1
|
Hall LM, Munasinghe VS, Vella NGF, Ellis JT, Stark D. Observations on the transmission of Dientamoeba fragilis and the cyst life cycle stage. Parasitology 2024; 151:337-345. [PMID: 38250789 PMCID: PMC11007279 DOI: 10.1017/s0031182024000076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/20/2023] [Accepted: 01/11/2024] [Indexed: 01/23/2024]
Abstract
Little is known about the life cycle and mode of transmission of Dientamoeba fragilis. Recently it was suggested that fecal–oral transmission of cysts may play a role in the transmission of D. fragilis. In order to establish an infection, D. fragilis is required to remain viable when exposed to the pH of the stomach. In this study, we investigated the ability of cultured trophozoites to withstand the extremes of pH. We provide evidence that trophozoites of D. fragilis are vulnerable to highly acidic conditions. We also investigated further the ultrastructure of D. fragilis cysts obtained from mice and rats by transmission electron microscopy. These studies of cysts showed a clear cyst wall surrounding an encysted parasite. The cyst wall was double layered with an outer fibrillar layer and an inner layer enclosing the parasite. Hydrogenosomes, endoplasmic reticulum and nuclei were present in the cysts. Pelta-axostyle structures, costa and axonemes were identifiable and internal flagellar axonemes were present. This study therefore provides additional novel details and knowledge of the ultrastructure of the cyst stage of D. fragilis.
Collapse
Affiliation(s)
- Luke M. Hall
- School of Life Sciences, University of Technology Sydney, Broadway, NSW 2007, Australia
- Division of Microbiology, Sydpath, St Vincent's Hospital, Darlinghurst, NSW 2010, Australia
| | - Varuni S. Munasinghe
- School of Life Sciences, University of Technology Sydney, Broadway, NSW 2007, Australia
| | - Nicole G. F. Vella
- Macquarie University Microscopy Unit, Faculty of Science and Engineering, Macquarie University, North Ryde, NSW 2109, Australia
| | - John T. Ellis
- School of Life Sciences, University of Technology Sydney, Broadway, NSW 2007, Australia
| | - Damien Stark
- Division of Microbiology, Sydpath, St Vincent's Hospital, Darlinghurst, NSW 2010, Australia
| |
Collapse
|
2
|
Duffy EP, Bachtell RK, Ehringer MA. Opioid trail: Tracking contributions to opioid use disorder from host genetics to the gut microbiome. Neurosci Biobehav Rev 2024; 156:105487. [PMID: 38040073 PMCID: PMC10836641 DOI: 10.1016/j.neubiorev.2023.105487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023]
Abstract
Opioid use disorder (OUD) is a worldwide public health crisis with few effective treatment options. Traditional genetics and neuroscience approaches have provided knowledge about biological mechanisms that contribute to OUD-related phenotypes, but the complexity and magnitude of effects in the brain and body remain poorly understood. The gut-brain axis has emerged as a promising target for future therapeutics for several psychiatric conditions, so characterizing the relationship between host genetics and the gut microbiome in the context of OUD will be essential for development of novel treatments. In this review, we describe evidence that interactions between host genetics, the gut microbiome, and immune signaling likely play a key role in mediating opioid-related phenotypes. Studies in humans and model organisms consistently demonstrated that genetic background is a major determinant of gut microbiome composition. Furthermore, the gut microbiome is susceptible to environmental influences such as opioid exposure. Additional work focused on gene by microbiome interactions will be necessary to gain improved understanding of their effects on OUD-related behaviors.
Collapse
Affiliation(s)
- Eamonn P Duffy
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA; Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA.
| | - Ryan K Bachtell
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA; Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Marissa A Ehringer
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA; Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
3
|
Gálvez-Robleño C, López-Tofiño Y, López-Gómez L, Bagüés A, Soto-Montenegro ML, Abalo R. Radiographic assessment of the impact of sex and the circadian rhythm-dependent behaviour on gastrointestinal transit in the rat. Lab Anim 2022:236772221124381. [DOI: 10.1177/00236772221124381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Relatively little is known about the influence of sex and the circadian rhythm on gastrointestinal transit. However, these factors could have an important impact on aspects such as digestion, oral absorption of drugs or the clinical manifestation of gastrointestinal diseases, among others. Remarkably, preclinical models have scarcely taken these factors into consideration. In this study, we assessed the gastrointestinal transit of young adult Wistar Han rats of both sexes, under normal and inverted light cycle. To do this, serial radiographs were taken for 24 h (T0–T24) after intragastric barium administration and subsequently analysed to construct transit curves for each gastrointestinal region. Under a normal light cycle, transit curves were similar, except for a slower transit in females compared with males from T8 to T24. Under the inverted cycle, there was a significant acceleration in stomach emptying (similar in both sexes), emptying of the small intestine (even faster in females) and filling of the caecum and colon (which was also even faster in females). This study confirms, using X-ray non-invasive methods for the first time, that both sex and circadian rhythm (probably through its effect on behaviour) influence gastrointestinal transit in laboratory animals.
