecnología y Ciencia, Universidad Camilo José Cela, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Madrid, Spain
- CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
| | - Jorge U Máñez-Miró
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- PhD Program in Neuroscience, Autónoma de Madrid University-Cajal Institute, Madrid, Spain
| | - José A Pineda-Pardo
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Madrid, Spain
- CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Del Álamo
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
| | - Raúl Martínez-Fernández
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Madrid, Spain
- CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
| | - José A Obeso
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Madrid, Spain
- CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
- Medical School, CEU-San Pablo University, Madrid, Spain
| |
Collapse
|
10
|
Hacker ML, Isaacs DA, Rajamani N, Pazira K, Abdou E, Sharp S, Davis TL, Hedera P, Phibbs FT, Charles D, Horn A. Evaluating a motor progression connectivity model across Parkinson's disease stages. J Neurol 2024; 271:7309-7315. [PMID: 39373780 PMCID: PMC11561123 DOI: 10.1007/s00415-024-12703-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND Stimulation of a specific site in the dorsolateral subthalamic nucleus (STN) was recently associated with slower motor progression in Parkinson's Disease (PD), based on the deep brain stimulation (DBS) in early-stage PD pilot clinical trial. Here, subject-level visualizations are presented of this early-stage PD dataset to further describe the relationship between active contacts and motor progression. This study also evaluates whether stimulation of the sweet spot and connectivity model associated with slower motor progression is also associated with improvements in long-term motor outcomes in patients with advanced-stage PD. METHODS Active contacts of the early-stage PD cohort (N = 14) were analyzed alongside the degree of two-year motor progression. Sweet spot and connectivity models derived from the early-stage PD cohort were then used to determine how well they can estimate the variance in long-term motor outcomes in an independent STN-DBS cohort of advanced-stage PD patients (N = 29). RESULTS In early-stage PD, proximity of stimulation to the dorsolateral STN was associated with slower motor progression. In advanced-stage PD, stimulation proximity to the early PD connectivity model and sweet spot were associated with better long-term motor outcomes (R = 0.60, P < 0.001; R = 0.37, P = 0.046, respectively). CONCLUSIONS Results suggest stimulation of a specific site in the dorsolateral STN is associated with both slower motor progression and long-term motor improvements in PD.
Collapse
Affiliation(s)
- Mallory L Hacker
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - David A Isaacs
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nanditha Rajamani
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité, Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt- Universität Zu Berlin, Berlin, Germany
- Center for Brain Circuit Therapeutics Department of Neurology Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kian Pazira
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eli Abdou
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sheffield Sharp
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Thomas L Davis
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Peter Hedera
- Department of Neurology, University of Louisville, Louisville, KY, USA
| | - Fenna T Phibbs
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - David Charles
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Andreas Horn
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité, Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt- Universität Zu Berlin, Berlin, Germany
- Center for Brain Circuit Therapeutics Department of Neurology Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery and Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
11
|
Meshkat S, Kwan ATH, Le GH, Wong S, Rhee TG, Ho R, Teopiz KM, Cao B, McIntyre RS. The role of KCNQ channel activators in management of major depressive disorder. J Affect Disord 2024; 359:364-372. [PMID: 38772507 DOI: 10.1016/j.jad.2024.05.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/12/2024] [Accepted: 05/15/2024] [Indexed: 05/23/2024]
Abstract
Depression, a complex disorder with significant treatment challenges, necessitates innovative therapeutic approaches to address its multifaceted nature and enhance treatment outcomes. The modulation of KCNQ potassium (K+) channels, pivotal regulators of neuronal excitability and neurotransmitter release, is a promising innovative therapeutic target in psychiatry. Widely expressed across various tissues, including the nervous and cardiovascular systems, KCNQ channels play a crucial role in modulating membrane potential and regulating neuronal activity. Recent preclinical evidence suggests that KCNQ channels, particularly KCNQ3, contribute to the regulation of neuronal excitability within the reward circuitry, offering a potential target for alleviating depressive symptoms, notably anhedonia. Studies using animal models demonstrate that interventions targeting KCNQ channels can restore dopaminergic firing balance and mitigate depressive symptoms. Human studies investigating the effects of KCNQ channel activators, such as ezogabine, have shown promising results in alleviating depressive symptoms and anhedonia. The aforementioned observations underscore the therapeutic potential of KCNQ channel modulation in depression management and highlight the need and justification for phase 2 and phase 3 dose-finding studies as well as studies prespecifying symptomatic targets in depression including anhedonia.
Collapse
Affiliation(s)
- Shakila Meshkat
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Canada
| | - Angela T H Kwan
- Brain and Cognition Discovery Foundation, Toronto, Ontario, Canada; Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| | - Gia Han Le
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Canada; Brain and Cognition Discovery Foundation, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada.
| | - Sabrina Wong
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Canada; Brain and Cognition Discovery Foundation, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.
| | - Taeho Greg Rhee
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA; Department of Public Health Sciences, Farmington, CT, USA.
| | - Roger Ho
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore.
| | - Kayla M Teopiz
- Brain and Cognition Discovery Foundation, Toronto, Ontario, Canada.
| | - Bing Cao
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Ministry of Education, Southwest University, Chongqing 400715, PR China.
| | - Roger S McIntyre
- Brain and Cognition Discovery Foundation, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
12
|
Ryan MV, Satzer D, Ojemann SG, Kramer DR, Thompson JA. Neurophysiologic Characteristics of the Anterior Nucleus of the Thalamus during Deep Brain Stimulation Surgery for Epilepsy. Stereotact Funct Neurosurg 2024; 102:293-307. [PMID: 39008968 DOI: 10.1159/000539398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/13/2024] [Indexed: 07/17/2024]
Abstract
INTRODUCTION Anterior nucleus of the thalamus (ANT) deep brain stimulation (DBS) is an increasingly promising treatment option for refractory epilepsy. Optimal therapeutic benefit has been associated with stimulation at the junction of ANT and the mammillothalamic tract (mtt), but electrophysiologic markers of this target are lacking. The present study examined microelectrode recordings (MER) during DBS to identify unique electrophysiologic characteristics of ANT and the ANT-mtt junction. METHODS Ten patients with medically refractory epilepsy underwent MER during ANT-DBS implantation under general anesthesia. MER locations were determined based on coregistration of preoperative MRI, postoperative CT, and a stereotactic atlas of the thalamus (Morel atlas). Several neurophysiological parameters including single unit spiking rate, bursting properties, theta and alpha power and cerebrospinal fluid (CSF)-normalized root mean square (NRMS) of multiunit activity were characterized at recording depths and compared to anatomic boundaries. RESULTS From sixteen hemispheres, 485 recordings locations were collected from a mean of 30.3 (15.64 ± 5.0 mm) recording spans. Three-hundred and ninety-four of these recording locations were utilized further for analysis of spiking and bursting rates, after excluding recordings that were more than 8 mm above the putative ventral ANT border. The ANT region exhibited discernible features including: (1) mean spiking rate (7.52 Hz ± 6.9 Hz; one-way analysis of variance test, p = 0.014 when compared to mediodorsal nucleus of the thalamus [MD], mtt, and CSF), (2) the presence of bursting activity with 40% of ANT locations (N = 59) exhibited bursting versus 24% the mtt (χ2; p < 0.001), and 32% in the MD (p = 0.38), (3) CSF-NRMS, a proxy for neuronal density, exhibited well demarcated changes near the entry and exit of ANT (linear regression, R = -0.33, p < 0.001). Finally, in the ANT, both theta (4-8 Hz) and alpha band power (9-12 Hz) were negatively correlated with distance to the ventral ANT border (linear regression, p < 0.001 for both). The proportion of recordings with spiking and bursting activity was consistently highest 0-2 mm above the ventral ANT border with the mtt. CONCLUSION We observed several electrophysiological markers demarcating the ANT superior and inferior borders including multiple single cell and local field potential features. A local maximum in neural activity just above the ANT-mtt junction was consistent with the previously described optimal target for seizure reduction. These features may be useful for successful targeting of ANT-DBS for epilepsy.
