1
|
Liu R, Luo Y, Ma J, Zhang Q, Sheng Y, Li J, Li H, Zhao T. Traditional Chinese medicine for functional gastrointestinal disorders and inflammatory bowel disease: narrative review of the evidence and potential mechanisms involving the brain-gut axis. Front Pharmacol 2024; 15:1444922. [PMID: 39355776 PMCID: PMC11443704 DOI: 10.3389/fphar.2024.1444922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/23/2024] [Indexed: 10/03/2024] Open
Abstract
Functional gastrointestinal disorders (FGIDs) and inflammatory bowel disease (IBD) are common clinical disorders characterized by recurrent diarrhea and abdominal pain. Although their pathogenesis has not been fully clarified, disruptions in intestinal motility and immune function are widely accepted as contributing factors to both conditions, and the brain-gut axis plays a key role in these processes. Traditional Chinese Medicine (TCM) employs a holistic approach to treatment, considers spleen and stomach impairments and liver abnormality the main pathogenesis of these two diseases, and offers a unique therapeutic strategy that targets these interconnected pathways. Clinical evidence shows the great potential of TCM in treating FGIDs and IBD. This study presents a systematic description of the pathological mechanisms of FGIDs and IBD in the context of the brain-gut axis, discusses clinical and preclinical studies on TCM and acupuncture for the treatment of these diseases, and summarizes TCM targets and pathways for the treatment of FGIDs and IBD, integrating ancient wisdom with contemporary biomedical insights. The alleviating effects of TCM on FGID and IBD symptoms are mainly mediated through the modulation of intestinal immunity and inflammation, sensory transmission, neuroendocrine-immune network, and microbiota and their metabolism through brain-gut axis mechanisms. TCM may be a promising treatment option in controlling FGIDs and IBD; however, further high-quality research is required. This review provides a reference for an in-depth exploration of the interventional effects and mechanisms of TCM in FGIDs and IBD, underscoring TCM's potential to recalibrate the dysregulated brain-gut axis in FGIDs and IBD.
Collapse
Affiliation(s)
- RuiXuan Liu
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - YunTian Luo
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - JinYing Ma
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qi Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yudong Sheng
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiashan Li
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hongjiao Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - TianYi Zhao
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
2
|
Yip JLK, Balasuriya GK, Hill-Yardin EL, Spencer SJ. The gut-brain and gut-macrophage contribution to gastrointestinal dysfunction with systemic inflammation. Brain Behav Immun 2024; 119:867-877. [PMID: 38750700 DOI: 10.1016/j.bbi.2024.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/24/2024] [Accepted: 05/12/2024] [Indexed: 05/19/2024] Open
Abstract
The gastrointestinal tract is one of the main organs affected during systemic inflammation and disrupted gastrointestinal motility is a major clinical manifestation. Many studies have investigated the involvement of neuroimmune interactions in regulating colonic motility during localized colonic inflammation, i.e., colitis. However, little is known about how the enteric nervous system and intestinal macrophages contribute to dysregulated motility during systemic inflammation. Given that systemic inflammation commonly results from the innate immune response against bacterial infection, we mimicked bacterial infection by administering lipopolysaccharide (LPS) to rats and assessed colonic motility using ex vivo video imaging techniques. We utilized the Cx3cr1-Dtr rat model of transient depletion of macrophages to investigate the role of intestinal macrophages in regulating colonic motility during LPS infection. To investigate the role of inhibitory enteric neurotransmission on colonic motility following LPS, we applied the nitric oxide synthase inhibitor, Nω-nitro-L-arginine (NOLA). Our results confirmed an increase in colonic contraction frequency during LPS-induced systemic inflammation. However, neither the depletion of intestinal macrophages, nor the suppression of inhibitory enteric nervous system activity impacted colonic motility disruption during inflammation. This implies that the interplay between the enteric nervous system and intestinal macrophages is nuanced, and complex, and further investigation is needed to clarify their joint roles in colonic motility.
Collapse
Affiliation(s)
- Jackson L K Yip
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, VIC, Australia
| | - Gayathri K Balasuriya
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, VIC, Australia; Department of Physiology and Cell Biology, Kobe University School of Medicine, Kobe, Japan
| | - Elisa L Hill-Yardin
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, VIC, Australia
| | - Sarah J Spencer
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, VIC, Australia.
| |
Collapse
|
3
|
Yang Y, Wang J, Zhang C, Guo Y, Zhao M, Zhang M, Li Z, Gao F, Luo Y, Wang Y, Cao J, Du M, Wang Y, Lin X, Xu Z. The efficacy and neural mechanism of acupuncture therapy in the treatment of visceral hypersensitivity in irritable bowel syndrome. Front Neurosci 2023; 17:1251470. [PMID: 37732301 PMCID: PMC10507180 DOI: 10.3389/fnins.2023.1251470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023] Open
Abstract
Irritable Bowel Syndrome (IBS) is a complex functional gastrointestinal disorder primarily characterized by chronic abdominal pain, bloating, and altered bowel habits. Chronic abdominal pain caused by visceral Hypersensitivity (VH) is the main reason why patients with IBS seek medication. Significant research effort has been devoted to the efficacy of acupuncture as a non-drug alternative therapy for visceral-hyperalgesia-induced IBS. Herein, we examined the central and peripheral analgesic mechanisms of acupuncture in IBS treatment. Acupuncture can improve inflammation and relieve pain by reducing 5-hydroxytryptamine and 5-HT3A receptor expression and increasing 5-HT4 receptor expression in peripheral intestinal sensory endings. Moreover, acupuncture can also activate the transient receptor potential vanillin 1 channel, block the activity of intestinal glial cells, and reduce the secretion of local pain-related neurotransmitters, thereby weakening peripheral sensitization. Moreover, by inhibiting the activation of N-methyl-D-aspartate receptor ion channels in the dorsal horn of the spinal cord and anterior cingulate cortex or releasing opioids, acupuncture can block excessive stimulation of abnormal pain signals in the brain and spinal cord. It can also stimulate glial cells (through the P2X7 and prokinetic protein pathways) to block VH pain perception and cognition. Furthermore, acupuncture can regulate the emotional components of IBS by targeting hypothalamic-pituitary-adrenal axis-related hormones and neurotransmitters via relevant brain nuclei, hence improving the IBS-induced VH response. These findings provide a scientific basis for acupuncture as an effective clinical adjuvant therapy for IBS pain.