Collapse
Affiliation(s)
- Carlos Gálvez-Robleño
- Department of Basic Health Sciences, University Rey Juan Carlos (URJC), Spain
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut), University Rey Juan Carlos (URJC), Spain
| | - Yolanda López-Tofiño
- Department of Basic Health Sciences, University Rey Juan Carlos (URJC), Spain
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut), University Rey Juan Carlos (URJC), Spain
| | - Laura López-Gómez
- Department of Basic Health Sciences, University Rey Juan Carlos (URJC), Spain
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut), University Rey Juan Carlos (URJC), Spain
| | - Ana Bagüés
- Department of Basic Health Sciences, University Rey Juan Carlos (URJC), Spain
- Unidad Asociada I+D+i al Instituto de Química Médica, IQM (CSIC), Spain
- High Performance Research Group in Experimental Pharmacology (PHARMAKOM), University Rey Juan Carlos (URJC), Spain
| | - María Luisa Soto-Montenegro
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut), University Rey Juan Carlos (URJC), Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Spain
- CIBER de Salud Mental (CIBERSAM), Spain
| | - Raquel Abalo
- Department of Basic Health Sciences, University Rey Juan Carlos (URJC), Spain
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut), University Rey Juan Carlos (URJC), Spain
- Unidad Asociada I+D+i al Instituto de Química Médica, IQM (CSIC), Spain
- Grupo de Trabajo de Ciencias Básicas en Dolor y Analgesia de la Sociedad Española del Dolor, Spain
- Grupo de Trabajo de Cannabinoides de la Sociedad Española del Dolor, Spain
| |
Collapse
|
4
|
Ji J, Yan N, Zhang Z, Li B, Xue R, Dang Y. Characterized profiles of gut microbiota in morphine abstinence-induced depressive-like behavior. Neurosci Lett 2022; 788:136857. [PMID: 36038030 DOI: 10.1016/j.neulet.2022.136857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 10/15/2022]
Abstract
Morphine is the most widely used analgesic for pain management worldwide. Abstinence of morphine could lead to neuropsychiatric symptoms, including depression. Gut microbiota is believed to contribute to the development of depression. However, the characteristics and potential role of gut microbiota in morphine abstinence-induced depression remain unclear. In the present study, we first established morphine abstinence-induced depressive behavior in mice. After dividing the mice into depressive and non-depressive groups, the gut microbiota of the mice was detected by 16S rRNA gene sequencing. The difference in the diversities and abundance of the gut microbiota were analyzed between groups. Then, the representative microbial markers that could distinguish each group were identified. In addition, gene function prediction of the operational taxonomic units (OTUs) with differential abundance between the depressive and non-depressive groups after morphine abstinence was conducted. Our results suggested that four weeks of abstinence from morphine did not change the richness of the gut microbiota. However, morphine abstinence influenced the gut microbial composition. Several specific genera of gut microbiota were identified as markers for each group. Interestingly, gene function prediction found that the fatty acid metabolism pathway was enriched in the OUTs in the depressive group compared with the non-depressive group after morphine abstinence. Our data suggested that gut microbiota dysbiosis was associated with morphine abstinence-induced depressive behavior, possibly by implicating the fatty acid metabolism pathway.
Collapse
Affiliation(s)
- Jinshan Ji
- Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, China; Department of Preventive Medicine, Medical College of Yan'an University, Yan'an 716000, Shanxi, China
| | - Ni Yan
- Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, China; Department of Disease Control and Prevention, The Affiliated Ninth Hospital of Xi'an of Xi'an Jiaotong University, Xi'an 710054, Shaanxi, China
| | - Zhengxiang Zhang
- Department of Preventive Medicine, Medical College of Yan'an University, Yan'an 716000, Shanxi, China
| | - Baoli Li
- Department of Preventive Medicine, Medical College of Yan'an University, Yan'an 716000, Shanxi, China
| | - Ruiyang Xue
- Department of Preventive Medicine, Medical College of Yan'an University, Yan'an 716000, Shanxi, China
| | - Yonghui Dang
- Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, China.
| |
Collapse
|
5
|
Bagues A, Girón R, Abalo R, Goicoechea C, Martín-Fontelles MI, Sánchez-Robles EM. SHORT-TERM STRESS SIGNIFICANTLY DECREASES MORPHINE ANALGESIA IN TRIGEMINAL BUT NOT IN SPINAL INNERVATED AREAS IN RATS. Behav Brain Res 2022; 435:114046. [PMID: 35933048 DOI: 10.1016/j.bbr.2022.114046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/26/2022] [Accepted: 08/02/2022] [Indexed: 11/15/2022]
Abstract
Plenty information exists regarding the effects of chronic stress, although few data exist on the effects of short-lasting stressors, which would mimic daily challenges. Differences in craniofacial and spinal nociception have been observed, thus those observations obtained in spinally innervated areas cannot be directly applied to the orofacial region. Although, opioids are considered amongst the most effective analgesics, their use is sometimes hampered by the constipation they induce. Thus, our aims were to study if a short-lasting stressor, forced swim stress (FSS), modifies nociception, morphine antinociception and constipation in rats. Animals were submitted to 10-20min of FSS for three days, nociception and gastrointestinal transit were studied 24h after the last swimming session. Nociception and morphine (0.6-5mg/kg) antinociception were evaluated in the formalin and hypertonic saline tests in the orofacial area and limbs. Morphine-induced modifications in the GI transit were studied through radiographic techniques. Naloxone was administered, before each swimming session, to analyse the involvement of the endogenous opioid system on the effect of stress. Overall, stress did not alter nociception, although interestingly it reduced the effect of morphine in the orofacial tests and in the inflammatory phase of the formalin tests. Naloxone antagonized the effect of stress and normalized the effect of morphine. Stress did not modify the constipation induced by morphine. Opioid treatment may be less effective under a stressful situation, whilst adverse effects, such as constipation, are maintained. The prevention of stress may improve the level of opioid analgesia. Keywords.
Collapse
Affiliation(s)
- Ana Bagues
- Área de Farmacología, Nutrición y Bromatología, Dpto. C.C. Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Unidad Asociada I+D+i al Instituto de Química Médica (CSIC), Alcorcón, Spain; High Performance Research Group in Experimental Pharmacology (PHARMAKOM).
| | - Rocío Girón
- Área de Farmacología, Nutrición y Bromatología, Dpto. C.C. Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Unidad Asociada I+D+i al Instituto de Química Médica (CSIC), Alcorcón, Spain; High Performance Research Group in Experimental Pharmacology (PHARMAKOM).
| | - Raquel Abalo
- Área de Farmacología, Nutrición y Bromatología, Dpto. C.C. Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Unidad Asociada I+D+i al Instituto de Química Médica (CSIC), Alcorcón, Spain; High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC); Working Group of Basic Sciences in Pain and Analgesia of the Sociedad Española del Dolor.
| | - Carlos Goicoechea
- Área de Farmacología, Nutrición y Bromatología, Dpto. C.C. Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Unidad Asociada I+D+i al Instituto de Química Médica (CSIC), Alcorcón, Spain; High Performance Research Group in Experimental Pharmacology (PHARMAKOM); Working Group of Basic Sciences in Pain and Analgesia of the Sociedad Española del Dolor.
| | - Ma Isabel Martín-Fontelles
- Área de Farmacología, Nutrición y Bromatología, Dpto. C.C. Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Unidad Asociada I+D+i al Instituto de Química Médica (CSIC), Alcorcón, Spain; High Performance Research Group in Experimental Pharmacology (PHARMAKOM); Working Group of Basic Sciences in Pain and Analgesia of the Sociedad Española del Dolor.
| | - Eva Ma Sánchez-Robles
- Área de Farmacología, Nutrición y Bromatología, Dpto. C.C. Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Unidad Asociada I+D+i al Instituto de Química Médica (CSIC), Alcorcón, Spain; High Performance Research Group in Experimental Pharmacology (PHARMAKOM).
