1
|
Aloisio Caruso E, De Nunzio V, Tutino V, Notarnicola M. The Endocannabinoid System: Implications in Gastrointestinal Physiology and Pathology. Int J Mol Sci 2025; 26:1306. [PMID: 39941074 PMCID: PMC11818434 DOI: 10.3390/ijms26031306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 01/31/2025] [Accepted: 02/02/2025] [Indexed: 02/16/2025] Open
Abstract
The endocannabinoid system (ECS), composed of receptors, endocannabinoids, and enzymes that regulate biosynthesis and degradation, plays a fundamental role in the physiology and pathology of the gastrointestinal tract, particularly in the small and large intestine and liver. Specifically, cannabinoid receptor type 1 (CB1R) and cannabinoid receptor type 2 (CB2R), located principally in the nervous system and immune cells, orchestrate processes such as intestinal motility, intestinal and hepatic inflammation, and energy metabolism, respectively. The main endocannabinoids, anandamide (AEA) and 2-arachidonoylglycerol (2-AG), influence appetite, body weight regulation, and inflammatory states and thus have implications in obesity, non-alcoholic fatty liver disease (NAFLD) and irritable bowel syndrome (IBS). Recent studies have highlighted the therapeutic potential of targeting the ECS to modulate gastrointestinal and metabolic diseases. In particular, peripheral CB1R antagonists and CB2R agonists have shown efficacy in treating intestinal inflammation, reducing hepatic steatosis, and controlling IBS symptoms. Moreover, the ECS is emerging as a potential target for the treatment of colorectal cancer, acting on cell proliferation and apoptosis. This review highlights the opportunity to exploit the endocannabinoid system in the search for innovative therapeutic strategies, emphasizing the importance of a targeted approach to optimize treatment efficacy and minimize side effects.
Collapse
Affiliation(s)
- Emanuela Aloisio Caruso
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Bari, Italy; (E.A.C.); (V.D.N.)
| | - Valentina De Nunzio
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Bari, Italy; (E.A.C.); (V.D.N.)
| | - Valeria Tutino
- Laboratory of Clinical Pathology, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Bari, Italy;
| | - Maria Notarnicola
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Bari, Italy; (E.A.C.); (V.D.N.)
| |
Collapse
|
2
|
Liang Y, Wei X, Ren R, Zhang X, Tang X, Yang J, Wei X, Huang R, Hardiman G, Sun Y, Wang H. Study on Anti-Constipation Effects of Hemerocallis citrina Baroni through a Novel Strategy of Network Pharmacology Screening. Int J Mol Sci 2023; 24:4844. [PMID: 36902274 PMCID: PMC10003546 DOI: 10.3390/ijms24054844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Daylily (Hemerocallis citrina Baroni) is an edible plant widely distributed worldwide, especially in Asia. It has traditionally been considered a potential anti-constipation vegetable. This study aimed to investigate the anti-constipation effects of daylily from the perspective of gastro-intestinal transit, defecation parameters, short-chain organic acids, gut microbiome, transcriptomes and network pharmacology. The results show that dried daylily (DHC) intake accelerated the defecation frequency of mice, while it did not significantly alter the levels of short-chain organic acids in the cecum. The 16S rRNA sequencing showed that DHC elevated the abundance of Akkermansia, Bifidobacterium and Flavonifractor, while it reduced the level of pathogens (such as Helicobacter and Vibrio). Furthermore, a transcriptomics analysis revealed 736 differentially expressed genes (DEGs) after DHC treatment, which are mainly enriched in the olfactory transduction pathway. The integration of transcriptomes and network pharmacology revealed seven overlapping targets (Alb, Drd2, Igf2, Pon1, Tshr, Mc2r and Nalcn). A qPCR analysis further showed that DHC reduced the expression of Alb, Pon1 and Cnr1 in the colon of constipated mice. Our findings provide a novel insight into the anti-constipation effects of DHC.
Collapse
Affiliation(s)
- Yuxuan Liang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoyi Wei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Rui Ren
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xuebin Zhang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiyao Tang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jinglan Yang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoqun Wei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Gary Hardiman
- The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast BT7 1NN, UK
| | - Yuanming Sun
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
3
|
Brierley SM, Greenwood-Van Meerveld B, Sarnelli G, Sharkey KA, Storr M, Tack J. Targeting the endocannabinoid system for the treatment of abdominal pain in irritable bowel syndrome. Nat Rev Gastroenterol Hepatol 2023; 20:5-25. [PMID: 36168049 DOI: 10.1038/s41575-022-00682-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/16/2022] [Indexed: 12/27/2022]
Abstract
The management of visceral pain in patients with disorders of gut-brain interaction, notably irritable bowel syndrome, presents a considerable clinical challenge, with few available treatment options. Patients are increasingly using cannabis and cannabinoids to control abdominal pain. Cannabis acts on receptors of the endocannabinoid system, an endogenous system of lipid mediators that regulates gastrointestinal function and pain processing pathways in health and disease. The endocannabinoid system represents a logical molecular therapeutic target for the treatment of pain in irritable bowel syndrome. Here, we review the physiological and pathophysiological functions of the endocannabinoid system with a focus on the peripheral and central regulation of gastrointestinal function and visceral nociception. We address the use of cannabinoids in pain management, comparing them to other treatment modalities, including opioids and neuromodulators. Finally, we discuss emerging therapeutic candidates targeting the endocannabinoid system for the treatment of pain in irritable bowel syndrome.
Collapse
Affiliation(s)
- Stuart M Brierley
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health, South Australian Health and Medical Research Institute, North Terrace, Adelaide, South Australia, Australia
| | | | - Giovanni Sarnelli
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Keith A Sharkey
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| | - Martin Storr
- Department of Medicine, Ludwig-Maximilians University, Munich, Germany
- Zentrum für Endoskopie, Starnberg, Germany
| | - Jan Tack
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium
| |
Collapse
|
4
|
Yu Y, Chen W, Meng D, Zhou XM, Wang LL, Xu C. A Cannabinoid-1 Receptor Antagonist MJ08 with Different Effects in Stomach and Small Intestine. Assay Drug Dev Technol 2021; 19:176-183. [PMID: 33784479 DOI: 10.1089/adt.2020.1041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: To investigate the inverse agonistic effect of a novel type 1 cannabinoid (CB1) receptor antagonist, MJ08, on the gastrointestinal tract (GIT). Methods: In vivo, carbon propulsion within the stomach of mice was undertaken to investigate the effects of MJ08. In vitro, the effects of MJ08 were investigated on the contraction of smooth muscle on the isolated gastric fundus, gastric body, duodenum, jejunum, and ileum. Results: Western blotting results showed that MJ08 (0.62 mg/kg body weight) reversed WIN55,212-2 (1.0 mg/kg)-induced reduction of carbon transit. MJ08 (1.25, 2.5 mg/kg) stimulated carbon transit dose dependently, demonstrating an inverse agonistic effect. In vitro experiments showed that the expression of MJ08 increased the contraction of small intestine, and that its inverse agonistic effect was significantly stronger than that of SR141716A, but no effect was noted on the gastric body. Western blotting showed that the MJ08 increased the expression of CB1 receptor in different GIT segments. Conclusion: MJ08 is not only an antagonist but also an inverse agonist of the CB1 receptor. MJ08 and SR141716A can enhance motility in the small intestine and increase the expression of CB1 receptor in the small intestine.