Collapse
Affiliation(s)
- Yuanzhen Yang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiaqi Wang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chaoyang Zhang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yi Guo
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, Tianjin, China
| | - Meidan Zhao
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, Tianjin, China
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Man Zhang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, Tianjin, China
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhongzheng Li
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, Tianjin, China
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Feifei Gao
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yu Luo
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yiru Wang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Junyi Cao
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mingfang Du
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuzhe Wang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaowei Lin
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, Tianjin, China
| | - Zhifang Xu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, Tianjin, China
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
4
|
Wang L, Hu X, Geng L, Li N, Chen Y, Zhang J, Yuan X, Huang L, Ba D, Lian J, Lyu X, Chen Z, Zhang Y, Chen B. Multi-effective characteristics and advantages of acupuncture in COVID-19 treatment. ACUPUNCTURE AND HERBAL MEDICINE 2023; 3:83-95. [PMID: 37810368 PMCID: PMC10317192 DOI: 10.1097/hm9.0000000000000062] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 03/06/2023] [Indexed: 10/10/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is a major disease that threatens human life and health. Its pathogenesis is complex and still not fully clarified. The clinical treatment is mainly supportive and lacks specific treatment methods. Acupuncture treatment can inhibit immune inflammatory reactions, neuroinflammatory reactions, oxidative stress levels, and hypothalamus-pituitary-adrenal (HPA) axis activity, improve lung function, and relieve migraine, fatigue, anxiety, and depression. However, whether acupuncture treatment is suitable for treating these symptoms in patients with COVID-19 still needs to be investigated. For this review, the literature was systematically searched for multiple databases to summarize the mechanisms of acupuncture treatment for COVID-19-related symptoms and complications. A complex network analysis of acupoints and symptoms was also performed to clarify acupoint selection in the acupuncture treatment of symptoms related to COVID-19. The evidence indicates that acupuncture can improve the respiratory, digestive, nervous, and mental and psychological symptoms related to COVID-19 by inhibiting immune inflammatory reactions, regulating intestinal flora, mitochondrial function, oxidative stress level, cardiomyocyte apoptosis, neurotransmitter release, and HPA axis activity, and alleviating basic diseases such as diseases of the vascular system. Acupuncture can improve various clinical and concomitant symptoms of COVID-19; however, its mechanism of action is complex and requires further study. Graphical abstract http://links.lww.com/AHM/A54.
Collapse
Affiliation(s)
- Lifen Wang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiyou Hu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lianqi Geng
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ningcen Li
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yong Chen
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jingyu Zhang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinru Yuan
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lihong Huang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Dongsheng Ba
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jinyu Lian
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoyan Lyu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zelin Chen
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Fourth Teaching Hospital of Tianjin University of TCM Binhai New Area Hospital of TCM Tianjin,Tianjin, China
- National Clinical Research Center of Traditional Chinese Medicine and Acupuncture, Tianjin, China
| | - Yue Zhang
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, the United States of America
| | - Bo Chen
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Fourth Teaching Hospital of Tianjin University of TCM Binhai New Area Hospital of TCM Tianjin,Tianjin, China
| |
Collapse
|
5
|
Liu S, Huang Q, Huang Q, Wang Y, Li S, Wang J, Wu Q. The protective effects of electroacupuncture on intestinal barrier lesions in IBS and UC model. Sci Rep 2023; 13:7276. [PMID: 37142764 PMCID: PMC10160055 DOI: 10.1038/s41598-023-34182-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 04/25/2023] [Indexed: 05/06/2023] Open
Abstract
Irritable bowel syndrome (IBS) and ulcerative colitis (UC) are two intestinal diseases with different pathological changes. Electroacupuncture (EA) at Zusanli (ST36) on both IBS and UC is widely used in clinic practice. But it is unclear whether acupuncture at one acupoint can treat two different intestinal diseases at different layers of intestinal barrier. To address this question, we explored three intestinal barrier lesions in IBS and UC mice with the aid of transcriptome data analysis and studied the efficacy of EA at ST36 on them. The transcriptome data analysis showed that both UC and IBS had disrupted intestinal barrier in various layers. And both UC and IBS had epithelial barrier lesions with reduction of ZO-1, Occludin and Claudin-1, while UC rather than IBS had the destruction of the mucus barrier with less MUC2 expression. As to the vascular barrier, UC showed a higher CD31 level and mesenteric blood flow reduction, while IBS showed a lower PV-1 level. EA at ST36 can significantly improve the above lesions of intestinal barrier of IBS and UC. Our results gave more details about the comprehensive protective effect of EA for UC and IBS. We guess the effect of acupuncture may be a kind of homeostasis regulation.