| |
Collapse
|
6
|
Hong Y, Ren X, Liu W, Sun K, Chen B, Liu B, Yu X, Chen Q, Qian Q, Xie X, Jiang C. miR-128 participates in the pathogenesis of chronic constipation by regulating the p38α/M-CSF inflammatory signaling pathway. Am J Physiol Gastrointest Liver Physiol 2021; 321:G436-G447. [PMID: 34405716 DOI: 10.1152/ajpgi.00114.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/10/2021] [Indexed: 02/08/2023]
Abstract
Chronic constipation (CC) is a gastrointestinal disorder that adversely affects the quality of life. MicroRNAs are involved in the pathogenesis of functional gastrointestinal disorders. This study aims to investigate the molecular mechanism of microRNA-128 in CC. Here, we successfully constructed a murine model of CC based on morphine and rhubarb. The expression of stem cell factor (SCF) and neuron-specific enolase (NSE) was low in the models. Using miRNA array and bioinformatic analysis, we predicted and confirmed the expression of miR-128 and its downstream target genes in CC model. Compared with the control group, CC group showed a significant downregulation of miR-128 and upregulation of p38α and macrophage colony-stimulating factors (M-CSFs). Moreover, we observed elevated inflammatory cytokine and decreased anti-inflammatory cytokine levels in colonic tissues. Furthermore, coculture assays indicated that regulating expression of miR-128 in colonic epithelial cells induced the secretion of IL-6 and TNF-α by macrophages. In conclusion, our study demonstrated that miR-128 regulated the p38α/M-CSF signaling pathway to promote chronic inflammatory responses and changes in the immune microenvironment of the colon, thereby offering potential insights into the pathogenesis of CC and therapeutic targets for its treatment.NEW & NOTEWORTHY In this study, we constructed a murine model and identified a novel signaling mechanism involved in the chronic constipation progression. Our findings on the role of miR-128/p38α/M-CSF axis provide new insights into the treatment of chronic constipation.
Collapse
Affiliation(s)
- Yuntian Hong
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
- Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, People's Republic of China
- Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Xianghai Ren
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
- Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, People's Republic of China
- Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
- Colorectal and Anal Disease Research Center of Medical School, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
- Quality Control Center of Colorectal and Anal Surgery of Health Commission of Hubei Province, Wuhan, People's Republic of China
| | - Weicheng Liu
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
- Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, People's Republic of China
- Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
- Colorectal and Anal Disease Research Center of Medical School, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
- Quality Control Center of Colorectal and Anal Surgery of Health Commission of Hubei Province, Wuhan, People's Republic of China
| | - Kongliang Sun
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
- Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, People's Republic of China
- Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Baoxiang Chen
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
- Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, People's Republic of China
- Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Bo Liu
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
- Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, People's Republic of China
- Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Xueqiao Yu
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
- Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, People's Republic of China
- Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
- Colorectal and Anal Disease Research Center of Medical School, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
- Quality Control Center of Colorectal and Anal Surgery of Health Commission of Hubei Province, Wuhan, People's Republic of China
| | - Quanjiao Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, CAS Center for Influenza Research and Early Warning, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Qun Qian
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
- Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, People's Republic of China
- Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
- Colorectal and Anal Disease Research Center of Medical School, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
- Quality Control Center of Colorectal and Anal Surgery of Health Commission of Hubei Province, Wuhan, People's Republic of China
| | - Xiaoyu Xie
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
- Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, People's Republic of China
- Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
- Colorectal and Anal Disease Research Center of Medical School, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
- Quality Control Center of Colorectal and Anal Surgery of Health Commission of Hubei Province, Wuhan, People's Republic of China
| | - Congqing Jiang
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
- Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, People's Republic of China
- Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
- Colorectal and Anal Disease Research Center of Medical School, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
- Quality Control Center of Colorectal and Anal Surgery of Health Commission of Hubei Province, Wuhan, People's Republic of China
| |
Collapse
|
7
|
Effects of highly selective sympathectomy on neurogenic bowel dysfunction in spinal cord injury rats. Sci Rep 2021; 11:15892. [PMID: 34354119 PMCID: PMC8342507 DOI: 10.1038/s41598-021-95158-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 07/21/2021] [Indexed: 11/24/2022] Open
Abstract
Neurogenic bowel dysfunction, including hyperreflexic and areflexic bowel, is a common complication in patients with spinal cord injury (SCI). We hypothesized that removing part of the colonic sympathetic innervation can alleviate the hyperreflexic bowel, and investigated the effect of sympathectomy on the hyperreflexic bowel of SCI rats. The peri-arterial sympathectomy of the inferior mesenteric artery (PSIMA) was performed in T8 SCI rats. The defecation habits of rats, the water content of fresh faeces, the intestinal transmission function, the defecation pressure of the distal colon, and the down-regulation of Alpha-2 adrenergic receptors in colon secondary to PSIMA were evaluated. The incidence of typical hyperreflexic bowel was 95% in SCI rats. Compared to SCI control rats, PSIMA increased the faecal water content of SCI rats by 5–13% (P < 0.05), the emptying rate of the faeces in colon within 24 h by 14–40% (P < 0.05), and the defecation pressure of colon by 10–11 mmHg (P < 0.05). These effects lasted for at least 12 weeks after PSIMA. Immunofluorescence label showed the secondary down-regulation of Alpha-2 adrenergic receptors after PSIMA occurred mainly in rats’ distal colon. PSIMA mainly removes the sympathetic innervation of the distal colon, and can relieve the hyperreflexic bowel in rats with SCI. The possible mechanism is to reduce the inhibitory effect of sympathetic activity, and enhance the regulatory effect of parasympathetic activity on the colon. This procedure could potentially be used for hyperreflexic bowel in patients with SCI.