Collapse
Affiliation(s)
- Megan V Ryan
- Rocky Vista University College of Osteopathic Medicine, Greenwood Village, Colorado, USA
| | - David Satzer
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Steven G Ojemann
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Daniel R Kramer
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - John A Thompson
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
13
|
Peeters J, Van Bogaert T, Boogers A, Gransier R, Wouters J, De Vloo P, Vandenberghe W, Barbe MT, Visser-Vandewalle V, Nuttin B, Dembek TA, Mc Laughlin M. Electrophysiological sweet spot mapping in deep brain stimulation for Parkinson's disease patients. Brain Stimul 2024; 17:794-801. [PMID: 38821395 DOI: 10.1016/j.brs.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/16/2024] [Accepted: 05/26/2024] [Indexed: 06/02/2024] Open
Abstract
BACKGROUND Subthalamic deep brain stimulation (STN-DBS) is a well-established therapy to treat Parkinson's disease (PD). However, the STN-DBS sub-target remains debated. Recently, a white matter tract termed the hyperdirect pathway (HDP), directly connecting the motor cortex to STN, has gained interest as HDP stimulation is hypothesized to drive DBS therapeutic effects. Previously, we have investigated EEG-based evoked potentials (EPs) to better understand the neuroanatomical origins of the DBS clinical effect. We found a 3-ms peak (P3) relating to clinical benefit, and a 10-ms peak (P10) suggesting nigral side effects. Here, we aimed to investigate the neuroanatomical origins of DBS EPs using probabilistic mapping. METHODS EPs were recorded using EEG whilst low-frequency stimulation was delivered at all DBS-contacts individually. Next, EPs were mapped onto the patients' individual space and then transformed to MNI standard space. Using voxel-wise and fiber-wise probabilistic mapping, we determined hotspots/hottracts and coldspots/coldtracts for P3 and P10. Topography analysis was also performed to determine the spatial distribution of the DBS EPs. RESULTS In all 13 patients (18 hemispheres), voxel- and fiber-wise probabilistic mapping resulted in a P3-hotspot/hottract centered on the posterodorsomedial STN border indicative of HDP stimulation, while the P10-hotspot/hottract covered large parts of the substantia nigra. CONCLUSION This study investigated EP-based probabilistic mapping in PD patients during STN-DBS, revealing a P3-hotspot/hottract in line with HDP stimulation and P10-hotspot/hottract related to nigral stimulation. Results from this study provide key evidence for an electrophysiological measure of HDP and nigral stimulation.
Collapse
Affiliation(s)
- Jana Peeters
- Experimental Oto-rhino-laryngology, Department of Neurosciences, KU Leuven, Belgium
| | - Tine Van Bogaert
- Experimental Oto-rhino-laryngology, Department of Neurosciences, KU Leuven, Belgium
| | - Alexandra Boogers
- Experimental Oto-rhino-laryngology, Department of Neurosciences, KU Leuven, Belgium; Department of Neurology, UZ Leuven, Belgium
| | - Robin Gransier
- Experimental Oto-rhino-laryngology, Department of Neurosciences, KU Leuven, Belgium
| | - Jan Wouters
- Experimental Oto-rhino-laryngology, Department of Neurosciences, KU Leuven, Belgium
| | - Philippe De Vloo
- Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, KU Leuven, Belgium; Department of Neurosurgery, UZ Leuven, Belgium
| | - Wim Vandenberghe
- Department of Neurology, UZ Leuven, Belgium; Laboratory for Parkinson Research, Department of Neurosciences, KU Leuven, Belgium
| | - Michael T Barbe
- University of Cologne, Faculty of Medicine, Department of Neurology, Cologne, Germany
| | - Veerle Visser-Vandewalle
- University of Cologne, Faculty of Medicine, Department of Stereotactic & Functional Neurosurgery, Cologne, Germany
| | - Bart Nuttin
- Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, KU Leuven, Belgium; Department of Neurosurgery, UZ Leuven, Belgium
| | - Till A Dembek
- University of Cologne, Faculty of Medicine, Department of Neurology, Cologne, Germany
| | - Myles Mc Laughlin
- Experimental Oto-rhino-laryngology, Department of Neurosciences, KU Leuven, Belgium.
| |
Collapse
|
14
|
Borges C Diniz J, Alfonso Rodriguez Elvir F, Silva Santana L, Michaela de Oliveira H, Laura Lima Larcipretti A, Muniz Vieira de Melo T, Carneiro Barroso D, Cotrim Gomes F, Dias Polverini A, Milanese V. Asleep versus awake GPi DBS surgery for Parkinson's disease: A systematic review and meta-analysis. J Clin Neurosci 2024; 123:196-202. [PMID: 38604023 DOI: 10.1016/j.jocn.2024.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND Patients with Parkinson's Disease (PD) who receive either asleep image-guided subthalamic nucleus deep brain stimulation (DBS) or the traditional awake technique have comparable motor outcomes. However, there are fewer studies regarding which technique should be chosen for globus pallidus internus (GPi) DBS. This systematic review and meta-analysis aims to compare the accuracy of lead placement and motor outcomes of asleep versus awake GPi DBS PD population. METHODS We systematically searched PubMed, Embase, and Cochrane for studies comparing asleep vs. awake GPi DBS lead placement in patients with PD. Outcomes were spatial accuracy of lead placement, measured by radial error between intended and actual location, motor improvement measured using (UPDRS III), and postoperative stimulation parameters. Statistical analysis was performed with Review Manager 5.1.7. and OpenMeta [Analyst]. RESULTS Three studies met inclusion criteria with a total of 247 patients. Asleep DBS was used to treat 192 (77.7 %) patients. Follow-up ranged from 6 to 48 months. Radial error was not statistically different between groups (MD -0.49 mm; 95 % CI -1.0 to 0.02; I2 = 86 %; p = 0.06), with a tendency for higher target accuracy with the asleep technique. There was no significant difference between groups in change on motor function, as measured by UPDRS III, from pre- to postoperative (MD 8.30 %; 95 % CI -4.78 to 21.37; I2 = 67 %, p = 0.2). There was a significant difference in postoperative stimulation voltage, with the asleep group requiring less voltage than the awake group (MD -0.27 V; 95 % CI -0.46 to - 0.08; I2 = 0 %; p = 0.006). CONCLUSION Our meta-analysis indicates that asleep image-guided GPi DBS presents a statistical tendency suggesting superior target accuracy when compared with the awake standard technique. Differences in change in motor function were not statistically significant between groups.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Allan Dias Polverini
- Neurosurgical Oncology Division, Hospital de Amor, Fundação Pio XII, Barretos, Sao Paulo, Brazil.
| | - Vanessa Milanese
- Neurosurgical Division, A Beneficência Portuguesa de São Paulo, São Paulo, Brazil; Department of Neurosurgery, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
15
|
Patrick EE, Fleeting CR, Patel DR, Casauay JT, Patel A, Shepherd H, Wong JK. Modeling the volume of tissue activated in deep brain stimulation and its clinical influence: a review. Front Hum Neurosci 2024; 18:1333183. [PMID: 38660012 PMCID: PMC11039793 DOI: 10.3389/fnhum.2024.1333183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Deep brain stimulation (DBS) is a neuromodulatory therapy that has been FDA approved for the treatment of various disorders, including but not limited to, movement disorders (e.g., Parkinson's disease and essential tremor), epilepsy, and obsessive-compulsive disorder. Computational methods for estimating the volume of tissue activated (VTA), coupled with brain imaging techniques, form the basis of models that are being generated from retrospective clinical studies for predicting DBS patient outcomes. For instance, VTA models are used to generate target-and network-based probabilistic stimulation maps that play a crucial role in predicting DBS treatment outcomes. This review defines the methods for calculation of tissue activation (or modulation) including ones that use heuristic and clinically derived estimates and more computationally involved ones that rely on finite-element methods and biophysical axon models. We define model parameters and provide a comparison of commercial, open-source, and academic simulation platforms available for integrated neuroimaging and neural activation prediction. In addition, we review clinical studies that use these modeling methods as a function of disease. By describing the tissue-activation modeling methods and highlighting their application in clinical studies, we provide the neural engineering and clinical neuromodulation communities with perspectives that may influence the adoption of modeling methods for future DBS studies.
Collapse
Affiliation(s)
- Erin E. Patrick
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, United States
| | - Chance R. Fleeting
- College of Medicine, University of Florida, Gainesville, FL, United States
| | - Drashti R. Patel
- College of Medicine, University of Florida, Gainesville, FL, United States
| | - Jed T. Casauay
- College of Medicine, University of Florida, Gainesville, FL, United States
| | - Aashay Patel
- College of Medicine, University of Florida, Gainesville, FL, United States
| | - Hunter Shepherd
- College of Medicine, University of Florida, Gainesville, FL, United States
| | - Joshua K. Wong
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| |
Collapse
|
16
|
Cavallieri F, Mulroy E, Moro E. The history of deep brain stimulation. Parkinsonism Relat Disord 2024; 121:105980. [PMID: 38161106 DOI: 10.1016/j.parkreldis.2023.105980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
Deep brain stimulation (DBS) surgery is an established and effective treatment for several movement disorders (tremor, Parkinson's disease, and dystonia), and is under investigation in numerous other neurological and psychiatric disorders. However, the origins and development of this neurofunctional technique are not always well understood and recognized. In this mini-review, we review the history of DBS, highlighting important milestones and the most remarkable protagonists (neurosurgeons, neurologists, and neurophysiologists) who pioneered and fostered this therapy throughout the 20th and early 21st century. Alongside DBS historical markers, we also briefly discuss newer developments in the field, and the future challenges which accompany such progress.
