1
|
Chen X, Zhu J, Bai W, Li X, Yang M, Wang J, Yu J, Jian R. Effects of intermittent theta burst stimulation versus repetitive transcranial magnetic stimulation on post-stroke dysphagia in hospitalised patients: study protocol for a prospective, randomised controlled trial. BMJ Open 2025; 15:e097034. [PMID: 40288794 PMCID: PMC12035436 DOI: 10.1136/bmjopen-2024-097034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 04/04/2025] [Indexed: 04/29/2025] Open
Abstract
INTRODUCTION Dysphagia is one of the common complications of stroke. The use of high-frequency (10 Hz) repetitive transcranial magnetic stimulation (rTMS) to stimulate the suprahyoid motor cortex, which has been an evidence-based treatment method for dysphagia. Intermittent theta burst stimulation (iTBS) is a newer type of rTMS. There are few studies comparing iTBS with 10 Hz rTMS in the treatment of post-stroke dysphagia (PSD). Therefore, our study describes the rationale and design of a randomised controlled trial to evaluate the effects of iTBS versus 10 Hz rTMS on swallowing function, serum indexes and functional fMRI in patients with PSD. METHODS AND ANALYSIS Fifty participants with PSD will be randomly assigned to the iTBS group (n=25) or the rTMS group (n=25). iTBS group: three 50 Hz pulses, repeated at 5 Hz, 100% intensity threshold, 600 pulses/time and sham rTMS. rTMS group: 10 Hz pulse, 100% intensity threshold, 1000 pulses/time and sham iTBS. The stimulation sites will be the suprahyoid motor cortex of affected hemisphere, once a day, 5 times a week for 4 weeks. Swallowing function and serum indexes will be evaluated at baseline, second week of treatment, fourth week of treatment and 4 weeks after the end of treatment. The fMRI will be evaluated at baseline and in the fourth week of treatment. ETHICS AND DISSEMINATION This study was reviewed and approved by the Ethics Committee of the Affiliated Hospital of Southwest Medical University (number: KY2023406). The findings will be published in peer-reviewed journals and presented at academic conferences. TRIAL REGISTRATION NUMBER ChiCTR2400079679.
Collapse
Affiliation(s)
- Xi Chen
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Rehabilitation Medicine and Engineering Key Laboratory of Luzhou, Luzhou, Sichuan, China
- Department of Rehabilitation Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Jiayi Zhu
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Rehabilitation Medicine and Engineering Key Laboratory of Luzhou, Luzhou, Sichuan, China
- Department of Rehabilitation Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Wenjing Bai
- Department of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Xueling Li
- Department of Paediatrics, Southwest Medical University, Luzhou, Sichuan, China
| | - Min Yang
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Rehabilitation Medicine and Engineering Key Laboratory of Luzhou, Luzhou, Sichuan, China
- Department of Rehabilitation Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Jianxiong Wang
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Rehabilitation Medicine and Engineering Key Laboratory of Luzhou, Luzhou, Sichuan, China
- Department of Rehabilitation Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Jihua Yu
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Rehabilitation Medicine and Engineering Key Laboratory of Luzhou, Luzhou, Sichuan, China
- Department of Rehabilitation Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Rui Jian
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Rehabilitation Medicine and Engineering Key Laboratory of Luzhou, Luzhou, Sichuan, China
- Department of Rehabilitation Medicine, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
2
|
Han D, Cheng J, Chen Y, Du H, Lin Z, Zhong R, Liu Z. Evidence for Intermittent Theta Burst Transcranial Magnetic Stimulation for Dysphagia after Stroke: A Systematic Review and Meta-analysis. Dysphagia 2025; 40:54-65. [PMID: 39008039 DOI: 10.1007/s00455-024-10729-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/14/2024] [Indexed: 07/16/2024]
Abstract
Dysphagia is the most common serious complication after stroke, with an incidence of about 37-78%, which seriously affects the independence of patients in daily life and clinical recovery. Repetitive transcranial magnetic stimulation (rTMS), as a non-invasive neuromodulation technique, is an emerging option for post-stroke dysphagia. Theta burst stimulation (TBS) is a new mode of transcranial magnetic stimulation that simulates the frequency of pulses released in the hippocampus.Intermittent theta burst stimulation (iTBS) has been shown to increase cortical excitability and improve swallowing function in patients. Our study sought to summarize existing clinical randomized controlled trials to provide evidence-based medical evidence for the clinical use of iTBS. A computer search was conducted on 4 Chinese (Chinese Biomedical