1
|
Shu M, Yates TB, John C, Harman-Ware AE, Happs RM, Bryant N, Jawdy SS, Ragauskas AJ, Tuskan GA, Muchero W, Chen JG. Providing biological context for GWAS results using eQTL regulatory and co-expression networks in Populus. THE NEW PHYTOLOGIST 2024; 244:603-617. [PMID: 39169686 DOI: 10.1111/nph.20026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/16/2024] [Indexed: 08/23/2024]
Abstract
Our study utilized genome-wide association studies (GWAS) to link nucleotide variants to traits in Populus trichocarpa, a species with rapid linkage disequilibrium decay. The aim was to overcome the challenge of interpreting statistical associations at individual loci without sufficient biological context, which often leads to reliance solely on gene annotations from unrelated model organisms. We employed an integrative approach that included GWAS targeting multiple traits using three individual techniques for lignocellulose phenotyping, expression quantitative trait loci (eQTL) analysis to construct transcriptional regulatory networks around each candidate locus and co-expression analysis to provide biological context for these networks, using lignocellulose biosynthesis in Populus trichocarpa as a case study. The research identified three candidate genes potentially involved in lignocellulose formation, including one previously recognized gene (Potri.005G116800/VND1, a critical regulator of secondary cell wall formation) and two genes (Potri.012G130000/AtSAP9 and Potri.004G202900/BIC1) with newly identified putative roles in lignocellulose biosynthesis. Our integrative approach offers a framework for providing biological context to loci associated with trait variation, facilitating the discovery of new genes and regulatory networks.
Collapse
Affiliation(s)
- Mengjun Shu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
| | - Timothy B Yates
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
| | - Cai John
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, 37996, TN, USA
| | - Anne E Harman-Ware
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, 80401, CO, USA
| | - Renee M Happs
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, 80401, CO, USA
| | - Nathan Bryant
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, 37996, TN, USA
| | - Sara S Jawdy
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
| | - Arthur J Ragauskas
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, 37996, TN, USA
| | - Gerald A Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
| |
Collapse
|
2
|
Luomaranta M, Grones C, Choudhary S, Milhinhos A, Kalman TA, Nilsson O, Robinson KM, Street NR, Tuominen H. Systems genetic analysis of lignin biosynthesis in Populus tremula. THE NEW PHYTOLOGIST 2024; 243:2157-2174. [PMID: 39072753 DOI: 10.1111/nph.19993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024]
Abstract
The genetic control underlying natural variation in lignin content and composition in trees is not fully understood. We performed a systems genetic analysis to uncover the genetic regulation of lignin biosynthesis in a natural 'SwAsp' population of aspen (Populus tremula) trees. We analyzed gene expression by RNA sequencing (RNA-seq) in differentiating xylem tissues, and lignin content and composition using Pyrolysis-GC-MS in mature wood of 268 trees from 99 genotypes. Abundant variation was observed for lignin content and composition, and genome-wide association study identified proteins in the pentose phosphate pathway and arabinogalactan protein glycosylation among the top-ranked genes that are associated with these traits. Variation in gene expression and the associated genetic polymorphism was revealed through the identification of 312 705 local and 292 003 distant expression quantitative trait loci (eQTL). A co-expression network analysis suggested modularization of lignin biosynthesis and novel functions for the lignin-biosynthetic CINNAMYL ALCOHOL DEHYDROGENASE 2 and CAFFEOYL-CoA O-METHYLTRANSFERASE 3. PHENYLALANINE AMMONIA LYASE 3 was co-expressed with HOMEOBOX PROTEIN 5 (HB5), and the role of HB5 in stimulating lignification was demonstrated in transgenic trees. The systems genetic approach allowed linking natural variation in lignin biosynthesis to trees´ responses to external cues such as mechanical stimulus and nutrient availability.