Collapse
Affiliation(s)
- Francesco Cavallieri
- Neurology Unit, Neuromotor & Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Eoin Mulroy
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Elena Moro
- Grenoble Alpes University, Division of Neurology, Centre Hospitalier Universitaire de Grenoble, Grenoble Institute of Neuroscience, INSERM U1216, Grenoble, France.
| |
Collapse
|
17
|
Pereira FES, Jagatheesaperumal SK, Benjamin SR, Filho PCDN, Duarte FT, de Albuquerque VHC. Advancements in non-invasive microwave brain stimulation: A comprehensive survey. Phys Life Rev 2024; 48:132-161. [PMID: 38219370 DOI: 10.1016/j.plrev.2024.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 01/07/2024] [Indexed: 01/16/2024]
Abstract
This survey provides a comprehensive insight into the world of non-invasive brain stimulation and focuses on the evolving landscape of deep brain stimulation through microwave research. Non-invasive brain stimulation techniques provide new prospects for comprehending and treating neurological disorders. We investigate the methods shaping the future of deep brain stimulation, emphasizing the role of microwave technology in this transformative journey. Specifically, we explore antenna structures and optimization strategies to enhance the efficiency of high-frequency microwave stimulation. These advancements can potentially revolutionize the field by providing a safer and more precise means of modulating neural activity. Furthermore, we address the challenges that researchers currently face in the realm of microwave brain stimulation. From safety concerns to methodological intricacies, this survey outlines the barriers that must be overcome to fully unlock the potential of this technology. This survey serves as a roadmap for advancing research in microwave brain stimulation, pointing out potential directions and innovations that promise to reshape the field.
Collapse
Affiliation(s)
| | - Senthil Kumar Jagatheesaperumal
- Department of Teleinformatics Engineering, Federal University of Ceará, Fortaleza, 60455-970, Ceará, Brazil; Department of Electronics and Communication Engineering, Mepco Schlenk Engineering College, Sivakasi, 626005, Tamilnadu, India
| | - Stephen Rathinaraj Benjamin
- Department of Pharmacology and Pharmacy, Laboratory of Behavioral Neuroscience, Faculty of Medicine, Federal University of Ceará, Fortaleza, 60430-160, Ceará, Brazil
| | | | | | | |
Collapse
|
18
|
Torres V, Del Giudice K, Roldán P, Rumià J, Muñoz E, Cámara A, Compta Y, Sánchez-Gómez A, Valldeoriola F. Image-guided programming deep brain stimulation improves clinical outcomes in patients with Parkinson's disease. NPJ Parkinsons Dis 2024; 10:29. [PMID: 38280901 PMCID: PMC10821897 DOI: 10.1038/s41531-024-00639-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/09/2024] [Indexed: 01/29/2024] Open
Abstract
Deep brain stimulation (DBS) is an effective treatment for patients with Parkinson's disease (PD). However, some patients may not respond optimally to clinical programming adjustments. Advances in DBS technology have led to more complex and time-consuming programming. Image-guided programming (IGP) could optimize and improve programming leading to better clinical outcomes in patients for whom DBS programming is not ideal due to sub-optimal response. We conducted a prospective single-center study including 31 PD patients with subthalamic nucleus (STN) DBS and suboptimal responses refractory to clinical programming. Programming settings were adjusted according to the volumetric reconstruction of the stimulation field using commercial postoperative imaging software. Clinical outcomes were assessed at baseline and at 3-month follow-up after IGP, using motor and quality of life (QoL) scales. Additionally, between these two assessment points, follow-up visits for fine-tuning amplitude intensity and medication were conducted at weeks 2, 4, 6, and 9. After IGP, twenty-six patients (83.9%) experienced motor and QoL improvements, with 25.8% feeling much better and 38.7% feeling moderately better according to the patient global impression scale. Five patients (16.1%) had no clinical or QoL changes after IGP. The MDS-UPDRS III motor scale showed a 21.9% improvement and the DBS-IS global score improved by 41.5%. IGP optimizes STN-DBS therapy for PD patients who are experiencing suboptimal clinical outcomes. These findings support using IGP as a standard tool in clinical practice, which could save programming time and improve patients' QoL.
Collapse
Affiliation(s)
- Viviana Torres
- Parkinson's Disease and Movement Disorders Unit, Neurology Service, Institut de Neurociencies, Hospital Clínic of Barcelona, Barcelona, Catalonia, Spain
| | - Kirsys Del Giudice
- Parkinson's Disease and Movement Disorders Unit, Neurology Service, Institut de Neurociencies, Hospital Clínic of Barcelona, Barcelona, Catalonia, Spain
| | - Pedro Roldán
- Neurosurgery Service, Institut de Neurociencies, Hospital Clínic of Barcelona, Barcelona, Catalonia, Spain
| | - Jordi Rumià
- Neurosurgery Service, Institut de Neurociencies, Hospital Clínic of Barcelona, Barcelona, Catalonia, Spain
| | - Esteban Muñoz
- Parkinson's Disease and Movement Disorders Unit, Neurology Service, Institut de Neurociencies, Hospital Clínic of Barcelona, Barcelona, Catalonia, Spain
| | - Ana Cámara
- Parkinson's Disease and Movement Disorders Unit, Neurology Service, Institut de Neurociencies, Hospital Clínic of Barcelona, Barcelona, Catalonia, Spain
| | - Yaroslau Compta
- Parkinson's Disease and Movement Disorders Unit, Neurology Service, Institut de Neurociencies, Hospital Clínic of Barcelona, Barcelona, Catalonia, Spain
| | - Almudena Sánchez-Gómez
- Parkinson's Disease and Movement Disorders Unit, Neurology Service, Institut de Neurociencies, Hospital Clínic of Barcelona, Barcelona, Catalonia, Spain.
| | - Francesc Valldeoriola
- Parkinson's Disease and Movement Disorders Unit, Neurology Service, Institut de Neurociencies, Hospital Clínic of Barcelona, Barcelona, Catalonia, Spain.
| |
Collapse
|
19
|
Brandt GA, Stopic V, van der Linden C, Strelow JN, Petry-Schmelzer JN, Baldermann JC, Visser-Vandewalle V, Fink GR, Barbe MT, Dembek TA. A Retrospective Comparison of Multiple Approaches to Anatomically Informed Contact Selection in Subthalamic Deep Brain Stimulation for Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2024; 14:575-587. [PMID: 38427498 PMCID: PMC11091589 DOI: 10.3233/jpd-230200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 03/03/2024]
Abstract
Background Conventional deep brain stimulation (DBS) programming via trial-and-error warrants improvement to ensure swift achievement of optimal outcomes. The definition of a sweet spot for subthalamic DBS in Parkinson's disease (PD-STN-DBS) may offer such advancement. Objective This investigation examines the association of long-term motor outcomes with contact selection during monopolar review and different strategies for anatomically informed contact selection in a retrospective real-life cohort of PD-STN-DBS. Methods We compared contact selection based on a monopolar review (MPR) to multiple anatomically informed contact selection strategies in a cohort of 28 PD patients with STN-DBS. We employed a commercial software package for contact selection based on visual assessment of individual anatomy following two predefined strategies and two algorithmic approaches with automatic targeting of either the sensorimotor STN or our previously published sweet spot. Similarity indices between chronic stimulation and contact selection strategies were correlated to motor outcomes at 12 months follow-up. Results Lateralized motor outcomes of chronic DBS were correlated to the similarity between chronic stimulation and visual contact selection targeting the dorsal part of the posterior STN (rho = 0.36, p = 0.007). Similar relationships could not be established for MPR or any of the other investigated strategies. Conclusions Our data demonstrates that a visual contact selection following a predefined strategy can be linked to beneficial long-term motor outcomes in PD-STN-DBS. Since similar correlations could not be observed for the other approaches to anatomically informed contact selection, we conclude that clear definitions and prospective validation of any approach to imaging-based DBS-programming is warranted.