Collapse
Affiliation(s)
- Yang Yu
- Life Science and Biology Pharmacy College, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Wei Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Dan Meng
- Life Science and Biology Pharmacy College, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Xiao-Mian Zhou
- Life Science and Biology Pharmacy College, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Li-Li Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Cheng Xu
- Life Science and Biology Pharmacy College, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| |
Collapse
|
5
|
An D, Peigneur S, Hendrickx LA, Tytgat J. Targeting Cannabinoid Receptors: Current Status and Prospects of Natural Products. Int J Mol Sci 2020; 21:E5064. [PMID: 32709050 PMCID: PMC7404216 DOI: 10.3390/ijms21145064] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 02/07/2023] Open
Abstract
Cannabinoid receptors (CB1 and CB2), as part of the endocannabinoid system, play a critical role in numerous human physiological and pathological conditions. Thus, considerable efforts have been made to develop ligands for CB1 and CB2, resulting in hundreds of phyto- and synthetic cannabinoids which have shown varying affinities relevant for the treatment of various diseases. However, only a few of these ligands are clinically used. Recently, more detailed structural information for cannabinoid receptors was revealed thanks to the powerfulness of cryo-electron microscopy, which now can accelerate structure-based drug discovery. At the same time, novel peptide-type cannabinoids from animal sources have arrived at the scene, with their potential in vivo therapeutic effects in relation to cannabinoid receptors. From a natural products perspective, it is expected that more novel cannabinoids will be discovered and forecasted as promising drug leads from diverse natural sources and species, such as animal venoms which constitute a true pharmacopeia of toxins modulating diverse targets, including voltage- and ligand-gated ion channels, G protein-coupled receptors such as CB1 and CB2, with astonishing affinity and selectivity. Therefore, it is believed that discovering novel cannabinoids starting from studying the biodiversity of the species living on planet earth is an uncharted territory.
Collapse
Affiliation(s)
| | | | | | - Jan Tytgat
- Toxicology and Pharmacology, KU Leuven, Campus Gasthuisberg, O&N 2, Herestraat 49, P.O. Box 922, 3000 Leuven, Belgium; (D.A.); (S.P.); (L.A.H.)
| |
Collapse
|
6
|
Wtorek K, Adamska-Bartłomiejczyk A, Piekielna-Ciesielska J, Ferrari F, Ruzza C, Kluczyk A, Piasecka-Zelga J, Calo’ G, Janecka A. Synthesis and Pharmacological Evaluation of Hybrids Targeting Opioid and Neurokinin Receptors. Molecules 2019; 24:molecules24244460. [PMID: 31817441 PMCID: PMC6943619 DOI: 10.3390/molecules24244460] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/28/2019] [Accepted: 12/02/2019] [Indexed: 11/16/2022] Open
Abstract
Morphine, which acts through opioid receptors, is one of the most efficient analgesics for the alleviation of severe pain. However, its usefulness is limited by serious side effects, including analgesic tolerance, constipation, and dependence liability. The growing awareness that multifunctional ligands which simultaneously activate two or more targets may produce a more desirable drug profile than selectively targeted compounds has created an opportunity for a new approach to developing more effective medications. Here, in order to better understand the role of the neurokinin system in opioid-induced antinociception, we report the synthesis, structure–activity relationship, and pharmacological characterization of a series of hybrids combining opioid pharmacophores with either substance P (SP) fragments or neurokinin receptor (NK1) antagonist fragments. On the bases of the in vitro biological activities of the hybrids, two analogs, opioid agonist/NK1 antagonist Tyr-[d-Lys-Phe-Phe-Asp]-Asn-d-Trp-Phe-d-Trp-Leu-Nle-NH2 (2) and opioid agonist/NK1 agonist Tyr-[d-Lys-Phe-Phe-Asp]-Gln-Phe-Phe-Gly-Leu-Met-NH2 (4), were selected for in vivo tests. In the writhing test, both hybrids showed significant an antinociceptive effect in mice, while neither of them triggered the development of tolerance, nor did they produce constipation. No statistically significant differences in in vivo activity profiles were observed between opioid/NK1 agonist and opioid/NK1 antagonist hybrids.
Collapse
Affiliation(s)
- Karol Wtorek
- Department of Biomolecular Chemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (K.W.); (A.A.-B.); (J.P.-C.)
| | - Anna Adamska-Bartłomiejczyk
- Department of Biomolecular Chemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (K.W.); (A.A.-B.); (J.P.-C.)
| | - Justyna Piekielna-Ciesielska
- Department of Biomolecular Chemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (K.W.); (A.A.-B.); (J.P.-C.)
| | - Federica Ferrari
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, 44121 Ferrara, Italy; (F.F.); (C.R.); (G.C.)
| | - Chiara Ruzza
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, 44121 Ferrara, Italy; (F.F.); (C.R.); (G.C.)
| | - Alicja Kluczyk
- Faculty of Chemistry, University of Wroclaw, 50-383 Wroclaw, Poland;
| | - Joanna Piasecka-Zelga
- Institute of Occupational Medicine, Research Laboratory for Medicine and Veterinary Products in the GMP Head of Research Laboratory for Medicine and Veterinary Products, 91-348 Lodz, Poland;
| | - Girolamo Calo’
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, 44121 Ferrara, Italy; (F.F.); (C.R.); (G.C.)
| | - Anna Janecka
- Department of Biomolecular Chemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (K.W.); (A.A.-B.); (J.P.-C.)
- Correspondence:
| |
Collapse
|
7
|
Uranga JA, Vera G, Abalo R. Cannabinoid pharmacology and therapy in gut disorders. Biochem Pharmacol 2018; 157:134-147. [PMID: 30076849 DOI: 10.1016/j.bcp.2018.07.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/31/2018] [Indexed: 12/14/2022]
Abstract
Cannabis sp. and their products (marijuana, hashish…), in addition to their recreational, industrial and other uses, have a long history for their use as a remedy for symptoms related with gastrointestinal diseases. After many reports suggesting these beneficial effects, it was not surprising to discover that the gastrointestinal tract expresses endogenous cannabinoids, their receptors, and enzymes for their synthesis and degradation, comprising the so-called endocannabinoid system. This system participates in the control of tissue homeostasis and important intestinal functions like motor and sensory activity, nausea, emesis, the maintenance of the epithelial barrier integrity, and the correct cellular microenvironment. Thus, different cannabinoid-related pharmacological agents may be useful to treat the main digestive pathologies. To name a few examples, in irritable bowel syndrome they may normalize dysmotility and reduce pain, in inflammatory bowel disease they may decrease inflammation, and in colorectal cancer, apart from alleviating some symptoms, they may play a role in the regulation of the cell niche. This review summarizes the main recent findings on the role of cannabinoid receptors, their synthetic or natural ligands and their metabolizing enzymes in normal gastrointestinal function and in disorders including irritable bowel syndrome, inflammatory bowel disease, colon cancer and gastrointestinal chemotherapy-induced adverse effects (nausea/vomiting, constipation, diarrhea).