Collapse
Affiliation(s)
- Shuqing Liu
- Acupuncture and Moxibustion School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, People's Republic of China
| | - Qin Huang
- Acupuncture and Moxibustion School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, People's Republic of China
| | - Qianhui Huang
- Acupuncture and Moxibustion School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, People's Republic of China
| | - Yuemei Wang
- Acupuncture and Moxibustion School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, People's Republic of China
| | - Sihui Li
- Acupuncture and Moxibustion School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, People's Republic of China
| | - Junmeng Wang
- Acupuncture and Moxibustion School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, People's Republic of China
| | - Qiaofeng Wu
- Acupuncture and Moxibustion School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, People's Republic of China.
| |
Collapse
|
6
|
Shin A, Kashyap PC. Multi-omics for biomarker approaches in the diagnostic evaluation and management of abdominal pain and irritable bowel syndrome: what lies ahead. Gut Microbes 2023; 15:2195792. [PMID: 37009874 PMCID: PMC10072066 DOI: 10.1080/19490976.2023.2195792] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/23/2023] [Indexed: 04/04/2023] Open
Abstract
Reliable biomarkers for common disorders of gut-brain interaction characterized by abdominal pain, including irritable bowel syndrome (IBS), are critically needed to enhance care and develop individualized therapies. The dynamic and heterogeneous nature of the pathophysiological mechanisms that underlie visceral hypersensitivity have challenged successful biomarker development. Consequently, effective therapies for pain in IBS are lacking. However, recent advances in modern omics technologies offer new opportunities to acquire deep biological insights into mechanisms of pain and nociception. Newer methods for large-scale data integration of complementary omics approaches have further expanded our ability to build a holistic understanding of complex biological networks and their co-contributions to abdominal pain. Here, we review the mechanisms of visceral hypersensitivity, focusing on IBS. We discuss candidate biomarkers for pain in IBS identified through single omics studies and summarize emerging multi-omics approaches for developing novel biomarkers that may transform clinical care for patients with IBS and abdominal pain.
Collapse
Affiliation(s)
- Andrea Shin
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Purna C. Kashyap
- Clinical Enteric Neuroscience Translational and Epidemiological Research Program, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
7
|
Li X, Ren K, Hong X, Guo S, Yu S, Yang S. Ameliorating effects of electroacupuncture on the low-grade intestinal inflammation in rat model of diarrhea-predominant irritable bowel syndrome. J Gastroenterol Hepatol 2022; 37:1963-1974. [PMID: 35959628 DOI: 10.1111/jgh.15981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 07/06/2022] [Accepted: 08/09/2022] [Indexed: 12/09/2022]
Abstract
BACKGROUND AND AIM We aim to investigate the effects and mechanisms of electroacupuncture (EA) at ST25 and ST37 on the intestinal low-grade inflammation (LGI) in rat model of Diarrhea-predominant irritable bowel syndrome (IBS-D). METHODS IBS-D model rats were established by acetic acid enema combined with restraint and tail clamping. Before EA intervention, they were divided into three groups: blank 1 group, blank 2 group, and IBS-D model group. Diarrhea symptoms and visceral pain sensitivity were evaluated. After constructed the model successfully, the remaining IBS-D model group rats were randomly divided into model group and EA group. Local intestinal inflammation (HE staining), changes of intestinal mucosa (occludin protein and microvascular diameter) were evaluated. Differences between two groups were compared using t-test or Mann-Whitney U-test. Differences among more than two groups were compared using one-way ANOVA or Kruskal-Wallis test. RESULTS After modeling, the results of HE staining in intestinal tract of IBS-D model rats showed LGI. Compared with the model group, 4 h fecal moisture content (diarrhea index) and the AWR score were decreased in the EA group. The results of HE in EA group showed that the infiltration of intestinal inflammatory cells were alleviated. Additionally, EA significantly upregulated the expression of occludin protein and partially dilated the intestinal microvascular diameter. Pearson correlation analysis showed that the symptoms of IBS-D rats were correlated with the changes of intestinal mucosa. CONCLUSION EA may treat intestinal LGI in IBS-D rats by upregulating the expression of occludin protein and dilating the intestinal microvascular diameter.