Literature Database, VIP Information Resource System, CNKI, and Wanfang Medical Science) and 4 English (including Cochrane Library, Embase, PubMed, Web of Science) databases to retrieve all randomized controlled trials in Chinese and English that explored the effects of Intermittent Theta Burst Stimulation for post-stroke dysphagia. The retrieval years are from database construction to 23 November 2023. The primary outcome measure was a change in Penetration/Aspiration Scale (PAS), Standardized Swallowing Assessment (SSA) and Functional Oral Intake Scale (FOIS), Secondary outcomes included Fiberoptic Endoscopic Dysphagia Severity Scale (FEDSS), water-swallowing test (WST) etc. A meta-analysis by Standardized Mean Difference (SMD) and 95% confidence interval (CI) was performed with RevMan 5.3. we appraise risk of bias(RoB) of each study with the Cochrane RoB tool. Detailed instructions for using the Cochrane RoB tool are provided in the Cochrane Handbook for Systematic Reviews of Interventions (The Cochrane Handbook). Nine studies were obtained from eight databases after screening by inclusion and exclusion criteria, 567 patients from 9 studies were included in the meta-analysis, and one study was included in the qualitative analysis due to different control groups. Two of the nine studies had an unclear risk of bias, and four studies were at low risk. The results showed that iTBS significantly improved SSA, PAS, FOIS, and PAS scores in stroke patients compared to the control group(P < 0.05), and promoted swallowing function recovery. Our systematic review provides the first evidence of the efficacy of iTBS in improving dysphagia in stroke patients. However, the number of available studies limits the persuasiveness of the evidence and further validation by additional randomized controlled trials is needed.
Collapse
Affiliation(s)
- Dongmiao Han
- Department of Rehabilitation Therapy Teaching and Research, Gannan Healthcare Vocational College, Ganzhou, Jiangxi Province, 341000, China
| | - Jinling Cheng
- Department of Rehabilitation Medicine, Shaoguan First People's Hospital, Shaoguan, Guangdong Province, 512000, China
| | - Yanfeng Chen
- Rehabilitation School of Gannan Medical University, Ganzhou, Jiangxi Province, 341000, China
| | - Hui Du
- Rehabilitation School of Gannan Medical University, Ganzhou, Jiangxi Province, 341000, China
| | - Zhanxiang Lin
- Rehabilitation School of Gannan Medical University, Ganzhou, Jiangxi Province, 341000, China
| | - Renlong Zhong
- Department of Rehabilitation Therapy Teaching and Research, Gannan Healthcare Vocational College, Ganzhou, Jiangxi Province, 341000, China.
| | - Zicai Liu
- Department of Rehabilitation Medicine, Shaoguan First People's Hospital, Shaoguan, Guangdong Province, 512000, China.
| |
Collapse
|
3
|
Qin Y, Pillidge C, Harrison B, Adhikari B. Development and characterization of soy protein-based custard-like soft foods for elderly individuals with swallowing difficulties. Food Res Int 2025; 201:115608. [PMID: 39849742 DOI: 10.1016/j.foodres.2024.115608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/07/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025]
Abstract
There is growing interest in developing protein-rich foods for the elderly using plant proteins. The application of soy protein isolate (SPI) as a model protein to create protein-rich, custard-like soft foods presents a unique opportunity for innovative formulations tailored to those within the aging population suffering from swallowing difficulties. This study investigated the physicochemical and textural properties of custard-type soft food formulations developed using SPI for dysphagic elderly individuals, with the goal of achieving characteristics similar to those of optimal milk protein-based counterparts. The protein content in the SPI-based custards varied from 8.9 % to 13.9 % and the milk-protein based custards had 8.9 % protein content. There was a substantial difference in textural, rheological and creep resistance and other properties between SPI and milk protein-based formulations. The SPI-based custards also had lower water-holding capacity, looser structure, and higher level of insoluble protein aggregates. The SPI-based custards imparted a more spreadable mouthfeel suitable for the aging population. The custards containing 13.9 % SPI had higher gel strength, viscosity, texture, and product stability. All of these custards were classified as Level 6 - Soft & Bite-sized dysphagia diet, based on International Dysphagia Diet Standardisation Initiative (IDDSI) tests. Instrumental IDDSI tests for Level 6 foods corroborated these observations, yielding reliable and consistent data. This research provides insights for developing protein-rich plant-based soft foods intended for the elderly population that have characteristics close to milk protein-based custards and comply with IDSSI criteria.