Collapse
Affiliation(s)
- J A Uranga
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Madrid, Spain; Unidad Asociada I+D+i al Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC), Spain; Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento del Dolor (i+DOL), Spain
| | - G Vera
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Madrid, Spain; Unidad Asociada I+D+i al Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC), Spain; Unidad Asociada I+D+i al Instituto de Química Médica, IQM (CSIC), Spain; Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento del Dolor (i+DOL), Spain
| | - R Abalo
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Madrid, Spain; Unidad Asociada I+D+i al Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC), Spain; Unidad Asociada I+D+i al Instituto de Química Médica, IQM (CSIC), Spain; Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento del Dolor (i+DOL), Spain.
| |
Collapse
|
8
|
Bajic D, Monory K, Conrad A, Maul C, Schmid RM, Wotjak CT, Stein-Thoeringer CK. Cannabinoid Receptor Type 1 in the Brain Regulates the Affective Component of Visceral Pain in Mice. Neuroscience 2018; 384:397-405. [PMID: 29885522 DOI: 10.1016/j.neuroscience.2018.05.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 05/24/2018] [Accepted: 05/29/2018] [Indexed: 12/16/2022]
Abstract
Endocannabinoids acting through cannabinoid receptor type 1 (CB1) are major modulators of peripheral somatic and visceral nociception. Although only partially studied, some evidence suggests a particular role of CB1 within the brain in nociceptive processes. As the endocannabinoid system regulates affect and emotional behaviors, we hypothesized that cerebral CB1 influences affective processing of visceral pain-related behaviors in laboratory animals. To study nocifensive responses modulated by supraspinal CB1, we used conditional knock-out mice lacking CB1 either in cortical glutamatergic neurons (Glu-CB1-KO), or in forebrain GABAergic neurons (GABA-CB1-KO), or in principal neurons of the forebrain (CaMK-CB1-KO). These mutant mice and mice treated with the CB1 antagonist SR141716 were tested for different pain-related behaviors. In an acetic acid-induced abdominal constriction test, supraspinal CB1 deletions did not affect nocifensive responses. In the cerulein-model of acute pancreatitis, mechanical allodynia or hyperalgesia were not changed, but Glu-CB1- and CaMK-CB1-KO mice showed significantly increased facial grimacing scores indicating increased affective responses to this noxious visceral stimulus. Similarly, these brain-specific CB1 KO mice also showed significantly changed thermal nociception in a hot-plate test. These results reveal a novel, and important role of CB1 expressed by cortical glutamatergic neurons in the affective component of visceral nociception.
Collapse
Affiliation(s)
- Danica Bajic
- Klinik und Poliklinik fuer Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Krisztina Monory
- Institute of Physiological Chemistry, University Medical Center, Mainz, Germany
| | - Andrea Conrad
- Institute of Physiological Chemistry, University Medical Center, Mainz, Germany
| | - Christina Maul
- Institute of Physiological Chemistry, University Medical Center, Mainz, Germany
| | - Roland M Schmid
- Klinik und Poliklinik fuer Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Carsten T Wotjak
- Max Planck Institute of Psychiatry, Department of Stress Neurobiology and Neurogenetics, Munich, Germany
| | - Christoph K Stein-Thoeringer
- Klinik und Poliklinik fuer Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
| |
Collapse
|
9
|
Huang T, Ning Z, Hu D, Zhang M, Zhao L, Lin C, Zhong LLD, Yang Z, Xu H, Bian Z. Uncovering the Mechanisms of Chinese Herbal Medicine (MaZiRenWan) for Functional Constipation by Focused Network Pharmacology Approach. Front Pharmacol 2018; 9:270. [PMID: 29632490 PMCID: PMC5879454 DOI: 10.3389/fphar.2018.00270] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 03/09/2018] [Indexed: 12/20/2022] Open
Abstract
MaZiRenWan (MZRW, also known as Hemp Seed Pill) is a Chinese Herbal Medicine which has been demonstrated to safely and effectively alleviate functional constipation (FC) in a randomized, placebo-controlled clinical study with 120 subjects. However, the underlying pharmacological actions of MZRW for FC, are still largely unknown. We systematically analyzed the bioactive compounds of MZRW and mechanism-of-action biological targets through a novel approach called “focused network pharmacology.” Among the 97 compounds identified by UPLC-QTOF-MS/MS in MZRW extract, 34 were found in rat plasma, while 10 were found in rat feces. Hierarchical clustering analysis suggest that these compounds can be classified into component groups, in which compounds are highly similar to each other and most of them are from the same herb. Emodin, amygdalin, albiflorin, honokiol, and naringin were selected as representative compounds of corresponding component groups. All of them were shown to induce spontaneous contractions of rat colonic smooth muscle in vitro. Network analysis revealed that biological targets in acetylcholine-, estrogen-, prostaglandin-, cannabinoid-, and purine signaling pathways are able to explain the prokinetic effects of representative compounds and corresponding component groups. In conclusion, MZRW active components enhance colonic motility, possibly by acting on multiple targets and pathways.