Collapse
Affiliation(s)
- Mikko Luomaranta
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187, Umeå, Sweden
| | - Carolin Grones
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187, Umeå, Sweden
| | - Shruti Choudhary
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
| | - Ana Milhinhos
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187, Umeå, Sweden
| | - Teitur Ahlgren Kalman
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187, Umeå, Sweden
| | - Ove Nilsson
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
| | - Kathryn M Robinson
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187, Umeå, Sweden
| | - Nathaniel R Street
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187, Umeå, Sweden
- SciLifeLab, Umeå University, 90187, Umeå, Sweden
| | - Hannele Tuominen
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
| |
Collapse
|
3
|
Bano N, Mohammad N, Ansari MI, Ansari SA. Genotyping SNPs in lignin biosynthesis gene (CAD1) and transcription factors (MYB1 and MYB2) exhibits association with wood density in teak (Tectona grandis L.f.). Mol Biol Rep 2024; 51:169. [PMID: 38252339 DOI: 10.1007/s11033-023-09006-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/13/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND Teak (Tectona grandis L.f.), an important source of tropical timber with immense economic value, is a highly outcrossing forest tree species. 150 unrelated accessions of teak (Tectona grandis L.f.) plus trees assembled as clones at National Teak Germplasm Bank, Chandrapur, Maharashtra, India was investigated for association mapping of candidate lignin biosynthesis gene (CAD1) and transcription factors (MYB1 and MYB2). METHODS AND RESULTS The CAD1, MYB1 and MYB2 were amplified using specifically designed primers. The amplified sequences were then sequenced and genotyped for 112 SNPs/11 indels. We evaluated the association between SNPs and wood density in teak accessions using GLM and MLM statistical models, with Bonferroni correction applied. The teak accessions recorded an average wood density of 416.69 kg.m-3 (CV 4.97%) and comprised of three loosely structured admixed sub-populations (K = 3), containing 72.05% genetic variation within sub-populations with low intragenic LD (0-21% SNP pairs) at P < 0.05 and high LD decay (33-934 bp) at R2 = 0.1. GLM and MLM models discounting systematic biases (Q and K matrices) to avoid false discovery revealed five loci at rare variants (MAF 0.003) and three loci at common variants (MAF 0.05) to be significantly (P < 0.05) associated with the wood density. However, the stringent Bonferroni correction (4.06-7.04 × 10-4) yielded only a single associated locus (B1485C/A) from exon of MYB1 transcription factor, contributing to about 10.35% phenotypic variation in wood density trait. CONCLUSION Scored SNP locus (B1485C/A) can be developed as a molecular probe for selection of improved planting stock with proven wood density trait for a large-scale teak plantation.
Collapse
Affiliation(s)
- Nuzhat Bano
- ICFRE-Institute of Forest Productivity, Ranchi, 835303, India
| | - Naseer Mohammad
- Genetics and Tree Improvement Division, ICFRE-Tropical Forest Research Institute, Jabalpur, 482021, India
| | | | | |
Collapse
|
4
|
Bryant N, Zhang J, Feng K, Shu M, Ployet R, Chen JG, Muchero W, Yoo CG, Tschaplinski TJ, Pu Y, Ragauskas AJ. Novel candidate genes for lignin structure identified through genome-wide association study of naturally varying Populus trichocarpa. FRONTIERS IN PLANT SCIENCE 2023; 14:1153113. [PMID: 37215291 PMCID: PMC10197963 DOI: 10.3389/fpls.2023.1153113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/03/2023] [Indexed: 05/24/2023]
Abstract
Populus is a promising lignocellulosic feedstock for biofuels and bioproducts. However, the cell wall biopolymer lignin is a major barrier in conversion of biomass to biofuels. To investigate the variability and underlying genetic basis of the complex structure of lignin, a population of 409 three-year-old, naturally varying Populus trichocarpa genotypes were characterized by heteronuclear single quantum coherence (HSQC) nuclear magnetic resonance (NMR). A subsequent genome-wide association study (GWAS) was conducted using approximately 8.3 million single nucleotide polymorphisms (SNPs), which identified 756 genes that were significantly associated (-log10(p-value)>6) with at least one lignin phenotype. Several promising candidate genes were identified, many of which have not previously been reported to be associated with lignin or cell wall biosynthesis. These results provide a resource for gaining insights into the molecular mechanisms of lignin biosynthesis and new targets for future genetic improvement in poplar.
Collapse
Affiliation(s)
- Nathan Bryant
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, United States
| | - Jin Zhang
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Kai Feng
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Mengjun Shu
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Raphael Ployet
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Jin-Gui Chen
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Wellington Muchero
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Chang Geun Yoo
- Department of Chemical Engineering, State University of New York College of Environmental Science and Forestry, Syracuse, NY, United States
| | - Timothy J. Tschaplinski
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Yunqiao Pu
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Arthur J. Ragauskas
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, United States
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Renewable Carbon, Department of Forestry, Wildlife, and Fisheries, University of Tennessee Institute of Agriculture, Knoxville, TN, United States
| |
Collapse
|
5
|
Escamez S, Robinson KM, Luomaranta M, Gandla ML, Mähler N, Yassin Z, Grahn T, Scheepers G, Stener LG, Jansson S, Jönsson LJ, Street NR, Tuominen H. Genetic markers and tree properties predicting wood biorefining potential in aspen (Populus tremula) bioenergy feedstock. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:65. [PMID: 37038157 PMCID: PMC10088276 DOI: 10.1186/s13068-023-02315-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/31/2023] [Indexed: 04/12/2023]
Abstract
BACKGROUND Wood represents the majority of the biomass on land and constitutes a renewable source of biofuels and other bioproducts. However, wood is recalcitrant to bioconversion, raising a need for feedstock improvement in production of, for instance, biofuels. We investigated the properties of wood that affect bioconversion, as well as the underlying genetics, to help identify superior tree feedstocks for biorefining. RESULTS We recorded 65 wood-related and growth traits in a population of 113 natural aspen genotypes from Sweden ( https://doi.org/10.5061/dryad.gtht76hrd ). These traits included three growth and field performance traits, 20 traits for wood chemical composition, 17 traits for wood anatomy and structure, and 25 wood saccharification traits as indicators of bioconversion potential. Glucose release after saccharification with acidic pretreatment correlated positively with tree stem height and diameter and the carbohydrate content of the wood, and negatively with the content of lignin and the hemicellulose sugar units. Most of these traits displayed extensive natural variation within the aspen population and high broad-sense heritability, supporting their potential in genetic improvement of feedstocks towards improved bioconversion. Finally, a genome-wide association study (GWAS) revealed 13 genetic loci for saccharification yield (on a whole-tree-biomass basis), with six of them intersecting with associations for either height or stem diameter of the trees. CONCLUSIONS The simple growth traits of stem height and diameter were identified as good predictors of wood saccharification yield in aspen trees. GWAS elucidated the underlying genetics, revealing putative genetic markers for bioconversion of bioenergy tree feedstocks.