Collapse
Affiliation(s)
- Gregor A. Brandt
- Faculty of Medicine, University of Cologne, Cologne, Germany
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Vasilija Stopic
- Faculty of Medicine, University of Cologne, Cologne, Germany
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Christina van der Linden
- Faculty of Medicine, University of Cologne, Cologne, Germany
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Joshua N. Strelow
- Faculty of Medicine, University of Cologne, Cologne, Germany
- Department of Neurology, University Hospital Cologne, Cologne, Germany
- Department of Stereotactic and Functional Neurosurgery, University Hospital Cologne, Cologne, Germany
| | - Jan N. Petry-Schmelzer
- Faculty of Medicine, University of Cologne, Cologne, Germany
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Juan Carlos Baldermann
- Faculty of Medicine, University of Cologne, Cologne, Germany
- Department of Neurology, University Hospital Cologne, Cologne, Germany
- Department of Psychiatry and Psychotherapy, University Hospital Cologne, Cologne, Germany
| | - Veerle Visser-Vandewalle
- Faculty of Medicine, University of Cologne, Cologne, Germany
- Department of Stereotactic and Functional Neurosurgery, University Hospital Cologne, Cologne, Germany
| | - Gereon R. Fink
- Faculty of Medicine, University of Cologne, Cologne, Germany
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Michael T. Barbe
- Faculty of Medicine, University of Cologne, Cologne, Germany
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Till A. Dembek
- Faculty of Medicine, University of Cologne, Cologne, Germany
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| |
Collapse
|
20
|
Zhao G, Cheng Y, Wang M, Wu Y, Yan J, Feng K, Yin S. Exploring the network effects of deep brain stimulation for rapid eye movement sleep behavior disorder in Parkinson's disease. Acta Neurochir (Wien) 2023; 165:3375-3384. [PMID: 37770797 DOI: 10.1007/s00701-023-05806-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/07/2023] [Indexed: 09/30/2023]
Abstract
BACKGROUND The research findings on the effects of subthalamic nucleus (STN) deep brain stimulation (DBS) in Parkinson's disease (PD) with Rapid Eye Movement Sleep Behavior Disorder (RBD) are inconsistent, and there is a lack of research on DBS electrode sites and their network effects for the explanation of the differences. Our objective is to explore the optimal stimulation sites (that is the sweet spot) and the brain network effects of STN-DBS for RBD in PD. METHODS In this study, among the 50 PD patients who underwent STN-DBS treatment, 24 PD patients with RBD were screened. According to clinical scores and imaging data, the sweet spot of STN-DBS was analyzed in PD patients with RBD, and the optimal structure and functional network models of subthalamic stimulation were constructed. RESULTS Bilateral STN-DBS can effectively improve the symptoms of RBD and other non-motor symptoms in 24 PD patients with RBD. RBD Questionnaire-Hong Kong (RBDQ-HK) score was 41.33 ± 17.45 at baseline and 30.83 ± 15.83 at 1-year follow-up, with statistical significance between them (P < 0.01). However, the MoCA score was an exception with a baseline of 22.04 ± 4.28 and a 1-year follow-up of 21.58 ± 4.33, showing no statistical significance (P = 0.12). The sweet spot and optimal network connectivity models for RBD improvement have been validated as effective. CONCLUSIONS Bilateral STN-DBS can improve the symptoms of RBD in PD. There exist the sweet spot and brain network effects of bilateral STN-DBS in the treatment of PD with RBD. Our study also demonstrates that RBD is a brain network disease.
Collapse
Affiliation(s)
- Guangrui Zhao
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, 300070, China
- Department of Neurosurgery, Lu'an Hospital Affiliated to Anhui Medical University, Lu'an, 237000, China
| | - Yifeng Cheng
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, 300070, China
- Department of Neurosurgery, Huanhu Hospital, Tianjin University, Tianjin, 300350, China
| | - Min Wang
- Department of Neurology, Huanhu Hospital, Tianjin University, Tianjin, 300350, China
| | - Yuzhang Wu
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, 300070, China
| | - Jingtao Yan
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, 300070, China
| | - Keke Feng
- Department of Neurosurgery, Huanhu Hospital, Tianjin University, Tianjin, 300350, China.
| | - Shaoya Yin
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, 300070, China.
- Department of Neurosurgery, Huanhu Hospital, Tianjin University, Tianjin, 300350, China.
| |
Collapse
|
21
|
Bower KL, Noecker AM, Reich M, McIntyre CC. Quantifying the Variability Associated with Postoperative Localization of Deep Brain Stimulation Electrodes. Stereotact Funct Neurosurg 2023; 101:277-284. [PMID: 37379823 PMCID: PMC10833063 DOI: 10.1159/000530462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/26/2023] [Indexed: 06/30/2023]
Abstract
INTRODUCTION Computational models of deep brain stimulation (DBS) have become common tools in clinical research studies that attempt to establish correlations between stimulation locations in the brain and behavioral outcome measures. However, the accuracy of any patient-specific DBS model depends heavily upon accurate localization of the DBS electrodes within the anatomy, which is typically defined via co-registration of clinical CT and MRI datasets. Several different approaches exist for this challenging registration problem, and each approach will result in a slightly different electrode localization. The goal of this study was to better understand how different processing steps (e.g., cost-function masking, brain extraction, intensity remapping) affect the estimate of the DBS electrode location in the brain. METHODS No "gold standard" exists for this kind of analysis, as the exact location of the electrode in the living human brain cannot be determined with existing clinical imaging approaches. However, we can estimate the uncertainty associated with the electrode position, which can be used to guide statistical analyses in DBS mapping studies. Therefore, we used high-quality clinical datasets from 10 subthalamic DBS subjects and co-registered their long-term postoperative CT with their preoperative surgical targeting MRI using 9 different approaches. The distances separating all of the electrode location estimates were calculated for each subject. RESULTS On average, electrodes were located within a median distance of 0.57 mm (0.49-0.74) of one another across the different registration approaches. However, when considering electrode location estimates from short-term postoperative CTs, the median distance increased to 2.01 mm (1.55-2.78). CONCLUSIONS The results of this study suggest that electrode location uncertainty needs to be factored into statistical analyses that attempt to define correlations between stimulation locations and clinical outcomes.
Collapse
Affiliation(s)
- Kelsey L. Bower
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH
| | - Angela M. Noecker
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH
| | - Martin Reich
- Department of Neurology, University of Wurzburg, Germany
| | - Cameron C. McIntyre
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH
- Department of Biomedical Engineering, Duke University, Durham, NC
- Department of Neurosurgery, Duke University, Durham, NC
| |
Collapse
|
22
|
Al-Fatly B, Giesler SJ, Oxenford S, Li N, Dembek TA, Achtzehn J, Krause P, Visser-Vandewalle V, Krauss JK, Runge J, Tadic V, Bäumer T, Schnitzler A, Vesper J, Wirths J, Timmermann L, Kühn AA, Koy A. Neuroimaging-based analysis of DBS outcomes in pediatric dystonia: Insights from the GEPESTIM registry. Neuroimage Clin 2023; 39:103449. [PMID: 37321142 PMCID: PMC10275720 DOI: 10.1016/j.nicl.2023.103449] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/16/2023] [Accepted: 06/02/2023] [Indexed: 06/17/2023]
Abstract
INTRODUCTION Deep brain stimulation (DBS) is an established treatment in patients of various ages with pharmaco-resistant neurological disorders. Surgical targeting and postoperative programming of DBS depend on the spatial location of the stimulating electrodes in relation to the surrounding anatomical structures, and on electrode connectivity to a specific distribution pattern within brain networks. Such information is usually collected using group-level analysis, which relies on the availability of normative imaging resources (atlases and connectomes). Analysis of DBS data in children with debilitating neurological disorders such as dystonia would benefit from such resources, especially given the developmental differences in neuroimaging data between adults and children. We assembled pediatric normative neuroimaging resources from open-access datasets in order to comply with age-related anatomical and functional differences in pediatric DBS populations. We illustrated their utility in a cohort of children with dystonia treated with pallidal DBS. We aimed to derive a local pallidal sweetspot and explore a connectivity fingerprint associated with pallidal stimulation to exemplify the utility of the assembled imaging resources. METHODS An average pediatric brain template (the MNI brain template 4.5-18.5 years) was implemented and used to localize the DBS electrodes in 20 patients from the GEPESTIM registry cohort. A pediatric subcortical atlas, analogous to the DISTAL atlas known in DBS research, was also employed to highlight the anatomical structures of interest. A local pallidal sweetspot was modeled, and its degree of overlap with stimulation volumes was calculated as a correlate of individual clinical outcomes. Additionally, a pediatric functional connectome of 100 neurotypical subjects from the Consortium for Reliability and Reproducibility was built to allow network-based analyses and decipher a connectivity fingerprint responsible for the clinical improvements in our cohort. RESULTS We successfully implemented a pediatric neuroimaging dataset that will be made available for public use as a tool for DBS analyses. Overlap of stimulation volumes with the identified DBS-sweetspot model correlated significantly with improvement on a local spatial level (R = 0.46, permuted p = 0.019). The functional connectivity fingerprint of DBS outcomes was determined to be a network correlate of therapeutic pallidal stimulation in children with dystonia (R = 0.30, permuted p = 0.003). CONCLUSIONS Local sweetspot and distributed network models provide neuroanatomical substrates for DBS-associated clinical outcomes in dystonia using pediatric neuroimaging surrogate data. Implementation of this pediatric neuroimaging dataset might help to improve the practice and pave the road towards a personalized DBS-neuroimaging analyses in pediatric patients.