Collapse
Affiliation(s)
- Yuxin Qin
- School of Science, RMIT University, Melbourne, VIC 3083, Australia.
| | | | | | - Benu Adhikari
- School of Science, RMIT University, Melbourne, VIC 3083, Australia; The Centre for Advanced Materials and Industrial Chemistry (CAMIC), Melbourne, VIC 3083, Australia.
| |
Collapse
|
4
|
Li K, Fu C, Xie Z, Zhang J, Zhang C, Li R, Gao C, Wang J, Xue C, Zhang Y, Deng W. The impact of physical therapy on dysphagia in neurological diseases: a review. Front Hum Neurosci 2024; 18:1404398. [PMID: 38903410 PMCID: PMC11187312 DOI: 10.3389/fnhum.2024.1404398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/28/2024] [Indexed: 06/22/2024] Open
Abstract
A neurogenic dysphagia is dysphagia caused by problems with the central and peripheral nervous systems, is particularly prevalent in conditions such as Parkinson's disease and stroke. It significantly impacts the quality of life for affected individuals and causes additional burdens, such as malnutrition, aspiration pneumonia, asphyxia, or even death from choking due to improper eating. Physical therapy offers a non-invasive treatment with high efficacy and low cost. Evidence supporting the use of physical therapy in dysphagia treatment is increasing, including techniques such as neuromuscular electrical stimulation, sensory stimulation, transcranial direct current stimulation, and repetitive transcranial magnetic stimulation. While initial studies have shown promising results, the effectiveness of specific treatment regimens still requires further validation. At present, there is a lack of scientific evidence to guide patient selection, develop appropriate treatment regimens, and accurately evaluate treatment outcomes. Therefore, the primary objectives of this review are to review the results of existing research, summarize the application of physical therapy in dysphagia management, we also discussed the mechanisms and treatments of physical therapy for neurogenic dysphagia.
Collapse
Affiliation(s)
- Kun Li
- Shandong Daizhuang Hospital, Jining, China
| | - Cuiyuan Fu
- Shandong Daizhuang Hospital, Jining, China
| | - Zhen Xie
- Shandong Daizhuang Hospital, Jining, China
| | - Jiajia Zhang
- Department of Psychology, Xinxiang Medical University, Xinxiang, China
| | | | - Rui Li
- Shandong Daizhuang Hospital, Jining, China
| | | | | | - Chuang Xue
- Affiliated Mental Health Center and Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | - Wei Deng
- Affiliated Mental Health Center and Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Tai J, Hu R, Fan S, Wu Y, Wang T, Wu J. Theta-burst transcranial magnetic stimulation for dysphagia patients during recovery stage of stroke: a randomized controlled trial. Eur J Phys Rehabil Med 2023; 59:543-553. [PMID: 37737051 PMCID: PMC10664766 DOI: 10.23736/s1973-9087.23.08023-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/17/2023] [Accepted: 09/04/2023] [Indexed: 09/23/2023]
Abstract
BACKGROUND The Theta-burst Transcranial Magnetic Stimulation (TBS) is an emerging modality of Repetitive Transcranial Magnetic Stimulation (rTMS). However, the efficacy of TBS on post-stroke recovery-stage patients with dysphagia remains unclear. AIM To investigate the effect of intermittent theta burst stimulation (iTBS) and continuous theta burst stimulation (cTBS) in post-stroke dysphagia patients within the recovery stage. DESIGN Randomized controlled double blinded trial. SETTING Inpatient. POPULATION Ninety patients with dysphagia after stroke within 1 to 6 months. METHODS Patients were divided into the supratentorial group and the brainstem group, and both of groups were further divided into three subgroups, including the sham subgroups, the iTBS subgroups, and the cTBS subgroups. Each of subgroups received 30 min of traditional swallowing rehabilitation treatment every day for 4 weeks. In addition, the iTBS subgroups received iTBS over the cortex of the suprahyoid muscles on the affected hemisphere, the cTBS subgroups received cTBS on the unaffected hemisphere, and the sham subgroups received sham stimulation on unilateral hemisphere. Standardized swallowing assessment (SSA), Oral Motor Function Scale (OMFS) and fiberoptic endoscopic examination of swallowing (FEES) were assessed before and after treatments. RESULTS In the supratentorial group, compared with the sham and cTBS subgroups, the iTBS subgroups showed significant improvement in SSA, OMFS, vocal folds movement, laryngeal sensation, and Rosenbek Penetration-Aspiration Scale (PAS) (P<0.05). In the brainstem group, compared with the sham subgroup, the iTBS subgroup significantly improved SSA, OMFS, Yale Pharyngeal Residue Severity Rating Scale (YPR-SRS) and PAS (P<0.05), and the cTBS subgroup significantly improved SSA, YPR-SRS and PAS (P<0.05). CONCLUSIONS This study demonstrated that iTBS might be an effective stimulation pattern to improve the overall swallowing function whether in supratentorial stroke patients or brainstem stroke patients. CLINICAL REHABILITATION IMPACT iTBS seems to be a promising approach for rehabilitation of overall swallowing function in post-stroke patients.