Collapse
|
8
|
Zhang J, Deji C, Fan J, Chang L, Miao X, Xiao Y, Zhu Y, Li S. Differential alteration in gut microbiome profiles during acquisition, extinction and reinstatement of morphine-induced CPP. Prog Neuropsychopharmacol Biol Psychiatry 2021; 104:110058. [PMID: 32791167 DOI: 10.1016/j.pnpbp.2020.110058] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/09/2020] [Accepted: 08/03/2020] [Indexed: 12/19/2022]
Abstract
Substance addiction is a chronic and complicated disease involving genetic and environmental factors. Coregulated by the above factors, perturbations of the gut microbiome have been shown to have an essential role in the development of many neuropsychiatric disorders, including addiction. However, shifts in the gut microbiome during different stages of morphine addiction remain uncharacterized. In the present study, we harvested fecal samples from mice at the acquisition (both the control and morphine groups), extinction and reinstatement stages of morphine-induced conditioned place preference (CPP). Gut microbiome profiles were detected with 16S ribosomal RNA gene sequencing. We observed an increase in community richness following morphine conditioning, and it decreased after 4 weeks of abstinence. The abundance of Verrucomicrobia increased and Bacteroides decreased at the acquisition of morphine-induced CPP, while a recovery trend was found at the extinction stage. Several discriminative genera were identified for the characterization of different stages of morphine CPP. Functional analysis of taxa with differential abundance between CPP stages was mainly enriched in the pathways of amino acid metabolism. Taken together, our findings will extend the association between dysbiosis of the gut microbiome and the opioid-induced rewarding or reinforcing behaviors.
Collapse
Affiliation(s)
- Jianbo Zhang
- Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.; Bio-evidence Sciences Academy, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, Shaanxi 712000, China
| | - Cuola Deji
- Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jingna Fan
- Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Liao Chang
- Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.; Bio-evidence Sciences Academy, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, Shaanxi 712000, China
| | - Xinyao Miao
- Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yifan Xiao
- Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yongsheng Zhu
- Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.; Bio-evidence Sciences Academy, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, Shaanxi 712000, China..
| | - Shengbin Li
- Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.; Bio-evidence Sciences Academy, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, Shaanxi 712000, China..
| |
Collapse
|
9
|
Abstract
The management of pain, particularly chronic pain, is still an area of medical need. In this context, opioids remain a gold standard for the treatment of pain. However, significant side effects, mainly of central origin, limit their clinical use. Here, we review recent progress to improve the therapeutic and safety profiles of opioids for pain management. Characterization of peripheral opioid-mediated pain mechanisms have been a key component of this process. Several studies identified peripheral µ, δ, and κ opioid receptors (MOR, DOR, and KOR, respectively) and nociceptin/orphanin FQ (NOP) receptors as significant players of opioid-mediated antinociception, able to achieve clinically significant effects independently of any central action. Following this, particularly from a medicinal chemistry point of view, main efforts have been directed towards the peripheralization of opioid receptor agonists with the objective of optimizing receptor activity and minimizing central exposure and the associated undesired effects. These activities have allowed the characterization of a great variety of compounds and investigational drugs that show low central nervous system (CNS) penetration (and therefore a reduced side effect profile) yet maintaining the desired opioid-related peripheral antinociceptive activity. These include highly hydrophilic/amphiphilic and massive molecules unable to easily cross lipid membranes, substrates of glycoprotein P (a extrusion pump that avoids CNS penetration), nanocarriers that release the analgesic agent at the site of inflammation and pain, and pH-sensitive opioid agonists that selectively activate at those sites (and represent a new pharmacodynamic paradigm). Hopefully, patients with pain will benefit soon from the incorporation of these new entities.
Collapse
|
10
|
Vera G, Girón R, Martín-Fontelles MI, Abalo R. Radiographic dose-dependency study of loperamide effects on gastrointestinal motor function in the rat. Temporal relationship with nausea-like behavior. Neurogastroenterol Motil 2019; 31:e13621. [PMID: 31117152 DOI: 10.1111/nmo.13621] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/09/2019] [Accepted: 04/24/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Loperamide is a potent mu opioid receptor agonist available over the counter to treat diarrhea. Although at therapeutic doses loperamide is devoid of central effects, it may exert them if used at high doses or combined with drugs that increase its systemic and/or central bioavailability. Recently, public health and scientific interest on loperamide has increased due to a growing trend of misuse and abuse, and consequent reports on its toxicity. Our aim was to evaluate in the rat the effects of increasing loperamide doses, with increasing likelihood to induce central effects, on gastrointestinal motor function (including gastric dysmotility and nausea-like behavior). METHODS Male Wistar rats received an intraperitoneal injection of vehicle or loperamide (0.1, 1, or 10 mg kg-1 ). Three sets of experiments were performed to evaluate: (a) central effects (somatic nociceptive thresholds, immobility time, core temperature, spontaneous locomotor activity); (b) general gastrointestinal motility (serial X-rays were taken 0-8 hours after intragastric barium administration and analyzed semiquantitatively, morphometrically, and densitometrically); and (c) bedding intake (a rodent indirect marker of nausea). Animals from sets 1 and 3 were used to evaluate gastric dysmotility ex vivo at 2 and 4 hours after administration, respectively. KEY RESULTS Loperamide significantly induced antinociception, hypothermia, and hypolocomotion (but not catalepsy) at high doses and dose-dependently reduced gastrointestinal motor function, with the intestine exhibiting higher sensitivity than the stomach. Whereas bedding intake occurred early and transiently, gastric dysmotility was much more persistent. CONCLUSIONS AND INFERENCES Our results suggest that loperamide-induced nausea and gastric dysmotility might be temporally dissociated.
Collapse
Affiliation(s)
- Gema Vera
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain.,Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento del Dolor (i+DOL), Alcorcón, Spain.,Unidad Asociada I+D+i al Instituto de Química Médica (IQM), Centro Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Rocío Girón
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain.,Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento del Dolor (i+DOL), Alcorcón, Spain.,Unidad Asociada I+D+i al Instituto de Química Médica (IQM), Centro Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - María Isabel Martín-Fontelles
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain.,Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento del Dolor (i+DOL), Alcorcón, Spain.,Unidad Asociada I+D+i al Instituto de Química Médica (IQM), Centro Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Raquel Abalo
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain.,Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento del Dolor (i+DOL), Alcorcón, Spain.,Unidad Asociada I+D+i al Instituto de Química Médica (IQM), Centro Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
11
|
Siswandi R, Yoshida A, Satoh H, Nonaka N. X-ray evaluation of intestinal dysmotility induced by Eimeria pragensis infection in C57BL/6 mice. J Vet Med Sci 2019; 81:1021-1028. [PMID: 31118353 PMCID: PMC6656811 DOI: 10.1292/jvms.19-0137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This study was conducted to elucidate the intestinal dysmotility during coccidiosis. C57BL/6 male mice at seven weeks of age were inoculated with Eimeria pragensis sporulated oocysts (100 to 1,000 oocysts). The intestinal motility was evaluated by observing discharging time of barium sulfate (Ba2SO4) after oral administration (WITT: the whole intestinal transit time). The exact location of the dysmotility was analyzed by intermittent barium gastrography. Upper intestinal dysmotility was evaluated by charcoal propulsion study. Additionally, the occurrence of dysmotility was observed at different post-infection times (4, 7, and 14 days post-infection (d.p.i.)) and in infection-dose dependent manner (100, 300, and 1,000 oocysts). As the E. pragensis infected mice had significantly lower feed intake compared to the control group, we designed a feed apprehension study to evaluate the effect of low feed intake on the intestinal dysmotility. The WITT of infected mice at 7 d.p.i. was significantly longer (6 hr) than the uninfected mice (2.5 hr). Intestinal dysmotility was observed in the small intestine, caecum, and colorectum in the infected mice. Charcoal propulsion was slower in infected group (reaching to 40.4% of the whole small intestine) compared to control group (68.0%). The dysmotility was observed at the beginning of the patent period (7 d.p.i.) and subsided as the patency ended (14 d.p.i.). Mice with lower feed intake appeared to have similar intestinal motility as control mice. In summary, this study revealed the evidence of intestinal hypomotility during E. pragensis infection.