Collapse
Affiliation(s)
- Bassam Al-Fatly
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology, Berlin, Germany.
| | - Sabina J Giesler
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Simon Oxenford
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology, Berlin, Germany
| | - Ningfei Li
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology, Berlin, Germany
| | - Till A Dembek
- Department of Neurology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Johannes Achtzehn
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology, Berlin, Germany
| | - Patricia Krause
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology, Berlin, Germany
| | - Veerle Visser-Vandewalle
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Joachim K Krauss
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Joachim Runge
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Vera Tadic
- Department of Neurology, University Medical Center Schleswig Holstein, Lübeck Campus, Lübeck, Germany
| | - Tobias Bäumer
- Institute of System Motor Science, University Medical Center Schleswig Holstein, Lübeck Campus, Lübeck, Germany
| | - Alfons Schnitzler
- Department of Neurology, Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jan Vesper
- Department of Neurology, Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jochen Wirths
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Lars Timmermann
- Department of Neurology, University Hospital of Marburg, Marburg, Germany
| | - Andrea A Kühn
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology, Berlin, Germany.
| | - Anne Koy
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Rare Diseases, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
23
|
Roediger J, Dembek TA, Achtzehn J, Busch JL, Krämer AP, Faust K, Schneider GH, Krause P, Horn A, Kühn AA. Automated deep brain stimulation programming based on electrode location: a randomised, crossover trial using a data-driven algorithm. Lancet Digit Health 2023; 5:e59-e70. [PMID: 36528541 DOI: 10.1016/s2589-7500(22)00214-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/22/2022] [Accepted: 11/01/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is highly effective in controlling motor symptoms in patients with Parkinson's disease. However, correct selection of stimulation parameters is pivotal to treatment success and currently follows a time-consuming and demanding trial-and-error process. We aimed to assess treatment effects of stimulation parameters suggested by a recently published algorithm (StimFit) based on neuroimaging data. METHODS This double-blind, randomised, crossover, non-inferiority trial was carried out at Charité - Universitätsmedizin, Berlin, Germany, and enrolled patients with Parkinson's disease treated with directional octopolar electrodes targeted at the STN. All patients had undergone DBS programming according to our centre's standard of care (SoC) treatment before study recruitment. Based on perioperative imaging data, DBS electrodes were reconstructed and StimFit was applied to suggest optimal stimulation settings. Patients underwent motor assessments using the Movement Disorder Society-Sponsored Revision of the Unified Parkinson's Disease Rating Scale part III (MDS-UPDRS-III) during OFF-medication and in OFF-stimulation and ON-stimulation states under both conditions, StimFit and SoC parameter settings. Patients were randomly assigned (1:1) to receive either StimFit-programmed DBS first and SoC-programmed DBS second, or SoC-programmed DBS first and StimFit-programmed DBS second. The allocation schedule was generated using a computerised random number generator. Both the rater and patients were masked to the sequence of SoC and StimFit stimulation conditions. All patients who participated in the study were included in the analysis. The primary endpoint of this study was the absolute mean difference between MDS-UPDRS-III scores under StimFit and SoC stimulation, with a non-inferiority margin of 5 points. The study was registered at the German Register for Clinical Trials (DRKS00023115), and is complete. FINDINGS Between July 10, 2020, and Oct 28, 2021, 35 patients were enrolled in the study; 18 received StimFit followed by SoC stimulation, and 17 received SoC followed by StimFit stimulation. Mean MDS-UPDRS-III scores improved from 47·3 (SD 17·1) at OFF-stimulation baseline to 24·7 (SD 12·4) and 26·3 (SD 12·4) under SoC and StimFit stimulation, respectively. Mean difference between motor scores was -1·6 (SD 7·1; 95% CI -4·0 to 0·9; superiority test psuperiority=0·20; n=35), establishing non-inferiority of StimFit stimulation at a margin of -5 points (non-inferiority test pnon-inferiority=0·0038). In six patients (17%), initial programming of StimFit settings resulted in acute side-effects and amplitudes were reduced until side-effects disappeared. INTERPRETATION Automated data-driven algorithms can predict stimulation parameters that lead to motor symptom control comparable to SoC treatment. This approach could significantly decrease the time necessary to obtain optimal treatment parameters. FUNDING Deutsche Forschungsgemeinschaft through NeuroCure Clinical Research Center and TRR 295.
Collapse
Affiliation(s)
- Jan Roediger
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Till A Dembek
- Department of Neurology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Johannes Achtzehn
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Johannes L Busch
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anna-Pauline Krämer
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Katharina Faust
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Gerd-Helge Schneider
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Patricia Krause
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas Horn
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA; MGH Neurosurgery and Center for Neurotechnology and Neurorecovery (CNTR) at MGH Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrea A Kühn
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; NeuroCure Clinical Research Centre, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany; DZNE, German Center for Degenerative Diseases, Berlin, Germany.
| |
Collapse
|
24
|
Probabilistic Subthalamic Nucleus Stimulation Sweet Spot Integration Into a Commercial Deep Brain Stimulation Programming Software Can Predict Effective Stimulation Parameters. Neuromodulation 2023; 26:348-355. [PMID: 35088739 DOI: 10.1016/j.neurom.2021.10.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/24/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Subthalamic nucleus (STN) deep brain stimulation (DBS) programming in patients with Parkinson disease (PD) may be challenging, especially when using segmented leads. In this study, we integrated a previously validated probabilistic STN sweet spot into a commercially available software to evaluate its predictive value for clinically effective DBS programming. MATERIALS AND METHODS A total of 14 patients with PD undergoing bilateral STN DBS with segmented leads were included. A nonlinear co-registration of a previously defined probabilistic sweet spot onto the manually segmented STN was performed together with lead reconstruction and tractography of the corticospinal tract (CST) in each patient. Contacts were ranked (level and direction), and corresponding effect and side-effect thresholds were predicted based on the overlap of the volume of activated tissue (VTA) with the sweet spot and CST. Image-based findings were correlated with postoperative clinical testing results during monopolar contact review and chronic stimulation parameter settings used after 12 months. RESULTS Image-based contact prediction showed high interrater reliability (Cohen kappa 0.851-0.91). Image-based and clinical ranking of the most efficient ring level and direction of stimulation were matched in 72% (95% CI 57.0-83.3) and 65% (95% CI 44.9-81.2), respectively, across the whole cohort. The mean difference between the predicted and clinically observed effect thresholds was 0.79 ± 0.69 mA (p = 0.72). The median difference between the predicted and clinically observed side-effect thresholds was -0.5 mA (p < 0.001, Wilcoxon paired signed rank test). CONCLUSIONS Integration of a probabilistic STN functional sweet spot into a surgical programming software shows a promising capability to predict the best level and directional contact(s) as well as stimulation settings in DBS for PD and could be used to optimize programming with segmented lead technology. This integrated image-based programming approach still needs to be evaluated on a bigger data set and in a future prospective multicenter cohort.
Collapse
|
25
|
Ríos AS, Oxenford S, Neudorfer C, Butenko K, Li N, Rajamani N, Boutet A, Elias GJB, Germann J, Loh A, Deeb W, Wang F, Setsompop K, Salvato B, Almeida LBD, Foote KD, Amaral R, Rosenberg PB, Tang-Wai DF, Wolk DA, Burke AD, Salloway S, Sabbagh MN, Chakravarty MM, Smith GS, Lyketsos CG, Okun MS, Anderson WS, Mari Z, Ponce FA, Lozano AM, Horn A. Optimal deep brain stimulation sites and networks for stimulation of the fornix in Alzheimer's disease. Nat Commun 2022; 13:7707. [PMID: 36517479 PMCID: PMC9751139 DOI: 10.1038/s41467-022-34510-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 10/27/2022] [Indexed: 12/15/2022] Open
Abstract
Deep brain stimulation (DBS) to the fornix is an investigational treatment for patients with mild Alzheimer's Disease. Outcomes from randomized clinical trials have shown that cognitive function improved in some patients but deteriorated in others. This could be explained by variance in electrode placement leading to differential engagement of neural circuits. To investigate this, we performed a post-hoc analysis on a multi-center cohort of 46 patients with DBS to the fornix (NCT00658125, NCT01608061). Using normative structural and functional connectivity data, we found that stimulation of the circuit of Papez and stria terminalis robustly associated with cognitive improvement (R = 0.53, p < 0.001). On a local level, the optimal stimulation site resided at the direct interface between these structures (R = 0.48, p < 0.001). Finally, modulating specific distributed brain networks related to memory accounted for optimal outcomes (R = 0.48, p < 0.001). Findings were robust to multiple cross-validation designs and may define an optimal network target that could refine DBS surgery and programming.