Collapse
Affiliation(s)
- Jiahui Tai
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
| | - Ruiping Hu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
| | - Shunjuan Fan
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
| | - Yi Wu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
| | - Tingwei Wang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
| | - Junfa Wu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China -
- National Center for Neurological Disorders, Shanghai, China
| |
Collapse
|
6
|
Kim YJ, Shin DM, Chun YG, Choi YS, Kim BK. Development of meat spread with omega-3 fatty acids derived from flaxseed oil for the elderly: Physicochemical, textural, and rheological properties. Meat Sci 2023; 204:109254. [PMID: 37354834 DOI: 10.1016/j.meatsci.2023.109254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/06/2023] [Accepted: 06/12/2023] [Indexed: 06/26/2023]
Abstract
This study evaluates the characteristics of n-3-enriched meat spread that is in development for consumption by elderly individuals. Herein, flaxseed oil was used as a source of n-3 fatty acid, and macro- and nano-sized flaxseed oil emulsions (FOE) were prepared for the fabrication of meat spreads. As the level of FOE was increased in the meat spreads, significant increases in the levels of omega-3 fatty acids (α-linolenic acid) were observed. Emulsion stability and cooking loss were also improved in meat spreads formulated with FOE compared with those the control. In particular, the addition of FOE generated softer and less chewy meat, owing to its lower melting point and rheological properties. However, the high content of unsaturated fatty acids in the FOE-containing meat spreads increased their susceptibility to lipid oxidation meat. These findings indicate that FOE, particularly macro-sized FOE, has the potential for use in n-3 fatty acid enriched meat products that are intended for consumption by elderly individuals but need to be evaluated for their impacts on shelf-life and sensory quality.
Collapse
Affiliation(s)
- Yun Jeong Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea; Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Dong-Min Shin
- Research Group of Food Processing, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Yong Gi Chun
- Research Group of Food Processing, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Bum-Keun Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea; Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
7
|
Alfonsi E, Todisco M, Fresia M, Tassorelli C, Cosentino G. Electrokinesiographic Study of Oropharyngeal Swallowing in Neurogenic Dysphagia. Dysphagia 2023; 38:543-557. [PMID: 34313849 DOI: 10.1007/s00455-021-10336-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/23/2021] [Indexed: 01/04/2023]
Abstract
Electrokinesiographic study of swallowing (EKSS) can be useful for the assessment of patients with suspected or overt neurogenic dysphagia. EKSS consists of multichannel recording of the electromyographic (EMG) activity of the suprahyoid/submental muscle complex (SHEMG), the EMG activity of the cricopharyngeal muscle (CPEMG), and the laryngopharyngeal mechanogram (LPM). The LPM is an expression of the mechanical changes that the laryngopharyngeal structures undergo during the pharyngeal phase of swallowing. This method allows detailed evaluation of the magnitude, duration and temporal relations of the different events that characterize oropharyngeal swallowing, and thus in-depth exploration both of physiological deglutition mechanisms and of pathophysiological features of swallowing in neurogenic dysphagia. Furthermore, EKSS can guide dysphagia treatment strategies, allowing identification of optimal solutions for single patients. For instance, CPEMG recording can identify incomplete or absent relaxation of the upper esophageal sphincter during the pharyngeal phase of swallowing, thus suggesting a therapeutic approach based on botulinum toxin injection into the cricopharyngeal muscle. More recently, the 'shape' of SHEMG and the reproducibility of both SHEMG and LPM over repeated swallowing acts have been implemented as novel electrokinesiographic parameters. These measures could be valuable for straightforward non-invasive investigation of dysphagia severity and response to dysphagia treatment in clinical practice.