Collapse
Affiliation(s)
- Tao Huang
- Lab of Brain and Gut Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Ziwan Ning
- Lab of Brain and Gut Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Dongdong Hu
- Lab of Brain and Gut Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong.,School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Man Zhang
- Lab of Brain and Gut Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong.,Guangzhou Research Institute of Snake Venom, Guangzhou Medical University, Guangzhou, China
| | - Ling Zhao
- Lab of Brain and Gut Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Chengyuan Lin
- Lab of Brain and Gut Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong.,YMU-HKBU Joint Laboratory of Traditional Natural Medicine, Yunnan Minzu University, Kunming, China
| | - Linda L D Zhong
- Lab of Brain and Gut Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong.,Hong Kong Chinese Medicine Clinical Study Centre, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Zhijun Yang
- Lab of Brain and Gut Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Hongxi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Zhaoxiang Bian
- Lab of Brain and Gut Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong.,Hong Kong Chinese Medicine Clinical Study Centre, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| |
Collapse
|
10
|
Novel derivatives of 1,2,3-triazole, cannabinoid-1 receptor ligands modulate gastrointestinal motility in mice. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:435-444. [PMID: 29404698 DOI: 10.1007/s00210-018-1465-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 01/09/2018] [Indexed: 02/05/2023]
Abstract
Cannabinoid-1 (CB1) receptors are broadly distributed in the central and peripheral nervous systems; among others, they are located in the enteric nervous system. In the gastrointestinal (GI) system, they participate in regulation of intestinal motility or ion transport. The aim of our study was to assess the effect of 1,2,3-triazole derivatives (compound 1: 2-[4,5-bis(2,4-dichlorophenyl)-2H-1,2,3-triazol-2-yl]-N-(2-fluorobenzyl)acetamide, compound 2: 2-[4,5-bis(2,4-dichlorophenyl)-2H-1,2,3-triazol-2-yl]-N-(4-fluorobenzyl)acetamide, compound 3: N-benzyl-2-[4-(4-chlorophenyl)-5-(2,4-dichlorophenyl)-2H-1,2,3-triazol-2-yl]acetamide]), characterized in vitro as CB1 antagonists with high CB1 over CB2 selectivity, in the mouse GI tract. The action of compounds 1-3 was assessed in vitro (electrical field stimulated smooth muscle contractility of the mouse ileum and colon) and in vivo (whole GI transit time). Compound 1 decreased ileal (10-6 M) and colonic (10-7-10-6 M) smooth muscles contractility. Moreover, it prolonged whole GI transit. Compound 2 (10-10-10-8 M) slightly increased the amplitude of muscle contractions in the ileum, but at a higher concentration (10-6 M), the amplitude was decreased. Compound 2 reduced colonic contractility but accelerated GI transit. Compound 3 decreased the amplitude of intestinal muscle contractions in the ileum (10-6 M) and colon (10-10-10-6 M). Moreover, it increased the GI transit time in vivo. Triazole derivatives possess easily modifiable structure and interesting pharmacological action in the GI tract; further, alterations may enhance their efficacy at CB receptors and provide low side effect profile in clinical conditions.
Collapse
|
11
|
Gach-Janczak K, Piekielna-Ciesielska J, Adamska-Bartłomiejczyk A, Perlikowska R, Kruszyński R, Kluczyk A, Krzywik J, Sukiennik J, Cerlesi MC, Calo G, Wasilewski A, Zielińska M, Janecka A. Synthesis and activity of opioid peptidomimetics with β 2- and β 3-amino acids. Peptides 2017; 95:116-123. [PMID: 28782637 DOI: 10.1016/j.peptides.2017.07.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/28/2017] [Accepted: 07/28/2017] [Indexed: 01/08/2023]
Abstract
Morphiceptin (Tyr-Pro-Phe-Pro-NH2) is a selective ligand of the mu opioid receptor, an important target in pain regulation. In this study, morphiceptin was modified at positions 2 or 3 by introduction of β2- or β3-amino acids and additionally in position 1 by replacing Tyr by Dmt (2',6'-dimethyltyrosine), which resulted in obtaining enzymatically stable analogs with mixed opioid receptor affinity profiles. An analog of the sequence Dmt-d-Ala-(R)-β2-1-Nal-Pro-NH2 [Nal=3-(1-naphthyl)-alanine] showed very high activity at the mu and delta receptors in the calcium mobilization functional test but did not cross the artificial membrane imitating the blood-brain barrier. In the in vivo test this analog induced strong antinociceptive effect in the writhing test in mice after intraperitioneal but also oral administration and inhibited diarrhea similarly to loperamide. Therefore, it may become an interesting lead compound in the development of peripherally restricted drugs for the treatment of gastrointestinal disorders.
Collapse
Affiliation(s)
| | | | | | | | - Rafał Kruszyński
- Department of X-ray Crystallography and Crystal Chemistry, Institute of General and Ecological Chemistry, Lodz University of Technology, Lodz, Poland
| | - Alicja Kluczyk
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland
| | | | | | - Maria Camilla Cerlesi
- Department of Medical Sciences, Section of Pharmacology and Italian Institute of Neuroscience, University of Ferrara, 44121 Ferrara, Italy
| | - Girolamo Calo
- Department of Medical Sciences, Section of Pharmacology and Italian Institute of Neuroscience, University of Ferrara, 44121 Ferrara, Italy
| | - Andrzej Wasilewski
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Poland
| | - Marta Zielińska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Poland
| | - Anna Janecka
- Department of Biomolecular Chemistry, Medical University, Lodz, Poland.
| |
Collapse
|
12
|
McQuade RM, Stojanovska V, Abalo R, Bornstein JC, Nurgali K. Chemotherapy-Induced Constipation and Diarrhea: Pathophysiology, Current and Emerging Treatments. Front Pharmacol 2016; 7:414. [PMID: 27857691 PMCID: PMC5093116 DOI: 10.3389/fphar.2016.00414] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 10/19/2016] [Indexed: 12/12/2022] Open
Abstract
Gastrointestinal (GI) side-effects of chemotherapy are a debilitating and often overlooked clinical hurdle in cancer management. Chemotherapy-induced constipation (CIC) and Diarrhea (CID) present a constant challenge in the efficient and tolerable treatment of cancer and are amongst the primary contributors to dose reductions, delays and cessation of treatment. Although prevalence of CIC is hard to estimate, it is believed to affect approximately 16% of cancer patients, whilst incidence of CID has been estimated to be as high as 80%. Despite this, the underlying mechanisms of both CID and CIC remain unclear, but are believed to result from a combination of intersecting mechanisms including inflammation, secretory dysfunctions, GI dysmotility and alterations in GI innervation. Current treatments for CIC and CID aim to reduce the severity of symptoms rather than combating the pathophysiological mechanisms of dysfunction, and often result in worsening of already chronic GI symptoms or trigger the onset of a plethora of other side-effects including respiratory depression, uneven heartbeat, seizures, and neurotoxicity. Emerging treatments including those targeting the enteric nervous system present promising avenues to alleviate CID and CIC. Identification of potential targets for novel therapies to alleviate chemotherapy-induced toxicity is essential to improve clinical outcomes and quality of life amongst cancer sufferers.