Collapse
Grants
- P30 AG066507 NIA NIH HHS
- R01 NS127892 NINDS NIH HHS
- R01 MH113929 NIMH NIH HHS
- R01 MH130666 NIMH NIH HHS
- P30 AG072979 NIA NIH HHS
- Deutsche Forschungsgemeinschaft (German Research Foundation)
- Received grants and personal fees from Medtronic and Boston Scientific, grants from Abbott/St. Jude, and Functional Neuromodulation outside the submitted work.
- Received grants from Functional Neuromodulation during conduct of this study, grants and personal fees from Avid/Lily, and Merck, personal fees from Jannsen, GE Healthcare, Biogen and Neuronix outside the submitted work.
- Receives personal fees from Elsai, Lilly, Roche Novartis and Biogen outside the submitted work.
- Received personal fees from Allergan, Biogen, Roche-Genentech, Cortexyme, Bracket, Sanofi, and other type of support from Brain Health Inc and uMethod Health outside of the submitted work.
- Received grants from Functional Neuromodulation Inc. during conduct of this study, from Avanir and Eli Lily and NFL Benefits Office outside of the submitted work.
- Received grants from NIH, Tourette Association of America Grant, Parkinson’s Alliance, Smallwood Foundation, and personal fees from Parkinson’s Foundation Medical Director, Books4Patients, American Academy of Neurology, Peerview, WebMD/Medscape, Mededicus, Movement Disorders Society, Taylor and Francis, Demos, Robert Rose and non-financial support from Medtronic outside of the submitted work.
- Received grants from Medtronic and Functional Neuromodulation during conduct of this study, personal fees from Medtronic, St. Jude, Boston Scientific, and Functional Neuromodulation outside of submitted work
- Deutsches Zentrum für Luft- und Raumfahrt (German Centre for Air and Space Travel)
- National Institutes of Health (R01 13478451, 1R01NS127892-01 & 2R01 MH113929) New Venture Fund (FFOR Seed Grant).
Collapse
Affiliation(s)
- Ana Sofía Ríos
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Simón Oxenford
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Clemens Neudorfer
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Konstantin Butenko
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ningfei Li
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nanditha Rajamani
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Alexandre Boutet
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, M5T2S8, Canada
- Krembil Research Institute, University of Toronto, Toronto, ON, M5T2S8, Canada
- Joint Department of Medical Imaging, University of Toronto, Toronto, ON, M5T1W7, Canada
| | - Gavin J B Elias
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, M5T2S8, Canada
- Krembil Research Institute, University of Toronto, Toronto, ON, M5T2S8, Canada
| | - Jurgen Germann
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, M5T2S8, Canada
- Krembil Research Institute, University of Toronto, Toronto, ON, M5T2S8, Canada
| | - Aaron Loh
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, M5T2S8, Canada
- Krembil Research Institute, University of Toronto, Toronto, ON, M5T2S8, Canada
| | - Wissam Deeb
- UMass Chan Medical School, Department of Neurology, Worcester, MA, 01655, USA
- UMass Memorial Health, Department of Neurology, Worcester, MA, 01655, USA
| | - Fuyixue Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, MA, USA
| | - Kawin Setsompop
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, MA, USA
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Bryan Salvato
- University of Florida Health Jacksonville, Jacksonville, FL, USA
| | - Leonardo Brito de Almeida
- Norman Fixel Institute for Neurological Diseases, Departments of Neurology and Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Kelly D Foote
- Norman Fixel Institute for Neurological Diseases, Departments of Neurology and Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Robert Amaral
- Cerebral Imaging Centre, Douglas Research Centre, Montreal, QC, Canada
| | - Paul B Rosenberg
- Department of Psychiatry and Behavioral Sciences and Richman Family Precision Medicine Center of Excellence, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - David F Tang-Wai
- Krembil Research Institute, University of Toronto, Toronto, ON, M5T2S8, Canada
- Department of Medicine, Division of Neurology, University Health Network and University of Toronto, Toronto, ON, M5T2S8, Canada
| | - David A Wolk
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Stephen Salloway
- Department of Psychiatry and Human Behavior and Neurology, Alpert Medical School of Brown University, Providence, RI, USA
- Memory & Aging Program, Butler Hospital, Providence, USA
| | | | - M Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Research Centre, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Biological and Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Gwenn S Smith
- Department of Psychiatry and Behavioral Sciences and Richman Family Precision Medicine Center of Excellence, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Constantine G Lyketsos
- Department of Psychiatry and Behavioral Sciences and Richman Family Precision Medicine Center of Excellence, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Michael S Okun
- Norman Fixel Institute for Neurological Diseases, Departments of Neurology and Neurosurgery, University of Florida, Gainesville, FL, USA
| | | | - Zoltan Mari
- Johns Hopkins School of Medicine, Baltimore, MD, USA
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | | | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, M5T2S8, Canada
- Krembil Research Institute, University of Toronto, Toronto, ON, M5T2S8, Canada
| | - Andreas Horn
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA.
- Departments of Neurology and Neurosurgery, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
26
|
Tödt I, Al-Fatly B, Granert O, Kühn AA, Krack P, Rau J, Timmermann L, Schnitzler A, Paschen S, Helmers AK, Hartmann A, Bardinet E, Schuepbach M, Barbe MT, Dembek TA, Fraix V, Kübler D, Brefel-Courbon C, Gharabaghi A, Wojtecki L, Pinsker MO, Thobois S, Damier P, Witjas T, Houeto JL, Schade-Brittinger C, Vidailhet M, Horn A, Deuschl G. The Contribution of Subthalamic Nucleus Deep Brain Stimulation to the Improvement in Motor Functions and Quality of Life. Mov Disord 2022; 37:291-301. [PMID: 35112384 DOI: 10.1002/mds.28952] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Subthalamic nucleus deep brain stimulation (STN-DBS) effectively treats motor symptoms and quality of life (QoL) of advanced and fluctuating early Parkinson's disease. Little is known about the relation between electrode position and changes in symptom control and ultimately QoL. OBJECTIVES The relation between the stimulated part of the STN and clinical outcomes, including the motor score of the Unified Parkinson's Disease Rating Scale (UPDRS) and the quality-of-life questionnaire, was assessed in a subcohort of the EARLYSTIM study. METHODS Sixty-nine patients from the EARLYSTIM cohort who underwent DBS, with a comprehensive clinical characterization before and 24 months after surgery, were included. Intercorrelations of clinical outcome changes, correlation between the affected functional parts of the STN, and changes in clinical outcomes were investigated. We further calculated sweet spots for different clinical parameters. RESULTS Improvements in the UPDRS III and Parkinson's Disease Questionnaire (PDQ-39) correlated positively with the extent of the overlap with the sensorimotor STN. The sweet spots for the UPDRS III (x = 11.6, y = -13.1, z = -6.3) and the PDQ-39 differed (x = 14.8, y = -12.4, z = -4.3) ~3.8 mm. CONCLUSIONS The main influence of DBS on QoL is likely mediated through the sensory-motor basal ganglia loop. The PDQ sweet spot is located in a posteroventral spatial location in the STN territory. For aspects of QoL, however, there was also evidence of improvement through stimulation of the other STN subnuclei. More research is necessary to customize the DBS target to individual symptoms of each patient. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Inken Tödt
- Department of Neurology, University Hospital Schleswig Holstein, Kiel, Germany
| | - Bassam Al-Fatly
- Department of Neurology, Movement Disorders and Neuromodulation Section, Charité Medicine University of Berlin, Berlin, Germany
| | - Oliver Granert
- Department of Neurology, University Hospital Schleswig Holstein, Kiel, Germany
| | - Andrea A Kühn
- Department of Neurology, Movement Disorders and Neuromodulation Section, Charité Medicine University of Berlin, Berlin, Germany
| | - Paul Krack
- Department of Neurology, University Hospital Bern and University of Bern, Bern, Switzerland
| | - Joern Rau