Collapse
Affiliation(s)
- Enrico Alfonsi
- Clinical Neurophysiology Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100, Pavia, Italy.
| | - Massimiliano Todisco
- Clinical Neurophysiology Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Mauro Fresia
- Clinical Neurophysiology Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100, Pavia, Italy
| | - Cristina Tassorelli
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Neurorehabilitation Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Giuseppe Cosentino
- Clinical Neurophysiology Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
8
|
Wang J, Yang C, Wei X, Zhang M, Dai M, Huang G, Huang W, Wen H, Dou Z. Videofluoroscopic Swallowing Study Features and Resting-State Functional MRI Brain Activity for Assessing Swallowing Differences in Patients with Mild Cognitive Impairment and Risk of Dysphagia. Dysphagia 2023; 38:236-246. [PMID: 35556171 DOI: 10.1007/s00455-022-10460-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 04/22/2022] [Indexed: 01/27/2023]
Abstract
To examine the swallowing characteristics in patients with mild cognitive impairment (MCI) and dysphagia risk and explore brain activity changes using regional homogeneity (ReHo) with resting-state functional magnetic resonance imaging (rs-fMRI). We included 28 patients with MCI and dysphagia risk and 17 age-matched older adults. All participants underwent neurological, cognitive examinations, and a videofluoroscopic swallowing study (VFSS). We quantitatively analyzed the VFSS temporal and kinetic parameters of the 5- and 10-mL swallows. The participants underwent rs-fMRI, and the ReHo values were calculated. Differences in the swallowing physiology and rs-fMRI findings between participants with MCI and controls were analyzed. Correlation analyses were also conducted. Compared to the control group, patients with MCI and dysphagia risk had lower global cognition scores, longer 10-mL oral transit times (OTTs), and lower executive function scores. ReHo in the bilateral inferior occipital lobes (IOLs) and left prefrontal lobe decreased in patients with MCI and dysphagia risk compared to participants in the control group. In patients with MCI, the 10-mL OTT was negatively correlated with the Montreal Cognitive Assessment (MoCA) score, and the ReHo values were positive correlated with quantitative temporal swallowing measurements using canonical correlation analysis. Mediation analysis revealed that the ReHo values of the left and right IOL acted as significant mediators between the MoCA score and the 10-mL OTT. We found that individuals with MCI and dysphagia risk, verified by reduced MoCA scores, demonstrated prolonged OTTs when swallowing larger boluses compared with age-matched controls. There was a negative correlation between the MoCA score and 10-mL OTT, which was partially mediated by the left and right IOL ReHo values, suggesting that functional changes in the IOLs and left prefrontal lobe associated with oral swallowing status and cognitive level in individuals with MCI and dysphagia risk.
Collapse
Affiliation(s)
- Jie Wang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600, Tianhe Road, Guangzhou, 510630, China
| | - Cheng Yang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600, Tianhe Road, Guangzhou, 510630, China
| | - Xiaomei Wei
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600, Tianhe Road, Guangzhou, 510630, China
| | - Mengqing Zhang
- Department of Rehabilitation Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 318, Middle Renmin Road, Guangzhou, 510120, China
| | - Meng Dai
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600, Tianhe Road, Guangzhou, 510630, China
| | - Guohang Huang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600, Tianhe Road, Guangzhou, 510630, China
| | - Wenhao Huang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600, Tianhe Road, Guangzhou, 510630, China
| | - Hongmei Wen
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600, Tianhe Road, Guangzhou, 510630, China.
| | - Zulin Dou
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600, Tianhe Road, Guangzhou, 510630, China.
| |
Collapse
|
9
|
Farpour S, Asadi-Shekaari M, Borhani Haghighi A, Farpour HR. Improving Swallowing Function and Ability in Post Stroke Dysphagia: A Randomized Clinical Trial. Dysphagia 2023; 38:330-339. [PMID: 35715574 PMCID: PMC9205412 DOI: 10.1007/s00455-022-10470-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 05/21/2022] [Indexed: 01/27/2023]
Abstract
Post-stroke dysphagia is a prevalent, life threatening condition. Scientists recommended implementing behavioral therapies with new technologies such as transcranial direct current of stimulation (TDCS). Studies showed promising TDCS effects, and scientists suggested the investigation of the effectiveness of different montages. Supramarginal gyrus (SMG) is important in swallowing function. Our study aimed to investigate the effectiveness of stimulating SMG in improving post-stroke dysphagia. Forty-four patients finished the study (a randomized, double-blind one). All of them received behavioral therapy. The real group received anodal (2 mA, 20 min) stimulation on the intact SMG, and the sham group received the same for 30 s (5 sessions). Patients were assessed with Functional Oral Intake Scale (FOIS) and Mann Assessment of Swallowing Ability (MASA) after treatment and at one-month follow-up. The results showed that the difference between groups at baseline was not significant. According to MASA both groups improved significantly during the time (p-value < 0.001). The improvement in the real group was significantly higher than in the sham group after treatment (p-value = 0.002) and after one-month follow-up (p-value < 0.001). According to FOIS, most of the patients in the real group (72.70%) reached level 6 or 7 after one-month follow-up which was significantly higher than the sham group (31.80%, p-value = 0.007). In conclusion, TDCS applied to the scalp's surface associated with SMG localization may improve swallowing function in the stroke patients with dysphagia.