Collapse
Affiliation(s)
- Sacha Escamez
- Department of Plant Physiology, Umeå Plant Science Centre (UPSC), Umeå University, 901 87, Umeå, Sweden
| | - Kathryn M Robinson
- Department of Plant Physiology, Umeå Plant Science Centre (UPSC), Umeå University, 901 87, Umeå, Sweden
| | - Mikko Luomaranta
- Department of Plant Physiology, Umeå Plant Science Centre (UPSC), Umeå University, 901 87, Umeå, Sweden
| | | | - Niklas Mähler
- Department of Plant Physiology, Umeå Plant Science Centre (UPSC), Umeå University, 901 87, Umeå, Sweden
| | - Zakiya Yassin
- RISE AB, Drottning Kristinas Väg 61 B, 114 28, Stockholm, Sweden
| | - Thomas Grahn
- RISE AB, Drottning Kristinas Väg 61 B, 114 28, Stockholm, Sweden
| | | | - Lars-Göran Stener
- The Forestry Research Institute of Sweden, Ekebo, 268 90, Svalöv, Sweden
| | - Stefan Jansson
- Department of Plant Physiology, Umeå Plant Science Centre (UPSC), Umeå University, 901 87, Umeå, Sweden
| | - Leif J Jönsson
- Department of Chemistry, Umeå University, 901 87, Umeå, Sweden
| | - Nathaniel R Street
- Department of Plant Physiology, Umeå Plant Science Centre (UPSC), Umeå University, 901 87, Umeå, Sweden
| | - Hannele Tuominen
- Department of Plant Physiology, Umeå Plant Science Centre (UPSC), Umeå University, 901 87, Umeå, Sweden.
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre (UPSC), Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden.
| |
Collapse
|
6
|
Anders C, Hoengenaert L, Boerjan W. Accelerating wood domestication in forest trees through genome editing: Advances and prospects. CURRENT OPINION IN PLANT BIOLOGY 2023; 71:102329. [PMID: 36586396 PMCID: PMC7614060 DOI: 10.1016/j.pbi.2022.102329] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/07/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
The high economic value of wood requires intensive breeding towards multipurpose biomass. However, long breeding cycles hamper the fast development of novel tree varieties that have improved biomass properties, are tolerant to biotic and abiotic stresses, and resilient to climate change. To speed up domestication, the integration of conventional breeding and new breeding techniques is needed. In this review, we discuss recent advances in genome editing and Cas-DNA-free genome engineering of forest trees, and briefly discuss how multiplex editing combined with multi-omics approaches can accelerate the genetic improvement of forest trees, with a focus on wood.
Collapse
Affiliation(s)
- Chantal Anders
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Lennart Hoengenaert
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Wout Boerjan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium.
| |
Collapse
|
7
|
De Meester B, Vanholme R, Mota T, Boerjan W. Lignin engineering in forest trees: From gene discovery to field trials. PLANT COMMUNICATIONS 2022; 3:100465. [PMID: 36307984 PMCID: PMC9700206 DOI: 10.1016/j.xplc.2022.100465] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/10/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Wood is an abundant and renewable feedstock for the production of pulp, fuels, and biobased materials. However, wood is recalcitrant toward deconstruction into cellulose and simple sugars, mainly because of the presence of lignin, an aromatic polymer that shields cell-wall polysaccharides. Hence, numerous research efforts have focused on engineering lignin amount and composition to improve wood processability. Here, we focus on results that have been obtained by engineering the lignin biosynthesis and branching pathways in forest trees to reduce cell-wall recalcitrance, including the introduction of exotic lignin monomers. In addition, we draw general conclusions from over 20 years of field trial research with trees engineered to produce less or altered lignin. We discuss possible causes and solutions for the yield penalty that is often associated with lignin engineering in trees. Finally, we discuss how conventional and new breeding strategies can be combined to develop elite clones with desired lignin properties. We conclude this review with priorities for the development of commercially relevant lignin-engineered trees.