Collapse
Affiliation(s)
- Riki Siswandi
- Laboratory of Veterinary Parasitic Diseases, Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, 1-1, Gakuen-Kibanadai Nishi, Miyazaki 889-2192, Japan.,Faculty of Veterinary Medicine, IPB University, Kampus IPB Dramaga Bogor, 16680 West Java, Indonesia
| | - Ayako Yoshida
- Laboratory of Veterinary Parasitic Diseases, Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, 1-1, Gakuen-Kibanadai Nishi, Miyazaki 889-2192, Japan.,Laboratory of Veterinary Parasitic Diseases, Department of Veterinary Sciences, Faculty of Agriculture, University of Miyazaki, 1-1, Gakuen-Kibanadai Nishi, Miyazaki 889-2192, Japan
| | - Hiroyuki Satoh
- Laboratory of Veterinary Clinical Radiology, Department of Veterinary Sciences, Faculty of Agriculture, University of Miyazaki, 1-1, Gakuen-Kibanadai Nishi, Miyazaki 889-2192, Japan
| | - Nariaki Nonaka
- Laboratory of Veterinary Parasitic Diseases, Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, 1-1, Gakuen-Kibanadai Nishi, Miyazaki 889-2192, Japan.,Laboratory of Veterinary Parasitic Diseases, Department of Veterinary Sciences, Faculty of Agriculture, University of Miyazaki, 1-1, Gakuen-Kibanadai Nishi, Miyazaki 889-2192, Japan
| |
Collapse
|
12
|
McQuade RM, Al Thaalibi M, Petersen AC, Abalo R, Bornstein JC, Rybalka E, Nurgali K. Co-treatment With BGP-15 Exacerbates 5-Fluorouracil-Induced Gastrointestinal Dysfunction. Front Neurosci 2019; 13:449. [PMID: 31139044 PMCID: PMC6518025 DOI: 10.3389/fnins.2019.00449] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/18/2019] [Indexed: 01/01/2023] Open
Abstract
Gastrointestinal (GI) side-effects of chemotherapy present a constant impediment to efficient and tolerable treatment of cancer. GI symptoms often lead to dose reduction, delays and cessation of treatment. Chemotherapy-induced nausea, bloating, vomiting, constipation, and/or diarrhea can persist up to 10 years post-treatment. We have previously reported that long-term 5-fluorouracil (5-FU) administration results in enteric neuronal loss, acute inflammation and intestinal dysfunction. In this study, we investigated whether the cytoprotectant, BGP-15, has a neuroprotective effect during 5-FU treatment. Balb/c mice received tri-weekly intraperitoneal 5-FU (23 mg/kg/d) administration with and without BGP-15 (15 mg/kg/d) for up to 14 days. GI transit was analyzed via in vivo serial X-ray imaging prior to and following 3, 7, and 14 days of treatment. On day 14, colons were collected for assessment of ex vivo colonic motility, neuronal mitochondrial superoxide, and cytochrome c levels as well as immunohistochemical analysis of myenteric neurons. BGP-15 did not inhibit 5-FU-induced neuronal loss, but significantly increased the number and proportion of choline acetyltransferase (ChAT)-immunoreactive (IR) and neuronal nitric oxide synthase (nNOS)-IR neurons in the myenteric plexus. BGP-15 co-administration significantly increased mitochondrial superoxide production, mitochondrial depolarization and cytochrome c release in myenteric plexus and exacerbated 5-FU-induced colonic inflammation. BGP-15 exacerbated 5-FU-induced colonic dysmotility by reducing the number and proportion of colonic migrating motor complexes and increasing the number and proportion of fragmented contractions and increased fecal water content indicative of diarrhea. Taken together, BGP-15 co-treatment aggravates 5-FU-induced GI side-effects, in contrast with our previous findings that BGP-15 alleviates GI side-effects of oxaliplatin.