Collapse
Affiliation(s)
- Sima Farpour
- grid.412105.30000 0001 2092 9755Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Asadi-Shekaari
- grid.412105.30000 0001 2092 9755Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Afshin Borhani Haghighi
- grid.412571.40000 0000 8819 4698Faculty of Medicine, Clinical Neurology Research Center, Shiraz University of Medical Sciences, Khalili Street, Shiraz, Iran
- grid.412571.40000 0000 8819 4698Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Reza Farpour
- grid.412571.40000 0000 8819 4698Faculty of Medicine, Bone and Joint Diseases Research Center, Department of Physical Medicine and Rehabilitation, Shiraz University of Medical Sciences, Emam Hossein Street, Shiraz, Iran
- grid.412571.40000 0000 8819 4698Bone and Joint Diseases Research Center, Department of Physical Medicine and Rehabilitation, Shiraz University of Medical Sciences, Shiraz, Iran
- grid.412571.40000 0000 8819 4698Shiraz Geriatrics Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
10
|
Pematilleke N, Kaur M, Adhikari B, Torley PJ. Meat texture modification for dysphagia management and application of hydrocolloids: A review. Crit Rev Food Sci Nutr 2022; 64:1764-1779. [PMID: 36066499 DOI: 10.1080/10408398.2022.2119202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Dysphagia is a medical condition that describes the difficulty of swallowing food, and texture modified food (TMF) is the best intervention for dysphagia. The relevant guidelines to identify dysphagia food are provided by the International Dysphagia Diet Standardization Initiative (IDDSI). Developing texture modified meat is a challenging task due to its fibrous microstructure and harder texture. Various meat tenderization attempts are therefore evaluated in the literature. Meat texture modification for dysphagia is not just limited to tenderization but should be focused on safe swallowing attributes as well. The application of hydrocolloids for designing TMF has a major research focus as it is a cost-effective method and offers an opportunity for careful control. The present review focuses on the meat texture modification attempts that have been used in the past and present, with special attention to the use of hydrocolloids. Several studies have shown improvements in texture upon the addition of various hydrocolloids; however, few studies have attempted to develop texture modified meat for people with dysphagia. This area has to be further developed along with the sensory evaluations conducted with the dysphagia population, to validate the industrial application of hydrocolloids to TMF.
Collapse
Affiliation(s)
- Nelum Pematilleke
- Discipline of Biosciences and Food Technology, School of Science, RMIT University, Melbourne, Australia
| | - Mandeep Kaur
- Discipline of Biosciences and Food Technology, School of Science, RMIT University, Melbourne, Australia
| | - Benu Adhikari
- Discipline of Biosciences and Food Technology, School of Science, RMIT University, Melbourne, Australia
| | - Peter J Torley
- Discipline of Biosciences and Food Technology, School of Science, RMIT University, Melbourne, Australia
| |
Collapse
|
11
|
Tomeh A, Yusof Khan AHK, Inche Mat LN, Basri H, Wan Sulaiman WA. Repetitive Transcranial Magnetic Stimulation of the Primary Motor Cortex beyond Motor Rehabilitation: A Review of the Current Evidence. Brain Sci 2022; 12:brainsci12060761. [PMID: 35741646 PMCID: PMC9221422 DOI: 10.3390/brainsci12060761] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 02/01/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) has emerged as a novel technique to stimulate the human brain through the scalp. Over the years, identifying the optimal brain region and stimulation parameters has been a subject of debate in the literature on therapeutic uses of repetitive TMS (rTMS). Nevertheless, the primary motor cortex (M1) has been a conventional target for rTMS to treat motor symptoms, such as hemiplegia and spasticity, as it controls the voluntary movement of the body. However, with an expanding knowledge base of the M1 cortical and subcortical connections, M1-rTMS has shown a therapeutic efficacy that goes beyond the conventional motor rehabilitation to involve pain, headache, fatigue, dysphagia, speech and voice impairments, sleep disorders, cognitive dysfunction, disorders of consciousness, anxiety, depression, and bladder dysfunction. In this review, we summarize the latest evidence on using M1-rTMS to treat non-motor symptoms of diverse etiologies and discuss the potential mechanistic rationale behind the management of each of these symptoms.