Collapse
Affiliation(s)
- Barbara De Meester
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Ruben Vanholme
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Thatiane Mota
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Wout Boerjan
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium.
| |
Collapse
|
8
|
Song F, Zhou J, Quan M, Xiao L, Lu W, Qin S, Fang Y, Wang D, Li P, Du Q, El-Kassaby YA, Zhang D. Transcriptome and association mapping revealed functional genes respond to drought stress in Populus. FRONTIERS IN PLANT SCIENCE 2022; 13:829888. [PMID: 35968119 PMCID: PMC9372527 DOI: 10.3389/fpls.2022.829888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 07/13/2022] [Indexed: 05/24/2023]
Abstract
Drought frequency and severity are exacerbated by global climate change, which could compromise forest ecosystems. However, there have been minimal efforts to systematically investigate the genetic basis of the response to drought stress in perennial trees. Here, we implemented a systems genetics approach that combines co-expression analysis, association genetics, and expression quantitative trait nucleotide (eQTN) mapping to construct an allelic genetic regulatory network comprising four key regulators (PtoeIF-2B, PtoABF3, PtoPSB33, and PtoLHCA4) under drought stress conditions. Furthermore, Hap_01PtoeIF-2B, a superior haplotype associated with the net photosynthesis, was revealed through allelic frequency and haplotype analysis. In total, 75 candidate genes related to drought stress were identified through transcriptome analyses of five Populus cultivars (P. tremula × P. alba, P. nigra, P. simonii, P. trichocarpa, and P. tomentosa). Through association mapping, we detected 92 unique SNPs from 38 genes and 104 epistatic gene pairs that were associated with six drought-related traits by association mapping. eQTN mapping unravels drought stress-related gene loci that were significantly associated with the expression levels of candidate genes for drought stress. In summary, we have developed an integrated strategy for dissecting a complex genetic network, which facilitates an integrated population genomics approach that can assess the effects of environmental threats.
Collapse
Affiliation(s)
- Fangyuan Song
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Jiaxuan Zhou
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Mingyang Quan
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Liang Xiao
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Wenjie Lu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Shitong Qin
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yuanyuan Fang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Dan Wang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Peng Li
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Qingzhang Du
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yousry A. El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, Forest Sciences Centre, University of British Columbia, Vancouver, BC, Canada
| | - Deqiang Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
9
|
Eckert C, Wildhagen H, Paulo MJ, Scalabrin S, Ballauff J, Schnabel SK, Vendramin V, Keurentjes JJB, Bogeat-Triboulot MB, Taylor G, Polle A. Genotypic and tissue-specific variation of Populus nigra transcriptome profiles in response to drought. Sci Data 2022; 9:297. [PMID: 35701429 PMCID: PMC9197931 DOI: 10.1038/s41597-022-01417-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 05/23/2022] [Indexed: 11/14/2022] Open
Abstract
Climate change is one of the most important challenges for mankind in the far and near future. In this regard, sustainable production of woody crops on marginal land with low water availability is a major challenge to tackle. This dataset is part of an experiment, in which we exposed three genetically differentiated genotypes of Populus nigra originating from contrasting natural habitats to gradually increasing moderate drought. RNA sequencing was performed on fine roots, developing xylem and leaves of those three genotypes under control and moderate drought conditions in order to get a comprehensive dataset on the transcriptional changes at the whole plant level under water limiting conditions. This dataset has already provided insight in the transcriptional control of saccharification potential of the three Populus genotypes under drought conditions and we suggest that our data will be valuable for further in-depth analysis regarding candidate gene identification or, on a bigger scale, for meta-transcriptome analysis. Measurement(s) | transcriptome | Technology Type(s) | illumina sequencing | Factor Type(s) | treatment | Sample Characteristic - Organism | Populus nigra | Sample Characteristic - Environment | greenhouse experiment |
Collapse
Affiliation(s)
- Christian Eckert
- Forest Botany and Tree Physiology, University of Goettingen, Büsgenweg 2, Göttingen, Germany
| | - Henning Wildhagen
- HAWK University of Applied Sciences and Arts, Faculty of Resource Management, Büsgenweg 1a, 37077, Göttingen, Germany.