Collapse
Affiliation(s)
- Xuemei Li
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kuiyu Ren
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaojuan Hong
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Sha Guo
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuguang Yu
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Sha Yang
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
8
|
Nozu T, Miyagishi S, Ishioh M, Takakusaki K, Okumura T. Peripheral apelin mediates visceral hypersensitivity and impaired gut barrier in a rat irritable bowel syndrome model. Neuropeptides 2022; 94:102248. [PMID: 35526468 DOI: 10.1016/j.npep.2022.102248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/19/2022]
Abstract
Growing evidence indicates that visceral hypersensitivity and impaired gut barrier play an important role in the pathophysiology of irritable bowel syndrome (IBS). In animal models, these changes are known to be mediated via corticotropin-releasing factor (CRF)-Toll like receptor 4 (TLR4)-proinflammatory cytokine signaling. Apelin, an endogenous ligand of APJ, was reported to modulate CRF-induced enhanced colonic motility. In this context, we hypothesized that apelin also modulates visceral sensation and gut barrier, and tested this hypothesis. We measured visceral pain threshold in response to colonic balloon distention by abdominal muscle contractions assessed by electromyogram in rats. Colonic permeability was estimated by quantifying the absorbed Evans blue in colonic tissue. Intraperitoneal (ip) administration of [Ala13]-apelin-13, an APJ antagonist, blocked lipopolysaccharide (LPS)- or CRF-induced visceral hypersensitivity and colonic hyperpermeability (IBS model) in a dose-response manner. These inhibitory effects were blocked by compound C, an AMPK inhibitor, NG-nitro-L-arginine methyl ester, a nitric oxide (NO) synthesis inhibitor or naloxone in the LPS model. On the other hand, ip [Pyr1]-apelin-13, an APJ agonist, caused visceral hypersensitivity and colonic hyperpermeability, and these effects were reversed by astressin, a CRF receptor antagonist, TAK-242, a TLR4 antagonist or anakinra, an interleukin-1 receptor antagonist. APJ system modulated CRF-TLR4-proinflammatory cytokine signaling to cause visceral hypersensitivity and colonic hyperpermeability. APJ antagonist blocked these GI changes in IBS models, which were mediated via AMPK, NO and opioid signaling. Apelin may contribute to the IBS pathophysiology, and the inhibition of apelinergic signaling may be a promising therapeutic option for IBS.
Collapse
Affiliation(s)
- Tsukasa Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan; Center for Medical Education, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan.
| | - Saori Miyagishi
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan
| | - Masatomo Ishioh
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan
| | - Kaoru Takakusaki
- Division of Neuroscience, Department of Physiology, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan
| | - Toshikatsu Okumura
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan; Department of General Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan
| |
Collapse
|
9
|
Hasler WL, Grabauskas G, Singh P, Owyang C. Mast cell mediation of visceral sensation and permeability in irritable bowel syndrome. Neurogastroenterol Motil 2022; 34:e14339. [PMID: 35315179 PMCID: PMC9286860 DOI: 10.1111/nmo.14339] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/09/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022]
Abstract
Abnormalities of mast cell structure or function may play prominent roles in irritable bowel syndrome (IBS) symptom genesis. Mast cells show close apposition to sensory nerves and release bioactive substances in response to varied stimuli including infection, stress, and other neuroendocrine factors. Most studies focus on patients who develop IBS after enteric infection or who report diarrhea-predominant symptoms. Three topics underlying IBS pathogenesis have been emphasized in recent investigations. Visceral hypersensitivity to luminal stimulation is found in most IBS patients and may contribute to abdominal pain. Mast cell dysfunction also may disrupt epithelial barrier function which alters mucosal permeability potentially leading to altered bowel function and pain. Mast cell products including histamine, proteases, prostaglandins, and cytokines may participate in hypersensitivity and permeability defects, especially with diarrhea-predominant IBS. Recent experimental evidence indicates that the pronociceptive effects of histamine and proteases are mediated by the generation of prostaglandins in the mast cell. Enteric microbiome interactions including increased mucosal bacterial translocation may activate mast cells to elicit inflammatory responses underlying some of these pathogenic effects. Therapies to alter mast cell activity (mast cell stabilizers) or function (histamine antagonists) have shown modest benefits in IBS. Future investigations will seek to define patient subsets with greater potential to respond to therapies that address visceral hypersensitivity, epithelial permeability defects, and microbiome alterations secondary to mast cell dysfunction in IBS.
Collapse
Affiliation(s)
- William L. Hasler
- Division of Gastroenterology and HepatologyUniversity of Michigan Health SystemAnn ArborMichiganUSA
| | - Gintautas Grabauskas
- Division of Gastroenterology and HepatologyUniversity of Michigan Health SystemAnn ArborMichiganUSA
| | - Prashant Singh
- Division of Gastroenterology and HepatologyUniversity of Michigan Health SystemAnn ArborMichiganUSA
| | - Chung Owyang
- Division of Gastroenterology and HepatologyUniversity of Michigan Health SystemAnn ArborMichiganUSA
| |
Collapse
|
10
|
Yang NN, Tan CX, Lin LL, Su XT, Li YJ, Qi LY, Wang Y, Yang JW, Liu CZ. Potential Mechanisms of Acupuncture for Functional Dyspepsia Based on Pathophysiology. Front Neurosci 2022; 15:781215. [PMID: 35145373 PMCID: PMC8822151 DOI: 10.3389/fnins.2021.781215] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Functional dyspepsia (FD), a common disorder of gastrointestinal function, originated from the gastroduodenum. Although the therapeutic effect of acupuncture has been investigated by various high-quality randomized controlled trials, the potential mechanisms showed obvious heterogeneity. This review summarized the potential mechanisms of acupuncture on FD in order to guide for future laboratory and clinical studies. Here, we argued that the primary cause of FD was gastroduodenal low-grade inflammation and acid exposure, which impaired mucosal integrity, caused brain-gut axis dysfunction, and impaired brain network connectivity, all of which generated various symptom patterns. Overall the clinical studies indicated that acupuncture was a promising treatment to alleviate symptoms in FD patients, whose efficacy was influenced by acupoints and individual variance. Mechanistically, studies with animal models of FD and patients have shown that acupuncture, a non-invasive strategy for nerve stimulation, may have the potential to control intestinal inflammation and suppress acid-secretion via different somatic autonomic reflex pathways, regulate the brain-gut axis through intestinal microbiota, and has the potential to ameliorate FD-symptoms. The cumulative evidence demonstrated that acupuncture is a promising treatment to alleviate symptoms of FD patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jing-Wen Yang