- Coordinating Center for Clinical Trials, Philipps-University, Marburg, Germany
| | - Lars Timmermann
- Department of Neurology, University Hospital Giessen and Marburg, Marburg, Germany
| | - Alfons Schnitzler
- Department of Neurology, Institute of Clinical Neuroscience and Medical Psychology, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Steffen Paschen
- Department of Neurology, University Hospital Schleswig Holstein, Kiel, Germany
| | - Ann-Kristin Helmers
- Department of Neurosurgery, University Hospital Schleswig Holstein, Kiel, Germany
| | - Andreas Hartmann
- Assistance-Publique Hôpitaux de Paris, Center d'Investigation Clinique 9503, Institut du Cerveau et de la Moelle épinière, Paris, France.,Département de Neurologie, Université Pierre et Marie Curie-Paris 6 et INSERM, Paris, France
| | - Eric Bardinet
- Department of Neurology, NS-PARK/F-CRIN, University Hospital of Besançon, Besançon, France.,Center de Neuroimagerie de Recherche, Institut du Cerveau et de la Moelle (ICM), Paris, France
| | - Michael Schuepbach
- Department of Neurology, University Hospital Bern and University of Bern, Bern, Switzerland.,Assistance-Publique Hôpitaux de Paris, Center d'Investigation Clinique 9503, Institut du Cerveau et de la Moelle épinière, Paris, France.,Département de Neurologie, Université Pierre et Marie Curie-Paris 6 et INSERM, Paris, France.,Institute of Neurology, Konolfingen, Switzerland
| | - Michael T Barbe
- Department of Neurology, University of Cologne, Faculty of Medicine, Cologne, Germany
| | - Till A Dembek
- Department of Neurology, University of Cologne, Faculty of Medicine, Cologne, Germany
| | - Valerie Fraix
- Université Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France.,Neurology Department, Grenoble University Hospital, Grenoble, France
| | - Dorothee Kübler
- Department of Neurology, Movement Disorders and Neuromodulation Section, Charité Medicine University of Berlin, Berlin, Germany
| | | | - Alireza Gharabaghi
- Department of Neurosurgery and Neurotechnology Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tuebingen, Tuebingen, Germany
| | - Lars Wojtecki
- Department of Neurology and Neurorehabilitation, Hospital zum Heiligen Geist GmbH & Co.KG Academic Teaching Hospital of the Heinrich-Heine-University Düsseldorf Von-Broichhausen-Allee 1, Kempen, Germany
| | - Marcus O Pinsker
- Department of Neurosurgery, University of Freiburg, Freiburg, Germany
| | - Stephane Thobois
- Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, Service de Neurologie C, Center Expert Parkinson, Bron, France.,Université Lyon, Université Claude Bernard Lyon 1, Faculté de Médecine Lyon Sud Charles Mérieux, Oullins, France
| | | | - Tatiana Witjas
- Department of Neurology, Timone University Hospital UMR 7289, CNRS Marseille, Marseille, France
| | - Jean-Luc Houeto
- Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, Service de Neurologie C, Center Expert Parkinson, Bron, France
| | | | - Marie Vidailhet
- Department of Neurology, Sorbonne Université, ICM UMR1127, INSERM &1127, CNRS 7225, Salpêtriere University Hospital AP-HP, Paris, France
| | - Andreas Horn
- Department of Neurology, Movement Disorders and Neuromodulation Section, Charité Medicine University of Berlin, Berlin, Germany
| | - Günther Deuschl
- Department of Neurology, University Hospital Schleswig Holstein, Kiel, Germany
| |
Collapse
|
27
|
Petry-Schmelzer JN, Schwarz LM, Jergas H, Reker P, Steffen JK, Dafsari HS, Baldermann JC, Fink GR, Visser-Vandewalle V, Dembek TA, Barbe MT. A Randomized, Double-Blinded Crossover Trial of Short Versus Conventional Pulse Width Subthalamic Deep Brain Stimulation in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2022; 12:1497-1505. [PMID: 35491797 PMCID: PMC9398064 DOI: 10.3233/jpd-213119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 03/29/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Subthalamic nucleus deep brain stimulation (STN-DBS) is a well-established treatment for patients with Parkinson's disease. Previous acute challenge studies suggested that short pulse widths might increase the therapeutic window while maintaining motor symptom control with a decrease in energy consumption. However, only little is known about the effect of short pulse width stimulation beyond the setting of an acute challenge. OBJECTIVE To compare 4 weeks of STN-DBS with conventional pulse width stimulation (60 μs) to 4 weeks of STN-DBS with short pulse width stimulation (30 μs) regarding motor symptom control. METHODS This study was a monocentric, double-blinded, randomized crossover non-inferiority trial investigating whether short pulse width stimulation with 30 μs maintains equal motor control as conventional 60 μs stimulation over a period of 4 weeks (German Clinical Trials Register No. DRKS00017528). Primary outcome was the difference in motor symptom control as assessed by a motor diary. Secondary outcomes included energy consumption measures, non-motor effects, side-effects, and quality of life. RESULTS Due to a high dropout rate, the calculated sample size of 27 patients was not met and 24 patients with Parkinson's disease and STN-DBS were included in the final analysis. However, there were no differences in any investigated outcome parameter between the two treatment conditions. CONCLUSION This study demonstrates that short pulse width settings (30 μs) provide non-inferior motor symptom control as conventional (60 μs) stimulation without significant differences in energy consumption. Future studies are warranted to evaluate a potential benefit of short pulse width settings in patients with pronounced dyskinesia.
Collapse
Affiliation(s)
- Jan Niklas Petry-Schmelzer
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Lisa M. Schwarz
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Hannah Jergas
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Paul Reker
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Julia K. Steffen
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Haidar S. Dafsari
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Juan Carlos Baldermann
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Psychiatry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Gereon R. Fink
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Jülich, Jülich, Germany
| | - Veerle Visser-Vandewalle
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Till A. Dembek
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Michael T. Barbe
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
28
|
Petry-Schmelzer JN, Schwarz LM, Jergas H, Reker P, Steffen JK, Dafsari HS, Baldermann JC, Fink GR, Visser-Vandewalle V, Dembek TA, Barbe MT. A Randomized, Double-Blinded Crossover Trial of Short Versus Conventional Pulse Width Subthalamic Deep Brain Stimulation in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2022; 12:1497-1505. [PMID: 35491797 DOI: 10.1101/2021.06.20.21258955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
BACKGROUND Subthalamic nucleus deep brain stimulation (STN-DBS) is a well-established treatment for patients with Parkinson's disease. Previous acute challenge studies suggested that short pulse widths might increase the therapeutic window while maintaining motor symptom control with a decrease in energy consumption. However, only little is known about the effect of short pulse width stimulation beyond the setting of an acute challenge. OBJECTIVE To compare 4 weeks of STN-DBS with conventional pulse width stimulation (60 μs) to 4 weeks of STN-DBS with short pulse width stimulation (30 μs) regarding motor symptom control. METHODS This study was a monocentric, double-blinded, randomized crossover non-inferiority trial investigating whether short pulse width stimulation with 30 μs maintains equal motor control as conventional 60 μs stimulation over a period of 4 weeks (German Clinical Trials Register No. DRKS00017528). Primary outcome was the difference in motor symptom control as assessed by a motor diary. Secondary outcomes included energy consumption measures, non-motor effects, side-effects, and quality of life. RESULTS Due to a high dropout rate, the calculated sample size of 27 patients was not met and 24 patients with Parkinson's disease and STN-DBS were included in the final analysis. However, there were no differences in any investigated outcome parameter between the two treatment conditions. CONCLUSION This study demonstrates that short pulse width settings (30 μs) provide non-inferior motor symptom control as conventional (60 μs) stimulation without significant differences in energy consumption. Future studies are warranted to evaluate a potential benefit of short pulse width settings in patients with pronounced dyskinesia.