| | - Maria João Paulo
- Biometris, Wageningen UR Wageningen Plant Research, Droevendaalsesteeg 1, Wageningen, The Netherlands
| | | | - Johannes Ballauff
- Forest Botany and Tree Physiology, University of Goettingen, Büsgenweg 2, Göttingen, Germany
| | - Sabine K Schnabel
- Biometris, Wageningen UR Wageningen Plant Research, Droevendaalsesteeg 1, Wageningen, The Netherlands
| | - Vera Vendramin
- IGA Technology Services, via Jacopo Linussio 51, Udine, Italy
| | - Joost J B Keurentjes
- Laboratory of Genetics, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, The Netherlands
| | | | - Gail Taylor
- Department of Plant Sciences, University of California, One Shields Ave, Davis, CA, USA
| | - Andrea Polle
- Forest Botany and Tree Physiology, University of Goettingen, Büsgenweg 2, Göttingen, Germany
| |
Collapse
|
10
|
Harman-Ware AE, Happs RM, Macaya-Sanz D, Doeppke C, Muchero W, DiFazio SP. Abundance of Major Cell Wall Components in Natural Variants and Pedigrees of Populus trichocarpa. FRONTIERS IN PLANT SCIENCE 2022; 13:757810. [PMID: 35185975 PMCID: PMC8850957 DOI: 10.3389/fpls.2022.757810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
The rapid analysis of biopolymers including lignin and sugars in lignocellulosic biomass cell walls is essential for the analysis of the large sample populations needed for identifying heritable genetic variation in biomass feedstocks for biofuels and bioproducts. In this study, we reported the analysis of cell wall lignin content, syringyl/guaiacyl (S/G) ratio, as well as glucose and xylose content by high-throughput pyrolysis-molecular beam mass spectrometry (py-MBMS) for >3,600 samples derived from hundreds of accessions of Populus trichocarpa from natural populations, as well as pedigrees constructed from 14 parents (7 × 7). Partial Least Squares (PLS) regression models were built from the samples of known sugar composition previously determined by hydrolysis followed by nuclear magnetic resonance (NMR) analysis. Key spectral features positively correlated with glucose content consisted of m/z 126, 98, and 69, among others, deriving from pyrolyzates such as hydroxymethylfurfural, maltol, and other sugar-derived species. Xylose content positively correlated primarily with many lignin-derived ions and to a lesser degree with m/z 114, deriving from a lactone produced from xylose pyrolysis. Models were capable of predicting glucose and xylose contents with an average error of less than 4%, and accuracy was significantly improved over previously used methods. The differences in the models constructed from the two sample sets varied in training sample number, but the genetic and compositional uniformity of the pedigree set could be a potential driver in the slightly better performance of that model in comparison with the natural variants. Broad-sense heritability of glucose and xylose composition using these data was 0.32 and 0.34, respectively. In summary, we have demonstrated the use of a single high-throughput method to predict sugar and lignin composition in thousands of poplar samples to estimate the heritability and phenotypic plasticity of traits necessary to develop optimized feedstocks for bioenergy applications.
Collapse
Affiliation(s)
- Anne E. Harman-Ware
- Renewable Resources and Enabling Sciences Center, Center for Bioenergy Innovation, National Renewable Energy Laboratory, Golden, CO, United States
| | - Renee M. Happs
- Renewable Resources and Enabling Sciences Center, Center for Bioenergy Innovation, National Renewable Energy Laboratory, Golden, CO, United States
| | - David Macaya-Sanz
- Department of Forest Ecology and Genetics, INIA-CIFOR, Madrid, Spain
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Crissa Doeppke
- Renewable Resources and Enabling Sciences Center, Center for Bioenergy Innovation, National Renewable Energy Laboratory, Golden, CO, United States
| | - Wellington Muchero
- Biosciences Division, Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Stephen P. DiFazio
- Department of Biology, West Virginia University, Morgantown, WV, United States
| |
Collapse
|
11
|
Zhang L, Ge X, Du J, Cheng X, Peng X, Hu J. Genome-Wide Identification of Long Non-Coding RNAs and Their Potential Functions in Poplar Growth and Phenylalanine Biosynthesis. Front Genet 2021; 12:762678. [PMID: 34868243 PMCID: PMC8634849 DOI: 10.3389/fgene.2021.762678] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Poplar is an important bioenergy tree species. lncRNAs play important roles in various biological regulatory processes, and their expression pattern is more tissue-specific than mRNAs. In this study, P. deltoides “Danhong” (Pd) and P. simonii “Tongliao1” (Ps) with different growth rates and wood quality were used as experimental materials, and the transcriptomes of their shoot apical meristem, xylem, and phloem were sequenced. Furthermore, high-throughput RNA sequencing analysis revealed that the expression patterns of genes and lncRNAs are different between the two genotypes. 6,355 lncRNAs were identified. Based on target prediction, lncRNAs and target genes were involved in ADP binding, oxidoreductase activity, phenylpropanoid biosynthesis, and cyanoamino acid metabolism. The DElncRNAs in two poplars were co-expressed with transcription factors and structural genes of lignin and flavonoid pathways. In addition, we found the potential target lncRNAs of miRNA. This result provides basic evidence for a better understanding of the regulatory role of lncRNAs in regulating phenylalanine molecular pathways and wood formation.
Collapse
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Xiaolan Ge
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Jiujun Du
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Xingqi Cheng
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Xiaopeng Peng
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Jianjun Hu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.,Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
12
|
Ahmar S, Ballesta P, Ali M, Mora-Poblete F. Achievements and Challenges of Genomics-Assisted Breeding in Forest Trees: From Marker-Assisted Selection to Genome Editing. Int J Mol Sci 2021; 22:10583. [PMID: 34638922 PMCID: PMC8508745 DOI: 10.3390/ijms221910583] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/23/2022] Open
Abstract
Forest tree breeding efforts have focused mainly on improving traits of economic importance, selecting trees suited to new environments or generating trees that are more resilient to biotic and abiotic stressors. This review describes various methods of forest tree selection assisted by genomics and the main technological challenges and achievements in research at the genomic level. Due to the long rotation time of a forest plantation and the resulting long generation times necessary to complete a breeding cycle, the use of advanced techniques with traditional breeding have been necessary, allowing the use of more precise methods for determining the genetic architecture of traits of interest, such as genome-wide association studies (GWASs) and genomic selection (GS). In this sense, main factors that determine the accuracy of genomic prediction models are also addressed. In turn, the introduction of genome editing opens the door to new possibilities in forest trees and especially clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9 (CRISPR/Cas9). It is a highly efficient and effective genome editing technique that has been used to effectively implement targetable changes at specific places in the genome of a forest tree. In this sense, forest trees still lack a transformation method and an inefficient number of genotypes for CRISPR/Cas9. This challenge could be addressed with the use of the newly developing technique GRF-GIF with speed breeding.