- International Acupuncture and Moxibustion Innovation Institute, School of Acupuncture, Moxibustion and Tunia, Beijing University of Chinese Medicine, Beijing, China
| | - Cun-Zhi Liu
- International Acupuncture and Moxibustion Innovation Institute, School of Acupuncture, Moxibustion and Tunia, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
11
|
Zhang B, Shi H, Cao S, Xie L, Ren P, Wang J, Shi B. Revealing the magic of acupuncture based on biological mechanisms: A literature review. Biosci Trends 2022; 16:73-90. [PMID: 35153276 DOI: 10.5582/bst.2022.01039] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Bo Zhang
- School of Acupuncture and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Haojun Shi
- Second Clinical Medical College, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Shengnan Cao
- School of Acupuncture and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Liangyu Xie
- Department of Traditional Chinese Medicine Orthopedics, Neck-Shoulder and Lumbocrural Pain Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Pengcheng Ren
- Department of Traditional Chinese Medicine Orthopedics, Neck-Shoulder and Lumbocrural Pain Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jianmin Wang
- School of Acupuncture and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bin Shi
- Department of Traditional Chinese Medicine Orthopedics, Neck-Shoulder and Lumbocrural Pain Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
12
|
Guo J, Chen L, Wang YH, Song YF, Zhao ZH, Zhao TT, Lin ZY, Gu DM, Liu YQ, Peng YJ, Pei LX, Sun JH. Electroacupuncture Attenuates Post-Inflammatory IBS-Associated Visceral and Somatic Hypersensitivity and Correlates With the Regulatory Mechanism of Epac1-Piezo2 Axis. Front Endocrinol (Lausanne) 2022; 13:918652. [PMID: 35865309 PMCID: PMC9294163 DOI: 10.3389/fendo.2022.918652] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/20/2022] [Indexed: 12/12/2022] Open
Abstract
Electroacupuncture (EA) is considered to have a therapeutic effect in the relief of irritable bowel syndrome (IBS)-associated visceral hypersensitivity via the reduction of the level of 5-hydroxytryptamine (5-HT) and 5-HT3 receptors (5-HT3R). However, whether Epac1/Piezo2, as the upstream of 5-HT, is involved in this process remains unclear. We investigated whether EA at the ST36 and ST37 acupoints alleviated visceral and somatic hypersensitivity in a post-inflammatory IBS (PI-IBS) model mice via the Epac1-Piezo2 axis. In this study, we used 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced PI-IBS as a mouse model. Visceral sensitivity was assessed by the abdominal withdrawal reflex test. Somatic sensitivity was evaluated by the hind paw withdrawal threshold. Quantitative real-time PCR, immunofluorescence staining, ELISA, and Western blotting were performed to examine the expressions of Epac1, Piezo2, 5-HT, and 5-HT3R from the mouse distal colon/L5-S2 dorsal root ganglia (DRG). Our results showed that EA improved the increased visceral sensation and peripheral mechanical hyperalgesia in PI-IBS model mice, and the effects of EA were superior to the sham EA. EA significantly decreased the protein and mRNA levels of Epac1 and Piezo2, and reduced 5-HT and 5-HT3R expressions in the distal colon. Knockdown of colonic Piezo2 eliminated the effect of EA on somatic hypersensitivity. Combined knockdown of colonic Epac1 and Piezo2 synergized with EA in relieving visceral hypersensitivity and blocked the effect of EA on somatic hypersensitivity. Additionally, protein levels of Epac1 and Piezo2 were also found to be decreased in the L5-S2 DRGs after EA treatment. Taken together, our study suggested that EA at ST36 and ST37 can alleviate visceral and somatic hypersensitivity in PI-IBS model mice, which is closely related to the regulation of the Epac1-Piezo2 axis.
Collapse
Affiliation(s)
- Jing Guo
- Department of Acupuncture and Rehabilitation, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Acupuncture and Massage College, Health and Rehabilitation College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lu Chen
- Department of Acupuncture and Rehabilitation, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu-hang Wang
- Acupuncture and Massage College, Health and Rehabilitation College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ya-fang Song
- Acupuncture and Massage College, Health and Rehabilitation College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhan-hao Zhao
- Department of Massage, Danyang Hospital of Traditional Chinese Medicine, Danyang, China
| | - Ting-ting Zhao
- Department of Acupuncture and Rehabilitation, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhi-ying Lin
- Department of Acupuncture and Rehabilitation, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Dong-mei Gu
- Department of Acupuncture, Nantong Hospital of Traditional Chinese Medicine, Nantong, China
| | - Yun-qi Liu
- Nanjing Foreign Language School, Nanjing, China
| | - Yong-jun Peng
- Department of Acupuncture and Rehabilitation, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Yong-jun Peng, ; Li-xia Pei, ; Jian-hua Sun,
| | - Li-xia Pei
- Department of Acupuncture and Rehabilitation, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Yong-jun Peng, ; Li-xia Pei, ; Jian-hua Sun,
| | - Jian-hua Sun
- Department of Acupuncture and Rehabilitation, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Yong-jun Peng, ; Li-xia Pei, ; Jian-hua Sun,
| |
Collapse
|
13
|
Tahir AH, Li JJ, Tang Y. Peripheral and Spinal Mechanisms Involved in Electro-Acupuncture Therapy for Visceral Hypersensitivity. Front Neurosci 2021; 15:696843. [PMID: 34658755 PMCID: PMC8511820 DOI: 10.3389/fnins.2021.696843] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022] Open
Abstract
One of the important characteristic features of clinically significant gastrointestinal disorders is visceral hypersensitivity (VH). Pain sensitization or VH is a big challenge for clinicians and becomes a very thorny work in clinical practices; the therapeutic efficacy for VH results in limited success. A popular second therapy that is being approved for the induction of analgesia and attenuates VH with fewer side effects includes electro-acupuncture (EA). Different peripheral and spinal neurological chemicals, including neurotransmitters, neuropeptides, and cytokines, and different signaling pathways were associated with EA treatment in VH. Despite the higher acceptance of EA, the underlying mechanism still needs to be further explored. In this paper, we review the available literature to find the peripheral and spinal mechanisms involved in EA to relieve VH.