Collapse
Affiliation(s)
- Abdulhameed Tomeh
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.T.); (A.H.K.Y.K.); (L.N.I.M.); (H.B.)
| | - Abdul Hanif Khan Yusof Khan
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.T.); (A.H.K.Y.K.); (L.N.I.M.); (H.B.)
- Malaysian Research Institute on Ageing (MyAgeingTM), Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Liyana Najwa Inche Mat
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.T.); (A.H.K.Y.K.); (L.N.I.M.); (H.B.)
| | - Hamidon Basri
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.T.); (A.H.K.Y.K.); (L.N.I.M.); (H.B.)
| | - Wan Aliaa Wan Sulaiman
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.T.); (A.H.K.Y.K.); (L.N.I.M.); (H.B.)
- Malaysian Research Institute on Ageing (MyAgeingTM), Universiti Putra Malaysia, Serdang 43400, Malaysia
- Correspondence: ; Tel.: +60-3-9769-5560
| |
Collapse
|
12
|
Pematilleke N, Kaur M, Adhikari B, Torley PJ. Investigation of the effects of addition of carboxy methyl cellulose (CMC) and tapioca starch (TS) on the beef patties targeted to the needs of people with dysphagia: A mixture design approach. Meat Sci 2022; 191:108868. [DOI: 10.1016/j.meatsci.2022.108868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 12/14/2022]
|
13
|
Neurostimulation in People with Oropharyngeal Dysphagia: A Systematic Review and Meta-Analysis of Randomised Controlled Trials-Part II: Brain Neurostimulation. J Clin Med 2022; 11:jcm11040993. [PMID: 35207265 PMCID: PMC8878820 DOI: 10.3390/jcm11040993] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 02/05/2023] Open
Abstract
Objective. To assess the effects of brain neurostimulation (i.e., repetitive transcranial magnetic stimulation [rTMS] and transcranial direct current stimulation [tDCS]) in people with oropharyngeal dysphagia (OD). Methods. Systematic literature searches were conducted in four electronic databases (CINAHL, Embase, PsycINFO, and PubMed) to retrieve randomised controlled trials (RCTs) only. Using the Revised Cochrane risk-of-bias tool for randomised trials (RoB 2), the methodological quality of included studies was evaluated, after which meta-analysis was conducted using a random-effects model. Results. In total, 24 studies reporting on brain neurostimulation were included: 11 studies on rTMS, 9 studies on tDCS, and 4 studies on combined neurostimulation interventions. Overall, within-group meta-analysis and between-group analysis for rTMS identified significant large and small effects in favour of stimulation, respectively. For tDCS, overall within-group analysis and between-group analysis identified significant large and moderate effects in favour of stimulation, respectively. Conclusion. Both rTMS and tDCS show promising effects in people with oropharyngeal dysphagia. However, comparisons between studies were challenging due to high heterogeneity in stimulation protocols and experimental parameters, potential moderators, and inconsistent methodological reporting. Generalisations of meta-analyses need to be interpreted with care. Future research should include large RCTs using standard protocols and reporting guidelines as achieved by international consensus.
Collapse
|
14
|
Ebihara S, Naito T. A Systematic Review of Reported Methods of Stimulating Swallowing Function and their Classification. TOHOKU J EXP MED 2022; 256:1-17. [DOI: 10.1620/tjem.256.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Satoru Ebihara
- Department of Rehabilitation Medicine, Toho University Graduate School of Medicine
| | - Toru Naito
- Section of Geriatric Dentistry, Department of General Dentistry, Fukuoka Dental College
| |
Collapse
|
15
|
Metaplasticity in the human swallowing system: clinical implications for dysphagia rehabilitation. Neurol Sci 2021; 43:199-209. [PMID: 34654983 PMCID: PMC8724108 DOI: 10.1007/s10072-021-05654-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 10/05/2021] [Indexed: 02/03/2023]
Abstract
Dysphagia is a common and devastating complication following brain damage. Over the last 2 decades, dysphagia treatments have shifted from compensatory to rehabilitative strategies that facilitate neuroplasticity, which is the reorganization of neural networks that is essential for functional recovery. Moreover, there is growing interest in the application of cortical and peripheral neurostimulation to promote such neuroplasticity. Despite some preliminary positive findings, the variability in responsiveness toward these treatments remains substantial. The purpose of this review is to summarize findings on the effects of neurostimulation in promoting neuroplasticity for dysphagia rehabilitation and highlight the need to develop more effective treatment strategies. We then discuss the role of metaplasticity, a homeostatic mechanism of the brain to regulate plasticity changes, in helping to drive neurorehabilitation. Finally, a hypothesis on how metaplasticity could be applied in dysphagia rehabilitation to enhance treatment outcomes is proposed.