Collapse
Affiliation(s)
- Sunny Ahmar
- Institute of Biological Sciences, University of Talca, 1 Poniente 1141, Talca 3460000, Chile;
| | - Paulina Ballesta
- The National Fund for Scientific and Technological Development, Av. del Agua 3895, Talca 3460000, Chile
| | - Mohsin Ali
- Department of Forestry and Range Management, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan;
| | - Freddy Mora-Poblete
- Institute of Biological Sciences, University of Talca, 1 Poniente 1141, Talca 3460000, Chile;
| |
Collapse
|
13
|
Harman-Ware AE, Macaya-Sanz D, Abeyratne CR, Doeppke C, Haiby K, Tuskan GA, Stanton B, DiFazio SP, Davis MF. Accurate determination of genotypic variance of cell wall characteristics of a Populus trichocarpa pedigree using high-throughput pyrolysis-molecular beam mass spectrometry. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:59. [PMID: 33676543 PMCID: PMC7937246 DOI: 10.1186/s13068-021-01908-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Pyrolysis-molecular beam mass spectrometry (py-MBMS) analysis of a pedigree of Populus trichocarpa was performed to study the phenotypic plasticity and heritability of lignin content and lignin monomer composition. Instrumental and microspatial environmental variability were observed in the spectral features and corrected to reveal underlying genetic variance of biomass composition. RESULTS Lignin-derived ions (including m/z 124, 154, 168, 194, 210 and others) were highly impacted by microspatial environmental variation which demonstrates phenotypic plasticity of lignin composition in Populus trichocarpa biomass. Broad-sense heritability of lignin composition after correcting for microspatial and instrumental variation was determined to be H2 = 0.56 based on py-MBMS ions known to derive from lignin. Heritability of lignin monomeric syringyl/guaiacyl ratio (S/G) was H2 = 0.81. Broad-sense heritability was also high (up to H2 = 0.79) for ions derived from other components of the biomass including phenolics (e.g., salicylates) and C5 sugars (e.g., xylose). Lignin and phenolic ion abundances were primarily driven by maternal effects, and paternal effects were either similar or stronger for the most heritable carbohydrate-derived ions. CONCLUSIONS We have shown that many biopolymer-derived ions from py-MBMS show substantial phenotypic plasticity in response to microenvironmental variation in plantations. Nevertheless, broad-sense heritability for biomass composition can be quite high after correcting for spatial environmental variation. This work outlines the importance in accounting for instrumental and microspatial environmental variation in biomass composition data for applications in heritability measurements and genomic selection for breeding poplar for renewable fuels and materials.
Collapse
Affiliation(s)
- Anne E Harman-Ware
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA.
| | - David Macaya-Sanz
- Department of Biology, West Virginia University, Morgantown, WV, 26506, USA
| | | | - Crissa Doeppke
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | | | - Gerald A Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | | | - Stephen P DiFazio
- Department of Biology, West Virginia University, Morgantown, WV, 26506, USA
| | - Mark F Davis
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| |
Collapse
|
14
|
Haplotype- and SNP-Based GWAS for Growth and Wood Quality Traits in Eucalyptus cladocalyx Trees under Arid Conditions. PLANTS 2021; 10:plants10010148. [PMID: 33450896 PMCID: PMC7828368 DOI: 10.3390/plants10010148] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/06/2021] [Accepted: 01/11/2021] [Indexed: 12/14/2022]
Abstract
The agricultural and forestry productivity of Mediterranean ecosystems is strongly threatened by the adverse effects of climate change, including an increase in severe droughts and changes in rainfall distribution. In the present study, we performed a genome-wide association study (GWAS) to identify single-nucleotide polymorphisms (SNPs) and haplotype blocks associated with the growth and wood quality of Eucalyptus cladocalyx, a tree species suitable for low-rainfall sites. The study was conducted in a progeny-provenance trial established in an arid site with Mediterranean patterns located in the southern Atacama Desert, Chile. A total of 87 SNPs and 3 haplotype blocks were significantly associated with the 6 traits under study (tree height, diameter at breast height, slenderness coefficient, first bifurcation height, stem straightness, and pilodyn penetration). In addition, 11 loci were identified as pleiotropic through Bayesian multivariate regression and were mainly associated with wood hardness, height, and diameter. In general, the GWAS revealed associations with genes related to primary metabolism and biosynthesis of cell wall components. Additionally, associations coinciding with stress response genes, such as GEM-related 5 and prohibitin-3, were detected. The findings of this study provide valuable information regarding genetic control of morphological traits related to adaptation to arid environments.