Collapse
Affiliation(s)
- Adnan Hassan Tahir
- School of Acupuncture and Tuina and International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Jia-Jia Li
- School of Acupuncture and Tuina and International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Yong Tang
- School of Acupuncture and Tuina and International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
14
|
Guo J, Lu G, Chen L, Geng H, Wu X, Chen H, Li Y, Yuan M, Sun J, Pei L. Regulation of serum microRNA expression by acupuncture in patients with diarrhea-predominant irritable bowel syndrome. Acupunct Med 2021; 40:34-42. [PMID: 34231397 DOI: 10.1177/09645284211027892] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To screen for differentially expressed serum microRNAs (miRNAs) in patients with diarrhea-predominant irritable bowel syndrome (IBS-D) compared with healthy participants and explore the mechanism of acupuncture in the treatment of IBS-D based on miRNAs. METHODS IBS-D patients that met the Rome III diagnostic criteria and age- and sex-matched healthy participants were enrolled between April 2017 and December 2017. Serum miRNA levels were initially determined using a TaqMan low-density array (TLDA) in pooled samples. Markedly altered miRNAs in IBS-D patients were subsequently validated using quantitative real-time polymerase chain reaction (qRT-PCR) on individual samples. All IBS-D patients accepted the acupuncture therapy for 6 weeks. The disease severity was assessed using the IBS symptom severity scale (IBS-SSS) questionnaire before and after treatment. After acupuncture, the patients' serum was re-analyzed for altered expression of the miRNAs by qRT-PCR. RESULTS TLDA and qRT-PCR analysis revealed six upregulated miRNAs (miR-1305, miR-575, miR-149-5p, miR-190a-5p, miR-135a-5p, and miR-148a-3p; P < 0.05) and two downregulated miRNAs (miR-194-5p, miR-127-5p; P < 0.05) in IBS-D patients compared with healthy controls. Post acupuncture treatment, total IBS-SSS scores, severity of abdominal pain, duration of abdominal pain, severity of abdominal distention, dissatisfaction with bowel habits and disruption in quality of life decreased significantly (P < 0.001). Furthermore, the upregulated miR-148a-3p levels in IBS-D patients also decreased significantly after acupuncture (P < 0.05). CONCLUSIONS The over-expression or reduced expression of several miRNAs may contribute to IBS-D pathogenesis. Acupuncture might downregulate miR-148a-3p through multiple pathways to alleviate or relieve IBS-D symptoms. TRIAL REGISTRATION NUMBER ChiCTR-IOR-17010860 (Chinese Clinical Trials Registry).
Collapse
Affiliation(s)
- Jing Guo
- School of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Gao Lu
- School of Second Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lu Chen
- Department of Acupuncture and Rehabilitation, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Hao Geng
- Department of Acupuncture and Rehabilitation, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Xiaoliang Wu
- Department of Acupuncture and Rehabilitation, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Hao Chen
- School of Second Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Li
- Gastroenterology Endoscopy Center, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Mengqian Yuan
- Department of Acupuncture and Rehabilitation, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Jianhua Sun
- Department of Acupuncture and Rehabilitation, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Lixia Pei
- Department of Acupuncture and Rehabilitation, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| |
Collapse
|
15
|
Jin X, Gharibani P, Yin J, Chen JDZ. Neuro-Immune Modulation Effects of Sacral Nerve Stimulation for Visceral Hypersensitivity in Rats. Front Neurosci 2021; 15:645393. [PMID: 34276280 PMCID: PMC8282909 DOI: 10.3389/fnins.2021.645393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 06/01/2021] [Indexed: 11/21/2022] Open
Abstract
Background: Visceral hypersensitivity (VH) is one of the underlying pathophysiologies of irritable bowel syndrome. Mast cell overactivation has been found to be one of the main causes of VH. We investigated the effects and mechanisms of actions of sacral nerve stimulation (SNS) on visceral pain in a rodent model of VH. Methods: The VH was established by an intrarectal infusion of AA in 10-day-old pups. Rats were chronically implanted with electrodes for SNS and recording electromyogram (EMG) and electrocardiogram. The acute study was performed in 2-randomized sessions with SNS (14 Hz, 330 μs, 40% motor threshold or MT, 30 min) or sham-SNS. Later on, rats were randomized into SNS/sham-SNS groups and a chronic study was performed with 2 h-daily SNS or sham-SNS for 21 days. Visceromotor reflexes were assessed by abdominal EMG and withdrawal reflex (AWR). Colon tissues were collected to study colonic acetylcholine (ACh), the enteric neurons (ChAT, nNOS, and PGP9.5), mast cells activity [Tryptase, prostaglandins E2 (PGE2), and cyclooxygenases-2 (COX2)] and pain markers [nerve growth factor (NGF) and Sub-P]. Key Results: Sacral nerve stimulation significantly improved visceromotor reflexes assessed by the EMG and AWR, compared with sham-SNS. SNS normalized the protein expressions of ChAT and nNOS and regulated mast cells activity by downregulating Tryptase, COX2, and PGE2. Neonatal AA administration upregulated NGF and Sub-P; chronic SNS significantly decreased these pain biomarkers. Concurrently, chronic SNS increased ACh in colon tissues and vagal efferent activity. Conclusions: Sacral nerve stimulation reduces VH in rats and this ameliorating effect might be attributed to the suppression of mast cell overactivation in the colon tissue via the modulation of autonomic nervous system functions.