Collapse
Affiliation(s)
- Rachel M McQuade
- College of Health & Biomedicine, Victoria University, Melbourne, VIC, Australia
| | - Maryam Al Thaalibi
- College of Health & Biomedicine, Victoria University, Melbourne, VIC, Australia
| | - Aaron C Petersen
- Institute for Health & Sport, Victoria University, Melbourne, VIC, Australia.,Australian Institute for Musculoskeletal Science, Melbourne, VIC, Australia
| | - Raquel Abalo
- Área de Farmacología y Nutrición y Unidad Asociada al Instituto de Química Médica del Consejo Superior de Investigaciones Científicas, Universidad Rey Juan Carlos, Alcorcón, Spain
| | - Joel C Bornstein
- Department of Physiology, The University of Melbourne, Melbourne, VIC, Australia
| | - Emma Rybalka
- Institute for Health & Sport, Victoria University, Melbourne, VIC, Australia.,Australian Institute for Musculoskeletal Science, Melbourne, VIC, Australia
| | - Kulmira Nurgali
- College of Health & Biomedicine, Victoria University, Melbourne, VIC, Australia.,Institute for Health & Sport, Victoria University, Melbourne, VIC, Australia.,Australian Institute for Musculoskeletal Science, Melbourne, VIC, Australia.,Department of Medicine Western Health, The University of Melbourne, Melbourne, VIC, Australia.,Head of Enteric Neuropathy Lab, Western Centre for Health Research and Education, Sunshine Hospital, Melbourne, VIC, Australia
| |
Collapse
|
13
|
Díaz-Ruano S, López-Pérez AE, Girón R, Pérez-García I, Martín-Fontelles MI, Abalo R. Fluoroscopic Characterization of Colonic Dysmotility Associated to Opioid and Cannabinoid Agonists in Conscious Rats. J Neurogastroenterol Motil 2019; 25:300-315. [PMID: 30870877 PMCID: PMC6474695 DOI: 10.5056/jnm18202] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/01/2019] [Accepted: 02/12/2019] [Indexed: 12/25/2022] Open
Abstract
Background/Aims Gastrointestinal adverse effects have a major impact on health and quality of life in analgesics users. Non-invasive methods to study gastrointestinal motility are of high interest. Fluoroscopy has been previously used to study gastrointestinal motility in small experimental animals, but they were generally anesthetized and anesthesia itself may alter motility. In this study, our aim is to determine, in conscious rats, the effect of increasing doses of 2 opioid (morphine and loperamide) and 1 cannabinoid (WIN 55,212-2) agonists on colonic motility using fluoroscopic recordings and spatio-temporal maps. Methods Male Wistar rats received barium sulfate intragastrically, 20–22 hours before fluoroscopy, so that stained fecal pellets could be seen at the time of recording. Animals received an intraperitoneal administration of morphine, loperamide, or WIN 55,212-2 (at 0.1, 1, 5, or 10 mg/kg) or their corresponding vehicles (saline, Cremophor, and Tocrisolve, respectively), 30 minutes before fluoroscopy. Rats were conscious and placed within movement-restrainers for the length of fluoroscopic recordings (120 seconds). Spatio-temporal maps were built, and different parameters were analyzed from the fluoroscopic recordings in a blinded fashion to evaluate colonic propulsion of endogenous fecal pellets. Results The analgesic drugs inhibited propulsion of endogenous fecal pellets in a dose-dependent manner. Conclusions Fluoroscopy allows studying colonic propulsion of endogenous fecal pellets in conscious rats. Our method may be applied to the noninvasive study of the effect of different drug treatments and pathologies.
Collapse
Affiliation(s)
- Susana Díaz-Ruano
- Unidad de Dolor, Servicio de Anestesiología, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Ana E López-Pérez
- Unidad de Dolor, Servicio de Anestesiología, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento del Dolor (i+DOL), Madrid, Spain
| | - Rocío Girón
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Madrid, Spain.,Unidad Asociada I+D+i al Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC), Madrid, Spain.,Unidad Asociada I+D+i al Instituto de Química Médica, IQM (CSIC), Madrid, Spain.,Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento del Dolor (i+DOL), Madrid, Spain
| | - Irene Pérez-García
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Madrid, Spain
| | - María I Martín-Fontelles
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Madrid, Spain.,Unidad Asociada I+D+i al Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC), Madrid, Spain.,Unidad Asociada I+D+i al Instituto de Química Médica, IQM (CSIC), Madrid, Spain.,Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento del Dolor (i+DOL), Madrid, Spain
| | - Raquel Abalo
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Madrid, Spain.,Unidad Asociada I+D+i al Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC), Madrid, Spain.,Unidad Asociada I+D+i al Instituto de Química Médica, IQM (CSIC), Madrid, Spain.,Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento del Dolor (i+DOL), Madrid, Spain
| |
Collapse
|
14
|
Abstract
This paper is the thirty-ninth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2016 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia, stress and social status, tolerance and dependence, learning and memory, eating and drinking, drug abuse and alcohol, sexual activity and hormones, pregnancy, development and endocrinology, mental illness and mood, seizures and neurologic disorders, electrical-related activity and neurophysiology, general activity and locomotion, gastrointestinal, renal and hepatic functions, cardiovascular responses, respiration and thermoregulation, and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and CUNY Neuroscience Collaborative, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
15
|
McQuade RM, Stojanovska V, Stavely R, Timpani C, Petersen AC, Abalo R, Bornstein JC, Rybalka E, Nurgali K. Oxaliplatin-induced enteric neuronal loss and intestinal dysfunction is prevented by co-treatment with BGP-15. Br J Pharmacol 2018; 175:656-677. [PMID: 29194564 DOI: 10.1111/bph.14114] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 11/21/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE Gastrointestinal side effects of chemotherapy are an under-recognized clinical problem, leading to dose reduction, delays and cessation of treatment, presenting a constant challenge for efficient and tolerated anti-cancer treatment. We have found that oxaliplatin treatment results in intestinal dysfunction, oxidative stress and loss of enteric neurons. BGP-15 is a novel cytoprotective compound with potential HSP72 co-inducing and PARP inhibiting properties. In this study, we investigated the potential of BGP-15 to alleviate oxaliplatin-induced enteric neuropathy and intestinal dysfunction. EXPERIMENTAL APPROACH Balb/c mice received oxaliplatin (3 mg·kg-1 ·day-1 ) with and without BGP-15 (15 mg·kg-1 ·day-1 : i.p.) tri-weekly for 14 days. Gastrointestinal transit was analysed via in vivo X-ray imaging, before and after treatment. Colons were collected to assess ex vivo motility, neuronal mitochondrial superoxide and cytochrome c levels and for immunohistochemical analysis of myenteric neurons. KEY RESULTS Oxaliplatin-induced neuronal loss increased the proportion of neuronal NO synthase-immunoreactive neurons and increased levels of mitochondrial superoxide and cytochrome c in the myenteric plexus. These changes were correlated with an increase in PARP-2 immunoreactivity in the colonic mucosa and were attenuated by BGP-15 co-treatment. Significant delays in gastrointestinal transit, intestinal emptying and pellet formation, impaired colonic motor activity, reduced faecal water content and lack of weight gain associated with oxaliplatin treatment were restored to sham levels in mice co-treated with BGP-15. CONCLUSION AND IMPLICATIONS Our results showed that BGP-15 ameliorated oxidative stress, increased enteric neuronal survival and alleviated oxaliplatin-induced intestinal dysfunction, suggesting that BGP-15 may relieve the gastrointestinal side effects of chemotherapy.