Collapse
Affiliation(s)
- Rachel M McQuade
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne VIC, Australia
| | - Vanesa Stojanovska
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne VIC, Australia
| | - Raquel Abalo
- Área de Farmacología y Nutrición, Universidad Rey Juan CarlosMadrid, Spain; Grupo de Excelencia Investigadora URJC, Banco de Santander Grupo Multidisciplinar de Investigación y Tratamiento del Dolor, Universidad Rey Juan CarlosMadrid, Spain; Unidad Asociada al Instituto de Química Médica del Consejo Superior de Investigaciones CientíficasMadrid, Spain; Unidad Asociada al Instituto de Investigación en Ciencias de la Alimentación del Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - Joel C Bornstein
- Department of Physiology, University of Melbourne, Melbourne VIC, Australia
| | - Kulmira Nurgali
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne VIC, Australia
| |
Collapse
|
13
|
Lee Y, Jo J, Chung HY, Pothoulakis C, Im E. Endocannabinoids in the gastrointestinal tract. Am J Physiol Gastrointest Liver Physiol 2016; 311:G655-G666. [PMID: 27538961 DOI: 10.1152/ajpgi.00294.2015] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 08/13/2016] [Indexed: 02/08/2023]
Abstract
The endocannabinoid system mainly consists of endogenously produced cannabinoids (endocannabinoids) and two G protein-coupled receptors (GPCRs), cannabinoid receptors 1 and 2 (CB1 and CB2). This system also includes enzymes responsible for the synthesis and degradation of endocannabinoids and molecules required for the uptake and transport of endocannabinoids. In addition, endocannabinoid-related lipid mediators and other putative endocannabinoid receptors, such as transient receptor potential channels and other GPCRs, have been identified. Accumulating evidence indicates that the endocannabinoid system is a key modulator of gastrointestinal physiology, influencing satiety, emesis, immune function, mucosal integrity, motility, secretion, and visceral sensation. In light of therapeutic benefits of herbal and synthetic cannabinoids, the vast potential of the endocannabinoid system for the treatment of gastrointestinal diseases has been demonstrated. This review focuses on the role of the endocannabinoid system in gut homeostasis and in the pathogenesis of intestinal disorders associated with intestinal motility, inflammation, and cancer. Finally, links between gut microorganisms and the endocannabinoid system are briefly discussed.
Collapse
Affiliation(s)
- Yunna Lee
- College of Pharmacy, Pusan National University, Busan, Korea; and
| | - Jeongbin Jo
- College of Pharmacy, Pusan National University, Busan, Korea; and
| | - Hae Young Chung
- College of Pharmacy, Pusan National University, Busan, Korea; and
| | - Charalabos Pothoulakis
- Section of Inflammatory Bowel Disease & Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Eunok Im
- College of Pharmacy, Pusan National University, Busan, Korea; and
| |
Collapse
|
14
|
Abstract
Irritable bowel syndrome (IBS) is a prevalent functional gastrointestinal disorder, which represents a major cost to healthcare services. Current pharmacological treatment includes fibre supplements, antispasmodics, laxatives, loperamide and antidepressants. This article reviews the novel pharmacological treatments already or recently approved for patients with IBS-C (lubiprostone, linaclotide) and IBS-D (alosetron, ramosetron, rifaximin, eluxadoline). Furthermore, results for drugs in development (plecanatide, ibudutant and ebastine) or used in chronic constipation or for other indications, with potential application in IBS (prucalopride, elobixibat, mesalazine, ondansetron and colesevelam) are also reviewed.
Collapse
Affiliation(s)
- Maura Corsetti
- a Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven , Leuven , Belgium
| | - Peter Whorwell
- b Centre for Gastrointestinal Sciences , University Manchester , Manchester , UK
| |
Collapse
|
15
|
Mosińska P, Salaga M, Fichna J. Novel investigational drugs for constipation-predominant irritable bowel syndrome: a review. Expert Opin Investig Drugs 2016; 25:275-86. [PMID: 26765585 DOI: 10.1517/13543784.2016.1142532] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Constipation-predominant irritable bowel syndrome (IBS-C) is a functional gastrointestinal (GI) disorder with an unknown etiology. A number of the drugs tested for IBS-C have also been applied to chronic constipation and chronic idiopathic constipation. Unfortunately, due to severe adverse effects, many drugs envisioned for IBS-C had been withdrawn from the market. Nevertheless, a number of potential new agents for this indication are now under development. AREAS COVERED The following review describes the most recently developed agents in preclinical as well as Phase 1 and Phase 2 clinical studies. Information was obtained from published literature, abstracts and the latest results found in Clinicaltrial.gov database. The authors put a special interest on glucagon-like peptide 1 analogue, bile acid modulators, serotonergic agents, guanylate cyclase C and cannabinoid antagonists. EXPERT OPINION To enter the market, a newly-developed drug has to meet several criteria, such as good bioavailability or the absence of drug-related adverse events. Taking into account constipation and abdominal pain as the main symptoms in IBS-C, a novel successful drug is usually able to improve both at the same time. Four out of fifteen investigational drugs described in this paper belong to the serotonergic family and have a good prognosis to reach the market; still, more long-term clinical studies are warranted.
Collapse
Affiliation(s)
- Paula Mosińska
- a Department of Biochemistry, Faculty of Medicine , Medical University of Lodz , Lodz , Poland
| | - Maciej Salaga
- a Department of Biochemistry, Faculty of Medicine , Medical University of Lodz , Lodz , Poland
| | - Jakub Fichna
- a Department of Biochemistry, Faculty of Medicine , Medical University of Lodz , Lodz , Poland
| |
Collapse
|
16
|
Calea zacatechichi dichloromethane extract exhibits antidiarrheal and antinociceptive effects in mouse models mimicking irritable bowel syndrome. Naunyn Schmiedebergs Arch Pharmacol 2015; 388:1069-77. [PMID: 26068703 PMCID: PMC4561081 DOI: 10.1007/s00210-015-1142-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/02/2015] [Indexed: 01/20/2023]
Abstract
Calea zacatechichi Schltdl. (Asteraceae alt. Compositae) is a Mexican plant commonly used in folk medicine to treat respiratory and gastrointestinal (GI) disorders. The objective of this study is to characterize the effect of C. zacatechichi extracts in mouse models mimicking the symptoms of irritable bowel syndrome (IBS). Powdered C. zacatechichi herb (leaves, stems, and flowers) was extracted with methanol. Methanolic extract was filtered and evaporated giving methanolic fraction. The residue was extracted with dichloromethane (DCM). Methanolic and DCM (200 mg/kg, per os) extracts were screened for their effect on GI motility in several in vitro tests, and the antidiarrheal and antinociceptive effects were assessed using mouse models. The influence of the DCM extract on motoric parameters and exploratory behaviors was also assessed. Finally, the composition of C. zacatechichi DCM extract was qualitatively analyzed using liquid chromatography-mass spectrometry (LC-MS) method. C. zacatechichi DCM extract significantly inhibited the contractility of mouse colon in vitro (IC50 = 17 ± 2 μg/ml). Administration of the DCM extract in vivo (200 mg/kg, per os) significantly prolonged the time of whole GI transit (46 ± 1 vs. 117 ± 27 min for control and DCM-treated animals, respectively; P = 0.0023), inhibited hypermotility, and reduced pain in mouse models mimicking functional GI disorders. Our findings suggest that constituents of the C. zacatechichi DCM extract exhibit antidiarrheal and analgesic activity. The extract may thus become an attractive material for isolation of compounds that may be used as a supplementary treatment for pain and diarrhea associated with IBS in the future.