Collapse
Affiliation(s)
- Xue Jin
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Payam Gharibani
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jieyun Yin
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jiande D Z Chen
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
16
|
Chen Y, Cheng J, Zhang Y, Chen JDZ, Seralu FM. Electroacupuncture at ST36 Relieves Visceral Hypersensitivity via the NGF/TrkA/TRPV1 Peripheral Afferent Pathway in a Rodent Model of Post-Inflammation Rectal Hypersensitivity. J Inflamm Res 2021; 14:325-339. [PMID: 33584100 PMCID: PMC7875081 DOI: 10.2147/jir.s285146] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 12/31/2020] [Indexed: 12/25/2022] Open
Abstract
Purpose The aim of the study was to investigate the effects of electroacupuncture (EA) at ST36 on rectal hypersensitivity and compliance in DSS-treated post-inflammation rats. In addition, we explored the involvement of mast cells-triggered NGF/TrkA/TRPV1 peripheral afferent pathway. Methods Rats were provided water with 5% dextran sulphate sodium (DSS) for 7 days. Two weeks after the DSS treatment they were subjected to initial and repetitive EA. Different sets of parameters were compared in the initial test and then EA with the selected parameters were performed for 2 weeks. Rectal compliance was assessed by colorectal distension while visceral sensitivity was evaluated by abdominal withdraw reflexes (AWR) and electromyogram (EMG). Masson's trichrome staining was performed to stain collagen and toluidine blue staining was applied to assess the degranulation of mast cells. Nerve growth factor (NGF), tryptase, TrkA and TRPV1 were measured by Western blot or immunofluorescence staining. Results EA at 100 Hz was more effective in improving rectal compliance and visceral hypersensitivity. Daily EA improved visceral hypersensitivity but not rectal compliance. Five weeks after DSS treatment, fibrosis was noted in both sham-EA and EA groups. The expression and activation of mast cells were significantly reduced after the 2-week EA treatment with a concurrent decrease in the expression of colonic NGF/TrkA and TRPV1 in both colon and dorsal root ganglions. Conclusion EA at ST36 with a special set of parameters has no effect on reduced rectal compliance but relieves visceral hypersensitivity via the mast cells-triggered NGF/TrkA/TRPV1 peripheral afferent pathway in DSS-treated post-inflammation rats.
Collapse
Affiliation(s)
- Yan Chen
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Division of Gastroenterology, Binzhou Medical University Hospital, Binzhou, Shandong, People's Republic of China
| | - Jiafei Cheng
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yiling Zhang
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jiande D Z Chen
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI, USA
| | - Florin M Seralu
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
17
|
Corrigendum. Neurogastroenterol Motil 2020; 32:e14018. [PMID: 33107681 DOI: 10.1111/nmo.14018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
18
|
Luo M, Song B, Zhu J. Electroacupuncture: A New Approach for Improved Postoperative Sleep Quality After General Anesthesia. Nat Sci Sleep 2020; 12:583-592. [PMID: 32922103 PMCID: PMC7457783 DOI: 10.2147/nss.s261043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 08/04/2020] [Indexed: 11/23/2022] Open
Abstract
General anesthesia produces a state of drug-induced unconsciousness that is controlled by the extent and duration of administered agents. Whether inhalation or intravenous in formulation, such agents may interfere with normal sleep-wake cycles, impairing postoperative sleep quality and creating complications. Electroacupuncture is a new approach widely applied in clinical practice during recent years. This particular technology helps regulate neurotransmitter concentrations in the brain, lowering norepinephrine and dopamine levels to improve sleep quality. It also alleviates surgical pain that degrades postoperative sleep quality after general anesthesia by downregulating immune activity (SP, NK-1, and COX-1) and upregulating serotonin receptor (5-HT1AR, 5-HT2AR) and endocannabinoid expression levels. However, large-scale, multicenter studies are still needed to determine the optimal duration, frequency, and timing of electroacupuncture for such use.