Collapse
Affiliation(s)
- Jan Niklas Petry-Schmelzer
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Lisa M Schwarz
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Hannah Jergas
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Paul Reker
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Julia K Steffen
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Haidar S Dafsari
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Juan Carlos Baldermann
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Psychiatry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Gereon R Fink
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Jülich, Jülich, Germany
| | - Veerle Visser-Vandewalle
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Till A Dembek
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Michael T Barbe
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
29
|
Roediger J, Dembek TA, Wenzel G, Butenko K, Kühn AA, Horn A. StimFit-A Data-Driven Algorithm for Automated Deep Brain Stimulation Programming. Mov Disord 2021; 37:574-584. [PMID: 34837245 DOI: 10.1002/mds.28878] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/07/2021] [Accepted: 11/04/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Finding the optimal deep brain stimulation (DBS) parameters from a multitude of possible combinations by trial and error is time consuming and requires highly trained medical personnel. OBJECTIVE We developed an automated algorithm to identify optimal stimulation settings in Parkinson's disease (PD) patients treated with subthalamic nucleus (STN) DBS based on imaging-derived metrics. METHODS Electrode locations and monopolar review data of 612 stimulation settings acquired from 31 PD patients were used to train a predictive model for therapeutic and adverse stimulation effects. Model performance was then evaluated within the training cohort using cross-validation and on an independent cohort of 19 patients. We inverted the model by applying a brute-force approach to determine the optimal stimulation sites in the target region. Finally, an optimization algorithm was established to identify optimal stimulation parameters. Suggested stimulation parameters were compared to the ones applied in clinical practice. RESULTS Predicted motor outcome correlated with observed outcome (R = 0.57, P < 10-10 ) across patients within the training cohort. In the test cohort, the model explained 28% of the variance in motor outcome differences between settings. The stimulation site for maximum motor improvement was located at the dorsolateral border of the STN. When compared to two empirical settings, model-based suggestions more closely matched the setting with superior motor improvement. CONCLUSION We developed and validated a data-driven model that can suggest stimulation parameters leading to optimal motor improvement while minimizing the risk of stimulation-induced side effects. This approach might provide guidance for DBS programming in the future. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jan Roediger
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité University Medicine Berlin, Charitéplatz 1, Berlin, 10117, Germany.,Einstein Center for Neurosciences Berlin, Charité University Medicine Berlin, Charitéplatz 1, Berlin, 10117, Germany
| | - Till A Dembek
- Department of Neurology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Gregor Wenzel
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité University Medicine Berlin, Charitéplatz 1, Berlin, 10117, Germany
| | - Konstantin Butenko
- Institute of General Electrical Engineering, University of Rostock, Rostock, Germany
| | - Andrea A Kühn
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité University Medicine Berlin, Charitéplatz 1, Berlin, 10117, Germany.,Berlin School of Mind and Brain, Charité University Medicine, Berlin, Germany.,NeuroCure Clinical Research Centre, Charité University Medicine, Berlin, Germany.,DZNE, German Center for Degenerative Diseases, Berlin, Germany
| | - Andreas Horn
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité University Medicine Berlin, Charitéplatz 1, Berlin, 10117, Germany
| |
Collapse
|
30
|
Soares C, Reich MM, Costa F, Lange F, Roothans J, Reis C, Vaz R, Rosas MJ, Volkmann J. Predicting Outcome in a Cohort of Isolated and Combined Dystonia within Probabilistic Brain Mapping. Mov Disord Clin Pract 2021; 8:1234-1239. [PMID: 34761057 PMCID: PMC8564825 DOI: 10.1002/mdc3.13345] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/02/2021] [Accepted: 08/25/2021] [Indexed: 12/25/2022] Open
Abstract
Background Probabilistic brain mapping is a promising tool to estimate the expected benefit of pallidal deep brain stimulation (GPi‐DBS) in patients with isolated dystonia (IsoD). Objectives To investigate the role of probabilistic mapping in combined dystonia (ComD). Methods We rendered the pallidal atlas and the volume of tissue activated (VTA) for a cohort of patients with IsoD (n = 20) and ComD (n = 10) that underwent GPi‐DBS. The VTA was correlated with clinical improvement. Afterwards, each VTA was applied on the previously published probabilistic model (Reich et al., 2019). The correlation between predicted and observed clinical benefit was studied in a linear regression model. Results A good correlation between observed and predicted outcome was found for both patients with IsoD (n = 14) and ComD (n = 7) (r2 = 0.32; P < 0.05). In ComD, 42% of the variance in DBS response is explained by VTA‐based outcome map. Conclusion A probabilistic model would be helpful in clinical practice to circumvent unpredictable and less impressive motor results often found in ComD.
Collapse
Affiliation(s)
- Carolina Soares
- Neurology Department Centro Hospitalar Universitário de São João, EPE Porto Portugal.,Department of Clinic Neurosciences and Mental Health, Faculty of Medicine University of Porto Porto Portugal
| | - Martin M Reich
- Neurology Department Julius-Maximilians-University Würzburg Würzburg Germany
| | - Francisca Costa
- Department of Medical Imaging, Neuroradiology Unit, Centro Hospitalar Vila Nova de Gaia/Espinho Porto Portugal
| | - Florian Lange
- Neurology Department Julius-Maximilians-University Würzburg Würzburg Germany
| | - Jonas Roothans
- Neurology Department Julius-Maximilians-University Würzburg Würzburg Germany
| | - Carina Reis
- Neuroradiology Department Centro Hospitalar Universitário de São João Porto Portugal
| | - Rui Vaz
- Neurosurgery Department Centro Hospitalar Universitário de São João Porto Portugal.,Department of Clinic Neurosciences and Mental Health, Faculty of Medicine University of Porto Porto Portugal
| | - Maria José Rosas
- Neurology Department Centro Hospitalar Universitário de São João, EPE Porto Portugal
| | - Jens Volkmann
- Neurology Department Julius-Maximilians-University Würzburg Würzburg Germany
| |
Collapse
|
31
|
Baldermann JC, Kuhn J, Schüller T, Kohl S, Andrade P, Schleyken S, Prinz-Langenohl R, Hellmich M, Barbe MT, Timmermann L, Visser-Vandewalle V, Huys D. Thalamic deep brain stimulation for Tourette Syndrome: A naturalistic trial with brief randomized, double-blinded sham-controlled periods. Brain Stimul 2021; 14:1059-1067. [PMID: 34245918 DOI: 10.1016/j.brs.2021.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/15/2021] [Accepted: 07/05/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND There is still a lack of controlled studies to prove efficacy of thalamic deep brain stimulation for Tourette's Syndrome. OBJECTIVES In this controlled trial, we investigated the course of tic severity, comorbidities and quality of life during thalamic stimulation and whether changes in tic severity can be assigned to ongoing compared to sham stimulation. METHODS We included eight adult patients with medically refractory Tourette's syndrome. Bilateral electrodes were implanted in the centromedian-parafascicular-complex and the nucleus ventro-oralis internus. Tic severity, quality of life and comorbidities were assessed before surgery as well as six and twelve months after. Short randomized, double-blinded sham-controlled crossover sequences with either active or sham stimulation were implemented at both six- and twelve-months' assessments. The primary outcome measurement was the difference in the Yale Global Tic Severity Scale tic score between active and sham stimulation. Adverse events were systematically surveyed for all patients to evaluate safety. RESULTS Active stimulation resulted in significantly higher tic reductions than sham stimulation (F = 79.5; p = 0.001). Overall quality of life and comorbidities improved significantly in the open-label-phase. Over the course of the trial two severe adverse events occurred that were resolved without sequelae. CONCLUSION Our results provide evidence that thalamic stimulation is effective in improving tic severity and overall quality of life. Crucially, the reduction of tic severity was primarily driven by active stimulation. Further research may focus on improving stimulation protocols and refining patient selection to improve efficacy and safety of deep brain stimulation for Tourette's Syndrome.
Collapse
Affiliation(s)
- Juan Carlos Baldermann
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Psychiatry and Psychotherapy, Cologne, Germany.
| | - Jens Kuhn
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Psychiatry and Psychotherapy, Cologne, Germany; Department of Psychiatry, Psychotherapy, and Psychosomatics, Johanniter Hospital Oberhausen, Oberhausen, Germany
| | - Thomas Schüller
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Psychiatry and Psychotherapy, Cologne, Germany
| | - Sina Kohl
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Psychiatry and Psychotherapy, Cologne, Germany
| | - Pablo Andrade
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Functional Neurosurgery and Stereotaxy, Cologne, Germany
| | - Sophia Schleyken
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Psychiatry and Psychotherapy, Cologne, Germany
| | - Reinhild Prinz-Langenohl
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinical Trials Centre, Cologne, Germany
| | - Martin Hellmich
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Medical Statistics and Computational Biology, Cologne, Germany
| | - Michael T Barbe
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany
| | - Lars Timmermann
- University Hospital Giessen and Marburg, Department of Neurology, Campus Marburg, Marburg, Germany; Center for Mind, Brain and Behaviour, Marburg, Germany
| | - Veerle Visser-Vandewalle
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Functional Neurosurgery and Stereotaxy, Cologne, Germany
| | - Daniel Huys
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Psychiatry and Psychotherapy, Cologne, Germany
| |
Collapse
|