Collapse
|
17
|
Kannampalli P, Sengupta JN. Role of principal ionotropic and metabotropic receptors in visceral pain. J Neurogastroenterol Motil 2015; 21:147-58. [PMID: 25843070 PMCID: PMC4398235 DOI: 10.5056/jnm15026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 02/24/2015] [Accepted: 03/26/2015] [Indexed: 12/13/2022] Open
Abstract
Visceral pain is the most common form of pain caused by varied diseases and a major reason for patients to seek medical consultation. It also leads to a significant economic burden due to workdays lost and reduced productivity. Further, long-term use of non-specific medications is also associated with side effects affecting the quality of life. Despite years of extensive research and the availability of several therapeutic options, management of patients with chronic visceral pain is often inadequate, resulting in frustration for both patients and physicians. This is, most likely, because the mechanisms associated with chronic visceral pain are different from those of acute pain. Accumulating evidence from years of research implicates several receptors and ion channels in the induction and maintenance of central and peripheral sensitization during chronic pain states. Understanding the specific role of these receptors will facilitate to capitalize on their unique properties to augment the therapeutic efficacy while at the same time minimizing unwanted side effects. The aim of this review is to provide a concise review of the recent literature that reports on the role of principal ionotropic receptors and metabotropic receptors in the modulation visceral pain. We also include an overview of the possibility of these receptors as potential new targets for the treatment of chronic visceral pain conditions.
Collapse
Affiliation(s)
- Pradeep Kannampalli
- Division of Gastroenterology and Hepatology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jyoti N Sengupta
- Division of Gastroenterology and Hepatology, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
18
|
Zielińska M, Chen C, Mokrowiecka A, Cygankiewicz AI, Zakrzewski PK, Sałaga M, Małecka-Panas E, Wlaź P, Krajewska WM, Fichna J. Orally administered novel cyclic pentapeptide P-317 alleviates symptoms of diarrhoea-predominant irritable bowel syndrome. J Pharm Pharmacol 2014; 67:244-54. [DOI: 10.1111/jphp.12335] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 09/09/2014] [Indexed: 12/20/2022]
Abstract
Abstract
Objective
The aim of our study was to characterize the effect of P-317, a novel cyclic derivative of morphiceptin, on gastrointestinal (GI) motility and abdominal pain in mouse models mimicking symptoms of diarrhoea-predominant irritable bowel syndrome (IBS-D).
Methods
The effect of P-317 on mouse intestinal motility was characterized in vitro and in vivo in physiological and pathopysiological conditions. The antinociceptive action of P-317 was characterized in the mustard oil-induced abdominal pain model and the writhing test. Locomotor activity and grip-strength tests were used to evaluate the effect of P-317 in the central nervous system (CNS). To translate our study to clinical conditions, the semi-quantitative expression of μ-opioid receptors (MOP) and κ-opioid receptors (KOP) messenger RNA (mRNA) in human colonic samples from IBS-D patients was quantified.
Key findings
In vitro, P-317 (10−10–10−6 M) inhibited colonic and ileal smooth muscle contractions in a concentration-dependent, β-funaltrexamine and nor-binaltorphimine-reversible manner. In vivo, P-317 (0.1 mg/kg, i.p. and 1 mg/kg, p.o.) inhibited GI transit, displayed a potent antinociceptive action in abdominal pain tests and did not influence the CNS.
Conclusion
P-317 produced a potent analgesic and antidiarrhoeal action in the mouse GI tract after oral administration. Given lower expression of MOP and KOP mRNA in IBS-D patients, P-317 is a promising peptide-based drug candidate for IBS-D therapy.
Collapse
Affiliation(s)
- Marta Zielińska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Chunqiu Chen
- Department of Gastroenterological Surgery, Tenth People’s Hospital of Shanghai, School of Medicine, Tongji University, Shanghai, China
| | - Anna Mokrowiecka
- Department of Digestive Tract Diseases, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Adam I Cygankiewicz
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Piotr K Zakrzewski
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Maciej Sałaga
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Ewa Małecka-Panas
- Department of Digestive Tract Diseases, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Piotr Wlaź
- Department of Animal Physiology, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, Lublin, Poland
| | - Wanda M Krajewska
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
- Department of Gastroenterological Surgery, Tenth People’s Hospital of Shanghai, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
19
|
Novel orally available salvinorin A analog PR-38 protects against experimental colitis and reduces abdominal pain in mice by interaction with opioid and cannabinoid receptors. Biochem Pharmacol 2014; 92:618-26. [PMID: 25265540 DOI: 10.1016/j.bcp.2014.09.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/17/2014] [Accepted: 09/18/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND Salvinorin A (SA) is a potent anti-inflammatory diterpene isolated from the Mexican plant S. divinorum. Recently we showed that the novel SA analog, PR-38 has an inhibitory effect on mouse gastrointestinal (GI) motility mediated by opioid and cannabinoid (CB) receptors. The aim of the study was to characterize possible anti-inflammatory and antinociceptive action of PR-38 in the mouse GI tract. METHODS Macro- and microscopic colonic damage scores and myeloperoxidase activity were determined after intraperitoneal (i.p.), intracolonic (i.c.), and per os (p.o.) administration of PR-38 in the trinitrobenzene sulfonic acid (TNBS) and dextran sodium sulfate (DSS) models of colitis in mice. Additionally, MOP, KOP and CB1 protein expression was determined using Western blot analysis of mouse colon samples. The antinociceptive effect of PR-38 was examined based on the number of behavioral responses to i.c. instillation of mustard oil (MO). RESULTS The i.p. (10 mg/kg, twice daily), i.c. (10 mg/kg, twice daily) and p.o. (20 mg/kg, once daily) administration of PR-38 significantly attenuated TNBS- and DSS-induced colitis in mice. The effect of PR-38 was partially blocked by the KOP antagonist nor-binaltorphimine and CB1 antagonist AM 251. Western blot analysis showed a significant increase of MOP, KOP and CB1 receptor expression during colonic inflammation, which was reversed to the control levels by the administration of PR-38. PR-38 significantly decreased the number of pain responses after i.c. instillation of MO in the TNBS-treated mice. CONCLUSIONS Our results suggest that PR-38 has the potential to become a valuable anti-inflammatory and analgesic therapeutic for the treatment of GI inflammation.