Collapse
Affiliation(s)
- Man Luo
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Bijia Song
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People’s Republic of China
- Department of Anesthesiology, Friendship Hospital of Capital Medical University, Beijing, People’s Republic of China
| | - Junchao Zhu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People’s Republic of China
| |
Collapse
|
19
|
Electroacupuncture Improves IBS Visceral Hypersensitivity by Inhibiting the Activation of Astrocytes in the Medial Thalamus and Anterior Cingulate Cortex. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:2562979. [PMID: 32617101 PMCID: PMC7306073 DOI: 10.1155/2020/2562979] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/02/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022]
Abstract
Objective To explore whether the effect of electroacupuncture (EA) on visceral hypersensitivity (VH) in rats with irritable bowel syndrome (IBS) is related to the changes of astrocyte activation in the medial thalamus (MT) and anterior cingulate cortex (ACC). Method Male Sprague-Dawley rats were randomly divided into the normal control (NC) group, model control (MC) group, electroacupuncture (EA) group, and fluorocitrate (FCA) group. A model of visceral hypersensitivity was established by neonatal colorectal irritation. In the EA group, needles were inserted into the skin at the Tianshu (ST25) and Shangjuxu (ST37) acupoints, once a day for 7 days. The FCA group received intrathecal injection of FCA on the 1st, 4th, and 7th days. Visceral hypersensitivity was evaluated by the abdominal withdrawal reflex (AWR), and glial fibrillary acidic protein (GFAP) mRNA and protein levels in the MT and ACC were detected by real-time PCR, immunohistochemistry, and western blots. Results The AWR score in the MC group was significantly higher than in the NC group, and EA and FCA reduced the AWR score of VH rats. GFAP mRNA and protein levels in the MT and ACC of rats in the MC group were significantly increased compared with the NC group. After either electroacupuncture or fluorocitrate, GFAP mRNA and protein levels in the MT and ACC were both clearly reduced. Conclusion Electroacupuncture alleviates IBS visceral hypersensitivity by inhibiting the activation of astrocytes in the MT and ACC.
Collapse
|
20
|
Casado-Bedmar M, Keita ÅV. Potential neuro-immune therapeutic targets in irritable bowel syndrome. Therap Adv Gastroenterol 2020; 13:1756284820910630. [PMID: 32313554 PMCID: PMC7153177 DOI: 10.1177/1756284820910630] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/11/2020] [Indexed: 02/04/2023] Open
Abstract
Irritable bowel syndrome (IBS) is a functional gastrointestinal (GI) disorder characterized by recurring abdominal pain and disturbed bowel habits. The aetiology of IBS is unknown but there is evidence that genetic, environmental and immunological factors together contribute to the development of the disease. Current treatment of IBS includes lifestyle and dietary interventions, laxatives or antimotility drugs, probiotics, antispasmodics and antidepressant medication. The gut-brain axis comprises the central nervous system, the hypothalamic pituitary axis, the autonomic nervous system and the enteric nervous system. Within the intestinal mucosa there are close connections between immune cells and nerve fibres of the enteric nervous system, and signalling between, for example, mast cells and nerves has shown to be of great importance during GI disorders such as IBS. Communication between the gut and the brain is most importantly routed via the vagus nerve, where signals are transmitted by neuropeptides. It is evident that IBS is a disease of a gut-brain axis dysregulation, involving altered signalling between immune cells and neurotransmitters. In this review, we analyse the most novel and distinct neuro-immune interactions within the IBS mucosa in association with already existing and potential therapeutic targets.
Collapse
Affiliation(s)
- Maite Casado-Bedmar
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Åsa V. Keita
- Department of Biomedical and Clinical Sciences, Medical Faculty, Linköping University, Campus US, Linköping, 581 85, Sweden
| |
Collapse
|
21
|
Effect of the interleukin 10 polymorphisms on interleukin 10 production and visceral hypersensitivity in Chinese patients with diarrhea-predominant irritable bowel syndrome. Chin Med J (Engl) 2020; 132:1524-1532. [PMID: 31205078 PMCID: PMC6616227 DOI: 10.1097/cm9.0000000000000306] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Background: Irritable bowel syndrome (IBS), a functional gastrointestinal disorder, is characterized by cytokine imbalance. Previously, decreased plasma interleukin 10 (IL-10) level was reported in patients with IBS, which may be due to genetic polymorphisms. However, there are no reports correlating the IL-10 polymorphisms with IL-10 production in patients with IBS. This study aimed to analyze the effect of IL-10 polymorphisms on IL-10 production and its correlation with the clinical symptoms in Chinese patients with diarrhea-predominant IBS (IBS-D). Methods: Two IL-10 single nucleotide polymorphisms (rs1800871 and rs1800896) were detected in 120 patients with IBS-D and 144 healthy controls (HC) using SNaPshot. IBS symptom severity score, Bristol scale, hospital anxiety, and depressive scale (HADS) were used to evaluate the clinical symptoms, as well as the psychological status and visceral sensitivity of the subjects. IL-10 levels in the plasma and peripheral blood mononuclear cell (PBMC) culture supernatant were measured using enzyme-linked immunosorbent assay, while those in ileal and colonic mucosal biopsies were measured using immunohistochemistry. Results: The frequency of rs1800896 C allele was significantly lower in the patients with IBS-D than that in the HC (odds ratio: 0.49, 95% confidence interval: 0.27–0.92, P = 0.0240). The IL-10 levels in the plasma (P = 0.0030) and PBMC culture supernatant (P = 0.0500) of the CT genotype subjects were significantly higher than those in the TT genotype subjects. The CT genotype subjects exhibited a higher pain threshold in the rectal distention test than the TT genotype subjects. Moreover, IL-10 rs1800871 GG genotype subjects showed an increase in the HADS score compared to other genotype subjects. Conclusions: IL-10 rs1800896 C allele is correlated with higher IL-10 levels in the plasma and the PBMC culture supernatant, which is associated with a higher pain threshold in the Chinese patients with IBS-D. This study provides an explicit relationship of IL-10 polymorphisms with IL-10 production, which might help in understanding the pathogenesis of IBS-D.
Collapse
|