Collapse
|
16
|
Sabour S. Anodal transcranial direct current stimulation and intermittent theta-burst stimulation improve deglutition and swallowing reproducibility in elderly patients with dysphagia: A methodological issue to avoid misinterpretation. Neurogastroenterol Motil 2020; 32:e13922. [PMID: 32515110 DOI: 10.1111/nmo.13922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 05/20/2020] [Indexed: 02/08/2023]
Affiliation(s)
- Siamak Sabour
- Department of Clinical Epidemiology, School of Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Safety Promotions and Injury Prevention Research Centre, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Cosentino G, Todisco M, Alfonsi E. Reply to: "Anodal transcranial direct current stimulation and intermittent theta burst stimulation improve deglutition and swallowing reproducibility in elderly patients with dysphagia: A methodological issue to avoid misinterpretation". Neurogastroenterol Motil 2020; 32:e13933. [PMID: 32697019 DOI: 10.1111/nmo.13933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 06/10/2020] [Indexed: 02/08/2023]
Affiliation(s)
- Giuseppe Cosentino
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,Clinical Neurophysiology Unit, IRCCS Mondino Foundation, Pavia, Italy
| | | | - Enrico Alfonsi
- Clinical Neurophysiology Unit, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
18
|
Zhao X, Ding J, Pan H, Zhang S, Pan D, Yu H, Ye Z, Hua T. Anodal and cathodal tDCS modulate neural activity and selectively affect GABA and glutamate syntheses in the visual cortex of cats. J Physiol 2020; 598:3727-3745. [PMID: 32506434 DOI: 10.1113/jp279340] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 06/02/2020] [Indexed: 12/13/2022] Open
Abstract
KEY POINTS The present study showed that anodal and cathodal transcranial direct current stimulation (tDCS) can respectively increase and decrease the amplitude of visually evoked field potentials in the stimulated visual cortex of cats, with the effect lasting for ∼60-70 min. We directly measured tDCS-induced changes in the concentration of inhibitory and excitatory neurotransmitters in the visual cortex using the enzyme-linked immunosorbent assay method and showed that anodal and cathodal tDCS can selectively decrease the concentration of GABA and glutamate in the stimulated cortical area. Anodal and cathodal tDCS can selectively inhibit the synthesis of GABA and glutamate by suppressing the expression of GABA- and glutamate-synthesizing enzymes, respectively. ABSTRACT Transcranial direct current stimulation (tDCS) evokes long-lasting neuronal excitability in the target brain region. The underlying neural mechanisms remain poorly understood. The present study examined tDCS-induced alterations in neuronal activities, as well as the concentration and synthesis of GABA and glutamate (GLU), in area 21a (A21a) of cat visual cortex. Our analysis showed that anodal and cathodal tDCS respectively enhanced and suppressed neuronal activities in A21a, as indicated by a significantly increased and decreased amplitude of visually evoked field potentials (VEPs). The tDCS-induced effect lasted for ∼60-70 min. By contrast, sham tDCS had no significant impact on the VEPs in A21a. On the other hand, the concentration of GABA, but not that of GLU, in A21a significantly decreased after anodal tDCS relative to sham tDCS, whereas the concentration of GLU, but not that of GABA, in A21a significantly decreased after cathodal tDCS relative to sham tDCS. Furthermore, the expression of GABA-synthesizing enzymes GAD65 and GAD67 in A21a significantly decreased in terms of both mRNA and protein concentrations after anodal tDCS relative to sham tDCS, whereas that of GLU-synthesizing enzyme glutaminase (GLS) did not change significantly after anodal tDCS. By contrast, both mRNA and protein concentrations of GLS in A21a significantly decreased after cathodal tDCS relative to sham tDCS, whereas those of GAD65/GAD67 showed no significant change after cathodal tDCS. Taken together, these results indicate that anodal and cathodal tDCS may selectively reduce GABA and GLU syntheses and thus respectively enhance and suppress neuronal excitability in the stimulated brain area.
Collapse
Affiliation(s)
- Xiaojing Zhao
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Jian Ding
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Huijun Pan
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Shen Zhang
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Deng Pan
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Hao Yu
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Zheng Ye
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Tianmiao Hua
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| |
Collapse
|