Collapse
|
15
|
Zhang L, Liu B, Zhang J, Hu J. Insights of Molecular Mechanism of Xylem Development in Five Black Poplar Cultivars. FRONTIERS IN PLANT SCIENCE 2020; 11:620. [PMID: 32547574 PMCID: PMC7271880 DOI: 10.3389/fpls.2020.00620] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
Black poplar (Populus deltoides, P. nigra, and their hybrids) is the main poplar cultivars in China. It offers interesting options of large-scale biomass production for bioenergy due to its rapid growth and high yield. Poplar wood properties were associated with chemical components and physical structures during wood formation. In this study, five poplar cultivars, P. euramericana 'Zhonglin46' (Pe1), P. euramericana 'Guariento' (Pe2), P. nigra 'N179' (Pn1), P. deltoides 'Danhong' (Pd1), and P. deltoides 'Nanyang' (Pd2), were used to explore the molecular mechanism of xylem development. We analyzed the structural differences of developing xylem in the five cultivars and profiled the transcriptome-wide gene expression patterns through RNA sequencing. The cross sections of the developing xylem showed that the cell wall thickness of developed fiber in Pd1 was thickest and the number of xylem vessels of Pn1 was the least. A total of 10,331 differentially expressed genes were identified among 10 pairwise comparisons of the five cultivars, most of them were related to programmed cell death and secondary cell wall thickening. K-means cluster analysis and Gene Ontology enrichment analysis showed that the genes highly expressed in Pd1 were related to nucleotide decomposition, metabolic process, transferase, and microtubule cytoskeleton; whereas the genes highly expressed in Pn1 were involved in cell wall macromolecule decomposition and polysaccharide binding processes. Based on a weighted gene co-expression network analysis, a large number of candidate regulators for xylem development were identified. And their potential regulatory roles to cell wall biosynthesis genes were validated by a transient overexpression system. This study provides a set of promising candidate regulators for genetic engineering to improve feedstock and enhance biofuel conversion in the bioenergy crop Populus.
Collapse
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Bobin Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jin Zhang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Jianjun Hu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
16
|
Guerra FP, Suren H, Holliday J, Richards JH, Fiehn O, Famula R, Stanton BJ, Shuren R, Sykes R, Davis MF, Neale DB. Exome resequencing and GWAS for growth, ecophysiology, and chemical and metabolomic composition of wood of Populus trichocarpa. BMC Genomics 2019; 20:875. [PMID: 31747881 PMCID: PMC6864938 DOI: 10.1186/s12864-019-6160-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 10/09/2019] [Indexed: 12/26/2022] Open
Abstract
Background Populus trichocarpa is an important forest tree species for the generation of lignocellulosic ethanol. Understanding the genomic basis of biomass production and chemical composition of wood is fundamental in supporting genetic improvement programs. Considerable variation has been observed in this species for complex traits related to growth, phenology, ecophysiology and wood chemistry. Those traits are influenced by both polygenic control and environmental effects, and their genome architecture and regulation are only partially understood. Genome wide association studies (GWAS) represent an approach to advance that aim using thousands of single nucleotide polymorphisms (SNPs). Genotyping using exome capture methodologies represent an efficient approach to identify specific functional regions of genomes underlying phenotypic variation. Results We identified 813 K SNPs, which were utilized for genotyping 461 P. trichocarpa clones, representing 101 provenances collected from Oregon and Washington, and established in California. A GWAS performed on 20 traits, considering single SNP-marker tests identified a variable number of significant SNPs (p-value < 6.1479E-8) in association with diameter, height, leaf carbon and nitrogen contents, and δ15N. The number of significant SNPs ranged from 2 to 220 per trait. Additionally, multiple-marker analyses by sliding-windows tests detected between 6 and 192 significant windows for the analyzed traits. The significant SNPs resided within genes that encode proteins belonging to different functional classes as such protein synthesis, energy/metabolism and DNA/RNA metabolism, among others. Conclusions SNP-markers within genes associated with traits of importance for biomass production were detected. They contribute to characterize the genomic architecture of P. trichocarpa biomass required to support the development and application of marker breeding technologies.
Collapse
Affiliation(s)
- Fernando P Guerra
- Department of Plant Sciences, University of California at Davis, 262C Robbins Hall, Mail Stop 4, Davis, CA, 95616, USA.,Instituto de Ciencias Biológicas, Universidad de Talca, Talca, P.O. Box 747, 3460000, Chile
| | - Haktan Suren
- Department of Forest Resources and Environmental Conservation, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Jason Holliday
- Department of Forest Resources and Environmental Conservation, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - James H Richards
- Department of Land, Air and Water Resources, University of California, Davis, CA, 95616, USA
| | - Oliver Fiehn
- Department of Molecular and Cellular Biology & Genome Center, University of California, Davis, CA, 95616, USA
| | - Randi Famula
- Department of Plant Sciences, University of California at Davis, 262C Robbins Hall, Mail Stop 4, Davis, CA, 95616, USA
| | - Brian J Stanton
- Biological Research Group, GreenWood Resources, Portland, OR, 97201, USA
| | - Richard Shuren
- Biological Research Group, GreenWood Resources, Portland, OR, 97201, USA
| | - Robert Sykes
- National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Mark F Davis
- National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - David B Neale
- Department of Plant Sciences, University of California at Davis, 262C Robbins Hall, Mail Stop 4, Davis, CA, 95616, USA. .,Bioenergy Research Center, University of California at Davis, Davis, CA, 95616, USA.