Collapse
Affiliation(s)
- Rachel M McQuade
- College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia
| | - Vanesa Stojanovska
- College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia
| | - Rhian Stavely
- College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia.,Department of Medicine, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Regenerative Medicine and Stem Cells Program, Australian Institute for Musculoskeletal Science (AIMSS), Western Health, Melbourne, VIC, Australia
| | - Cara Timpani
- College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia.,Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, VIC, Australia.,Department of Medicine, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Regenerative Medicine and Stem Cells Program, Australian Institute for Musculoskeletal Science (AIMSS), Western Health, Melbourne, VIC, Australia
| | - Aaron C Petersen
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, VIC, Australia.,Department of Medicine, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Regenerative Medicine and Stem Cells Program, Australian Institute for Musculoskeletal Science (AIMSS), Western Health, Melbourne, VIC, Australia
| | - Raquel Abalo
- Área de Farmacología y Nutrición y Unidad Asociada al Instituto de Química Médica (IQM) y al Instituto de Investigación en Ciencias de la Alimentación (CIAL) del Consejo Superior de Investigaciones Científicas (CSIC); Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento del Dolor (i+DOL), Universidad Rey Juan Carlos, Alcorcón, Spain
| | - Joel C Bornstein
- Department of Physiology, Melbourne University, Melbourne, VIC, Australia
| | - Emma Rybalka
- College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia.,Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, VIC, Australia.,Department of Medicine, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Regenerative Medicine and Stem Cells Program, Australian Institute for Musculoskeletal Science (AIMSS), Western Health, Melbourne, VIC, Australia
| | - Kulmira Nurgali
- College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia.,Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, VIC, Australia.,Department of Medicine, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Regenerative Medicine and Stem Cells Program, Australian Institute for Musculoskeletal Science (AIMSS), Western Health, Melbourne, VIC, Australia
| |
Collapse
|
16
|
Ramírez I, Pantrigo JJ, Montemayor AS, López-Pérez AE, Martín-Fontelles MI, Brookes SJH, Abalo R. Computer vision-based diameter maps to study fluoroscopic recordings of small intestinal motility from conscious experimental animals. Neurogastroenterol Motil 2017; 29. [PMID: 28300332 DOI: 10.1111/nmo.13052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 01/21/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND When available, fluoroscopic recordings are a relatively cheap, non-invasive and technically straightforward way to study gastrointestinal motility. Spatiotemporal maps have been used to characterize motility of intestinal preparations in vitro, or in anesthetized animals in vivo. Here, a new automated computer-based method was used to construct spatiotemporal motility maps from fluoroscopic recordings obtained in conscious rats. METHODS Conscious, non-fasted, adult, male Wistar rats (n=8) received intragastric administration of barium contrast, and 1-2 hours later, when several loops of the small intestine were well-defined, a 2 minutes-fluoroscopic recording was obtained. Spatiotemporal diameter maps (Dmaps) were automatically calculated from the recordings. Three recordings were also manually analyzed for comparison. Frequency analysis was performed in order to calculate relevant motility parameters. KEY RESULTS In each conscious rat, a stable recording (17-20 seconds) was analyzed. The Dmaps manually and automatically obtained from the same recording were comparable, but the automated process was faster and provided higher resolution. Two frequencies of motor activity dominated; lower frequency contractions (15.2±0.9 cpm) had an amplitude approximately five times greater than higher frequency events (32.8±0.7 cpm). CONCLUSIONS & INFERENCES The automated method developed here needed little investigator input, provided high-resolution results with short computing times, and automatically compensated for breathing and other small movements, allowing recordings to be made without anesthesia. Although slow and/or infrequent events could not be detected in the short recording periods analyzed to date (17-20 seconds), this novel system enhances the analysis of in vivo motility in conscious animals.
Collapse
Affiliation(s)
- I Ramírez
- Grupo de Computación de Altas Prestaciones y Optimización, Dpto. Ciencias de la Computación, Arquitectura de Computadores, Lenguajes y Sistemas Informáticos, Estadística e Investigación Operativa, Universidad Rey Juan Carlos (URJC), Móstoles, Madrid, Spain
| | - J J Pantrigo
- Grupo de Computación de Altas Prestaciones y Optimización, Dpto. Ciencias de la Computación, Arquitectura de Computadores, Lenguajes y Sistemas Informáticos, Estadística e Investigación Operativa, Universidad Rey Juan Carlos (URJC), Móstoles, Madrid, Spain.,Grupo de Excelencia Investigadora URJC-Banco de Santander-Computer Vision and Image Processing (CVIP), Móstoles, Madrid, Spain
| | - A S Montemayor
- Grupo de Computación de Altas Prestaciones y Optimización, Dpto. Ciencias de la Computación, Arquitectura de Computadores, Lenguajes y Sistemas Informáticos, Estadística e Investigación Operativa, Universidad Rey Juan Carlos (URJC), Móstoles, Madrid, Spain.,Grupo de Excelencia Investigadora URJC-Banco de Santander-Computer Vision and Image Processing (CVIP), Móstoles, Madrid, Spain
| | - A E López-Pérez
- Unidad del Dolor, Servicio de Anestesiología, Hospital General Universitario Gregorio Marañón (HGUGM), Madrid, Spain.,Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento del Dolor (i+DOL), Móstoles, Madrid, Spain
| | - M I Martín-Fontelles
- Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento del Dolor (i+DOL), Móstoles, Madrid, Spain.,Área de Farmacología y Nutrición y Unidad Asociada al Instituto de Química Médica (IQM) y al Instituto de Investigación en Ciencias de la Alimentación (CIAL) del Consejo Superior de Investigaciones Científicas (CSIC), Universidad Rey Juan Carlos (URJC), Alcorcón, Madrid, Spain
| | - S J H Brookes
- Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, Australia
| | - R Abalo
- Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento del Dolor (i+DOL), Móstoles, Madrid, Spain.,Área de Farmacología y Nutrición y Unidad Asociada al Instituto de Química Médica (IQM) y al Instituto de Investigación en Ciencias de la Alimentación (CIAL) del Consejo Superior de Investigaciones Científicas (CSIC), Universidad Rey Juan Carlos (URJC), Alcorcón, Madrid, Spain
| |
Collapse
|
17
|
McQuade RM, Stojanovska V, Donald EL, Rahman AA, Campelj DG, Abalo R, Rybalka E, Bornstein JC, Nurgali K. Irinotecan-Induced Gastrointestinal Dysfunction Is Associated with Enteric Neuropathy, but Increased Numbers of Cholinergic Myenteric Neurons. Front Physiol 2017. [PMID: 28642718 PMCID: PMC5462962 DOI: 10.3389/fphys.2017.00391] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Gastrointestinal dysfunction is a common side-effect of chemotherapy leading to dose reductions and treatment delays. These side-effects may persist up to 10 years post-treatment. A topoisomerase I inhibitor, irinotecan (IRI), commonly used for the treatment of colorectal cancer, is associated with severe acute and delayed-onset diarrhea. The long-term effects of IRI may be due to damage to enteric neurons innervating the gastrointestinal tract and controlling its functions. Balb/c mice received intraperitoneal injections of IRI (30 mg/kg−1) 3 times a week for 14 days, sham-treated mice received sterile water (vehicle) injections. In vivo analysis of gastrointestinal transit via serial x-ray imaging, facal water content, assessment of gross morphological damage and immunohistochemical analysis of myenteric neurons were performed at 3, 7 and 14 days following the first injection and at 7 days post-treatment. Ex vivo colonic motility was analyzed at 14 days following the first injection and 7 days post-treatment. Mucosal damage and inflammation were found following both short and long-term treatment with IRI. IRI-induced neuronal loss and increases in the number and proportion of ChAT-IR neurons and the density of VAChT-IR fibers were associated with changes in colonic motility, gastrointestinal transit and fecal water content. These changes persisted in post-treatment mice. Taken together this work has demonstrated for the first time that IRI-induced inflammation, neuronal loss and altered cholinergic expression is associated with the development of IRI-induced long-term gastrointestinal dysfunction and diarrhea.