Collapse
|
20
|
Experimental colitis in mice is attenuated by changes in the levels of endocannabinoid metabolites induced by selective inhibition of fatty acid amide hydrolase (FAAH). J Crohns Colitis 2014; 8:998-1009. [PMID: 24530133 PMCID: PMC4136976 DOI: 10.1016/j.crohns.2014.01.025] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 01/29/2014] [Accepted: 01/29/2014] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS Pharmacological treatment and/or maintenance of remission in inflammatory bowel diseases (IBD) is currently one of the biggest challenge in the field of gastroenterology. Available therapies are mostly limited to overcoming the symptoms, but not the cause of the disease. Recently, the endocannabinoid system has been proposed as a novel target in the treatment of IBD. Here we aimed to assess the anti-inflammatory action of the novel fatty acid amide hydrolase (FAAH) inhibitor PF-3845 and its effect on the endocannabinoid and related lipid metabolism during the course of experimental colitis. METHODS We used two models of experimental colitis in mice (TNBS- and DSS-induced) and additionally, we employed LC/MS/MS spectrometry to determine the changes in biolipid levels in the mouse colon during inflammation. RESULTS We showed that the FAAH inhibitor PF-3845 reduced experimental TNBS-induced colitis in mice and its anti-inflammatory action is associated with altering the levels of selected biolipids (arachidonic and oleic acid derivatives, prostaglandins and biolipids containing glycine in the mouse colon). CONCLUSIONS We show that FAAH is a promising pharmacological target and the FAAH-dependent biolipids play a major role in colitis. Our results highlight and promote therapeutic strategy based on targeting FAAH-dependent metabolic pathways in order to alleviate intestinal inflammation.
Collapse
|
21
|
Davis MP. Cannabinoids in pain management: CB1, CB2 and non-classic receptor ligands. Expert Opin Investig Drugs 2014; 23:1123-40. [PMID: 24836296 DOI: 10.1517/13543784.2014.918603] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Commercially available cannabinoids are subject to psychotomimetic and addiction (cannabinomimetic) adverse effects largely through activation of the cannabinoid 1 receptor (CB1r). The available commercial cannabinoids have a narrow therapeutic index. Recently developed peripherally restricted cannabinoids, regionally administered cannabinoids, bifunctional cannabinoid ligands and cannabinoid enzyme inhibitors, endocannabinoids, which do not interact with classic cannabinoid receptors (CB1r and CB2r), cannabinoid receptor antagonists and selective CB1r agonists hold promise as analgesics. AREAS COVERED This author provides a review of the current investigational cannabinoids currently in development for pain management. The author also provides their perspective on the future of the field. EXPERT OPINION Regional and peripherally restricted cannabinoids will reduce cannabinomimetic side effects. Spinal cannabinoids may increase the therapeutic index by limiting the dose necessary for response and minimize drugs exposure to supraspinal sites where cannabinomimetic side effects originate. Cannabinoid bifunctional ligands should be further explored. The combination of a CB2r agonist with a transient receptor potential vanilloid (TRPV-1) antagonist may improve the therapeutic index of the CB2r agonist. Enzyme inhibitors plus TRPV-1 blockers should be further explored. The development of analgesic tolerance with enzyme inhibitors and the pronociceptive effects of prostamides limit the benefits to cannabinoid hydrolyzing enzyme inhibitors. Most clinically productive development of cannabinoids over the next 5 years will be in the area of selective CB2r agonists. These agents will be tested in various inflammatory, osteoarthritis and neuropathic pains.
Collapse
Affiliation(s)
- Mellar P Davis
- The Cleveland Clinic Taussig Cancer Institute, The Harry R. Horvitz Center for Palliative Medicine, Department of Solid Tumor Oncology , 9500 Euclid Avenue R35, Cleveland, OH 44195 , USA +1 216 445 4622 ; +1 216 636 3179 ;
| |
Collapse
|
22
|
Sobczak M, Cami-Kobeci G, Sałaga M, Husbands SM, Fichna J. Novel mixed NOP/MOP agonist BU08070 alleviates pain and inhibits gastrointestinal motility in mouse models mimicking diarrhea-predominant irritable bowel syndrome symptoms. Eur J Pharmacol 2014; 736:63-9. [PMID: 24815321 DOI: 10.1016/j.ejphar.2014.04.038] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/23/2014] [Accepted: 04/24/2014] [Indexed: 12/13/2022]
Abstract
The opioid and nociceptin systems play a crucial role in the maintenance of homeostasis in the gastrointestinal (GI) tract. The aim of this study was to characterize the effect of BU08070, a novel mixed MOP/NOP agonist, on mouse intestinal contractility in vitro and GI motility in vivo in physiological conditions and in animal models mimicking symptoms of irritable bowel syndrome (IBS), including diarrhea and abdominal pain. The effect of BU08070 on muscle contractility in vitro was characterized in the ileum and colon. To assess the effect of BU08070 in vivo, the following parameters were assessed: whole GI transit, gastric emptying, geometric center, colonic bead expulsion, fecal pellet output and time to castor oil-induced diarrhea. The antinociceptive activity of BU08070 was characterized in the mustard oil (MO)-induced abdominal pain model and the writhing test, alone and in the presence of MOP and NOP antagonists. in vitro, BU08070 (10(-10)-10(-6) M) inhibited colonic and ileal smooth muscle contractions in a concentration-dependent manner. in vivo, BU08070 prolonged the whole GI transit and inhibited colonic bead expulsion. The antitransit and antidiarrheal effects of BU08070 were observed already at the dose of 0.1 mg/kg (i.p.). BU08070 reversed hypermotility and reduced pain in mouse models mimicking IBS-D symptoms. Our results suggest that BU08070 has a potential of becoming an efficient drug in IBS-D therapy. Here we also validate mixed NOP/MOP receptor targeting as possible future treatment of functional GI diseases.
Collapse
Affiliation(s)
- Marta Sobczak
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| | - Gerta Cami-Kobeci
- Department of Pharmacy and Pharmacology, University of Bath, Bath, UK
| | - Maciej Sałaga
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| | | | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland.
| |
Collapse
|
23
|
Fichna J, Sałaga M, Stuart J, Saur D, Sobczak M, Zatorski H, Timmermans JP, Bradshaw HB, Ahn K, Storr MA. Selective inhibition of FAAH produces antidiarrheal and antinociceptive effect mediated by endocannabinoids and cannabinoid-like fatty acid amides. Neurogastroenterol Motil 2014; 26:470-81. [PMID: 24460851 DOI: 10.1111/nmo.12272] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 11/08/2013] [Indexed: 12/21/2022]
Abstract
BACKGROUND The endogenous cannabinoid system (ECS) plays a crucial role in multiple physiological processes in the central nervous system and in the periphery. The discovery that selective cannabinoid (CB) receptor agonists exert a potent inhibitory action on gastrointestinal (GI) motility and pain has placed the ECS in the center of attention as a possible target for the treatment of functional GI diseases. However, side effects of CB agonists prompted the search for novel therapeutic targets. Here, the effect of PF-3845, a potent and selective fatty acid amide hydrolase (FAAH) inhibitor in the GI tract was investigated. METHODS The effect of PF-3845 on GI motility was characterized in vitro and in vivo, using mouse models that mimic physiological and pathophysiological conditions. The antinociceptive action of PF-3845 was evaluated on the basis of behavioral pain models. Endocannabinoid degradation product levels after inhibition of FAAH were quantified using HPLC-MS/MS. KEY RESULTS PF-3845 significantly inhibited mouse colonic motility in vitro and in vivo. Selective inhibition of FAAH reversed hypermotility and reduced pain in mouse models mimicking functional GI disorders. The effects of PF-3845 were mediated by endogenous CBs and non-CB lipophilic compounds via classical (CB1) and atypical CB receptors. CONCLUSIONS & INFERENCES These data expand our understanding of the ECS function and provide a novel framework for the development of future potential treatments of functional GI disorders.