Collapse
Affiliation(s)
- Rachel M McQuade
- College of Health and Biomedicine, Victoria UniversityMelbourne, VIC, Australia
| | - Vanesa Stojanovska
- College of Health and Biomedicine, Victoria UniversityMelbourne, VIC, Australia
| | - Elizabeth L Donald
- College of Health and Biomedicine, Victoria UniversityMelbourne, VIC, Australia
| | - Ahmed A Rahman
- College of Health and Biomedicine, Victoria UniversityMelbourne, VIC, Australia
| | - Dean G Campelj
- College of Health and Biomedicine, Victoria UniversityMelbourne, VIC, Australia.,Institute of Sport, Exercise and Active Living, Victoria UniversityMelbourne, VIC, Australia.,Australian Institute of Musculoskeletal Science, Western HealthMelbourne, VIC, Australia
| | - Raquel Abalo
- Área de Farmacología y Nutrición y Unidad Asociada al Instituto de Química Médica y al Instituto de Investigación en Ciencias de la Alimentación del Consejo Superior de Investigaciones Científicas, Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento del Dolor, Universidad Rey Juan CarlosAlcorcón, Spain
| | - Emma Rybalka
- College of Health and Biomedicine, Victoria UniversityMelbourne, VIC, Australia.,Institute of Sport, Exercise and Active Living, Victoria UniversityMelbourne, VIC, Australia.,Australian Institute of Musculoskeletal Science, Western HealthMelbourne, VIC, Australia
| | - Joel C Bornstein
- Department of Physiology, Melbourne UniversityMelbourne, VIC, Australia
| | - Kulmira Nurgali
- College of Health and Biomedicine, Victoria UniversityMelbourne, VIC, Australia
| |
Collapse
|
18
|
McQuade RM, Stojanovska V, Donald E, Abalo R, Bornstein JC, Nurgali K. Gastrointestinal dysfunction and enteric neurotoxicity following treatment with anticancer chemotherapeutic agent 5-fluorouracil. Neurogastroenterol Motil 2016; 28:1861-1875. [PMID: 27353132 DOI: 10.1111/nmo.12890] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 05/29/2016] [Indexed: 12/23/2022]
Abstract
BACKGROUND The use of the anticancer chemotherapeutic agent 5-fluorouracil (5-FU) is often limited by nausea, vomiting, constipation, and diarrhea; these side-effects persist long after treatment. The effects of 5-FU on enteric neurons have not been studied and may provide insight into the mechanisms underlying 5-FU-induced gastrointestinal dysfunction. METHODS Balb/c mice received intraperitoneal injections of 5-FU (23 mg/kg) 3 times/week for 14 days. Gastrointestinal transit was analysed in vivo prior to and following 3, 7, and 14 days of 5-FU treatment via serial x-ray imaging. Following 14 days of 5-FU administration, colons were collected for assessment of ex vivo colonic motility, gross morphological structure, and immunohistochemical analysis of myenteric neurons. Fecal lipocalin-2 and CD45+ leukocytes in the colon were analysed as markers of intestinal inflammation. KEY RESULTS Short-term administration of 5-FU (3 days) increased gastrointestinal transit, induced acute intestinal inflammation and reduced the proportion of neuronal nitric oxide synthase-immunoreactive neurons. Long-term treatment (7, 14 days) resulted in delayed gastrointestinal transit, inhibition of colonic migrating motor complexes, increased short and fragmented contractions, myenteric neuronal loss and a reduction in the number of ChAT-immunoreactive neurons after the inflammation was resolved. Gross morphological damage to the colon was observed following both short- and long-term 5-FU treatment. CONCLUSIONS & INFERENCES Our results indicate that 5-FU induces accelerated gastrointestinal transit associated with acute intestinal inflammation at day 3 after the start of treatment, which may have led to persistent changes in the ENS observed after days 7 and 14 of treatment contributing to delayed gastrointestinal transit and colonic dysmotility.
Collapse
Affiliation(s)
- R M McQuade
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia.,Western Centre for Health, Research and Education, Sunshine Hospital, St Albans, VIC, Australia
| | - V Stojanovska
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia.,Western Centre for Health, Research and Education, Sunshine Hospital, St Albans, VIC, Australia
| | - E Donald
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia.,Western Centre for Health, Research and Education, Sunshine Hospital, St Albans, VIC, Australia
| | - R Abalo
- Área de Farmacología y Nutrición y Unidad Asociada al Instituto de Química Médica (IQM) y al Instituto de Investigación en Ciencias de la Alimentación (CIAL) del Consejo Superior de Investigaciones Científicas (CSIC), Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento del Dolor (i+DOL), Universidad Rey Juan Carlos, Alcorcón, Madrid, Spain
| | - J C Bornstein
- Department of Physiology, Melbourne University, Melbourne, VIC, Australia
| | - K Nurgali
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia.,Western Centre for Health, Research and Education, Sunshine Hospital, St Albans, VIC, Australia
| |
Collapse
|