Collapse
Affiliation(s)
- J Fichna
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada; Department of Medicine, Division of Gastroenterology, University of Calgary, Calgary, AB, Canada; Department of Biomolecular Chemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Sobczak M, Mokrowiecka A, Cygankiewicz AI, Zakrzewski PK, Sałaga M, Storr M, Kordek R, Małecka-Panas E, Krajewska WM, Fichna J. Anti-inflammatory and antinociceptive action of an orally available nociceptin receptor agonist SCH 221510 in a mouse model of inflammatory bowel diseases. J Pharmacol Exp Ther 2014; 348:401-9. [PMID: 24345466 DOI: 10.1124/jpet.113.209825] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The nociceptin receptors (NOPs) are expressed in the gastrointestinal (GI) tract on muscle cell membranes and neurons, as well as the immune cells that infiltrate the mucosa. The involvement of NOPs in the pathophysiology of GI inflammation has been suggested, but due to the lack of selective NOP agonists, it never fully elucidated. Our aim was to characterize the anti-inflammatory and antinociceptive effect of the NOP agonist, SCH 221510 [3-endo-8-[bis(2-methylphenyl)methyl]-3-phenyl-8-azabicyclo [3.2.1]octan-3-ol], as a potential therapeutic strategy in the treatment of inflammatory bowel diseases (IBD). The anti-inflammatory action of SCH 221510 was determined after intraperitoneal, oral, and intracolonic administration of SCH 221510 (0.1-3.0 mg/kg once or twice daily) in mice treated with 2,4,6-trinitrobenzenesulfonic acid (TNBS). Antinociceptive action of SCH 221510 was evaluated in the mouse model of mustard oil (MO)-induced abdominal pain. Relative NOP mRNA expression was assessed in patients with IBD using real-time reverse transcriptase-polymerase chain reaction. We found that the expression of NOP mRNA was significantly decreased in patients with IBD. The administration (0.1 and 1.0 mg/kg i.p. twice daily and 3 mg/kg p.o. twice daily) of SCH 221510 attenuated TNBS colitis in mice. This effect was blocked by a selective NOP antagonist [J-113397 [(±)-1-[(3R*,4R*)-1-(cyclooctylmethyl)-3-(hydroxymethyl)-4-piperidinyl]-3-ethyl-1,3-dihydro-2H-benzimidazol-2-one]]. The intracolonic injections of SCH 221510 did not improve colitis in mice. The antinociceptive effect of SCH 221510 was observed after oral administration of SCH 221510 in MO-induced pain tests in mice with acute colitis. In conclusion, our results show a potent anti-inflammatory and antinociceptive effect upon selective activation of NOP receptors and suggest that the NOP agonist SCH 221510 is a promising drug candidate for future treatment of IBD.
Collapse
MESH Headings
- Abdominal Pain/chemically induced
- Abdominal Pain/drug therapy
- Administration, Oral
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
- Azabicyclo Compounds/pharmacology
- Azabicyclo Compounds/therapeutic use
- Case-Control Studies
- Colitis, Ulcerative/chemically induced
- Colitis, Ulcerative/drug therapy
- Colitis, Ulcerative/pathology
- Colon/metabolism
- Colon/pathology
- Female
- Humans
- Inflammatory Bowel Diseases/chemically induced
- Inflammatory Bowel Diseases/drug therapy
- Inflammatory Bowel Diseases/pathology
- Intestinal Mucosa/metabolism
- Intestinal Mucosa/pathology
- Male
- Mice
- Mice, Inbred BALB C
- Middle Aged
- Mustard Plant
- Plant Oils
- Receptors, Opioid/agonists
- Receptors, Opioid/metabolism
- Trinitrobenzenesulfonic Acid
- Young Adult
- Nociceptin Receptor
Collapse
Affiliation(s)
- Marta Sobczak
- Department of Biomolecular Chemistry (M.So., M.Sa., J.F.), Department of Digestive Tract Diseases (A.M., E.M.-P.), and Department of Pathology (R.K.), Faculty of Medicine, Medical University of Lodz, Lodz, Poland; Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland (A.I.C., P.K.Z., W.M.K.); and Department of Medicine, Division of Gastroenterology, Ludwig Maximilians University of Munich, Munich, Germany (M.St.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Chen C, Fichna J, Laudon M, Storr M. Antinociceptive effects of novel melatonin receptor agonists in mouse models of abdominal pain. World J Gastroenterol 2014; 20:1298-1304. [PMID: 24574803 PMCID: PMC3921511 DOI: 10.3748/wjg.v20.i5.1298] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 09/10/2013] [Accepted: 11/05/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To characterize the antinociceptive action of the novel melatonin receptor (MT) agonists, Neu-P11 and Neu-P12 in animal models of visceral pain.
METHODS: Visceral pain was induced by intracolonic (ic) application of mustard oil or capsaicin solution or by intraperitoneal (ip) administration of acetic acid. Neu-P11, Neu-P12, or melatonin were given ip or orally and their effects on pain-induced behavioral responses were evaluated. To identify the receptors involved, the non-selective MT1/MT2 receptor antagonist luzindole, the MT2 receptor antagonist 4-P-PDOT, or the μ-opioid receptor antagonist naloxone were injected ip or intracerebroventricularly (icv) prior to the induction of pain.
RESULTS: Orally and ip administered melatonin, Neu-P11, and Neu-P12 reduced pain responses in a dose-dependent manner. Neu-P12 was more effective and displayed longer duration of action compared to melatonin. The antinociceptive effects of Neu-P11 or Neu-P12 were antagonized by ip or icv. administered naloxone. Intracerebroventricularly, but not ip administration of luzindole or 4-P-PDOT blocked the antinociceptive actions of Neu-P11 or Neu-P12.
CONCLUSION: Neu-P12 produced the most potent and long-lasting antinociceptive effect. Further development of Neu-P12 for future treatment of abdominal pain seems promising.
Collapse
|
26
|
[Esthetic-preventive conservation of first molars in mixed dentition]. Handb Exp Pharmacol 1990; 231:423-47. [PMID: 2640817 DOI: 10.1007/978-3-319-20825-1_15] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|