| |
Collapse
|
17
|
Wang L, Xie J, Du Q, Song F, Xiao L, Quan M, Zhang D. Transcription factors involved in the regulatory networks governing the Calvin-Benson-Bassham cycle. TREE PHYSIOLOGY 2019; 39:1159-1172. [PMID: 30941430 DOI: 10.1093/treephys/tpz025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/18/2019] [Accepted: 03/31/2019] [Indexed: 06/09/2023]
Abstract
Transcription factors (TFs) play crucial roles in the regulation of photosynthesis; elucidating these roles will facilitate our understanding of photosynthesis and thus accelerate its improvement for enhancing crop yield. Promoter analysis of 52 nuclear-encoded Populus tomentosa Carr. genes involved in the Calvin-Benson-Bassham (CBB) cycle revealed 706 motifs and 326 potentially interacting TFs. A backward elimination random forest (BWERF) algorithm reduced the number of TFs to 40, involved in a three-layer gene regulatory network (GRN) including 46 photosynthesis genes (bottom layer), 25 TFs (second layer) and 15 TFs (top layer). Phenotype-genotype association identified 248 single-nucleotide polymorphisms (SNPs) within 72 genes associated with 11 photosynthesis traits. Of the regulatory pairs identified by the BWERF (202 pairs), 77 TF-target combinations harbored SNPs associated with the same trait, supporting similar mechanisms of phenotype modulation. We used expression quantitative trait nucleotide (eQTN) analysis to identify causal SNPs affecting gene expression, identifying 1851 eQTN signals for 50 eGenes (genes whose expressions are regulated by eQTNs). Distribution patterns identified 14 eQTNs from seven TFs associated with eight expression levels of their downstream targets (defined in the GRN), whereas seven TF-target pairs were also identified by phenotype-genotype associations. To further validate the roles of TFs at the metabolic level, we selected 6764 SNPs from 55 genes (identified by GRN-association or GRN-eQTN pairs or both) for metabolic association, identifying variants within 10 TFs affecting metabolic processes underlying the CBB cycle. Our study provides new insights into the photosynthesis pathway in poplar and may facilitate understanding of processes underlying photosynthesis improvement.
Collapse
Affiliation(s)
- Longxin Wang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Jianbo Xie
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Qingzhang Du
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Fangyuan Song
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Liang Xiao
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Mingyang Quan
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Deqiang Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
18
|
Hallingbäck HR, Berlin S, Nordh NE, Weih M, Rönnberg-Wästljung AC. Genome Wide Associations of Growth, Phenology, and Plasticity Traits in Willow [ Salix viminalis (L.)]. FRONTIERS IN PLANT SCIENCE 2019; 10:753. [PMID: 31249579 PMCID: PMC6582754 DOI: 10.3389/fpls.2019.00753] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 05/23/2019] [Indexed: 05/10/2023]
Abstract
The short rotation biomass crop willow (Salix genera) has been of interest for bioenergy but recently also for biofuel production. For a faster development of new varieties molecular markers could be used as selection tool in an early stage of the breeding cycle. To identify markers associated with growth traits, genome-wide association mapping was conducted using a population of 291 Salix viminalis accessions collected across Europe and Russia and a large set of genotyping-by-sequencing markers. The accessions were vegetatively propagated and planted in replicated field experiments, one in Southern Sweden and one in Central Sweden. Phenology data, including bud burst and leaf senescence, as well as different growth traits were collected and measured repeatedly between 2010 and 2017 at both field environments. A value of the plasticity for each accession was calculated for all traits that were measured the same year in both environments as the normalized accession value in one environment subtracted by the corresponding value in the other environment. Broad-sense accession heritabilities and narrow-sense chip heritabilities ranged from 0.68 to 0.95 and 0.45 to 0.99, respectively for phenology traits and from 0.56 to 0.85 and 0.24 to 0.97 for growth traits indicating a considerable genetic component for most traits. Population structure and kinship between accessions were taken into account in the association analyses. In total, 39 marker-trait associations were found where four were specifically connected to plasticity and interestingly one particular marker was associated to several different plasticity growth traits. Otherwise association consistency was poor, possibly due to accession by environment interactions which were demonstrated by the low structure adjusted accession correlations across environments (ranging from 0.40 to 0.58). However, one marker association with biomass fresh weight was repeatedly observed in the same environment over two harvest years. For some traits where several associations were found, the markers jointly explained over 20% of the accession variation. The result from this study using a population of unrelated accessions has given useful information about marker-trait associations especially highlighting marker-plasticity associations and genotype-by-environment interactions as important factors to take account of in future strategies of Salix breeding.
Collapse
Affiliation(s)
- Henrik R. Hallingbäck
- Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Sofia Berlin
- Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Nils-Erik Nordh
- Department of Crop Production Ecology, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Martin Weih
- Department of Crop Production Ecology, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ann-Christin Rönnberg-Wästljung
- Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
19
|
Tuskan GA, Muchero W, Tschaplinski TJ, Ragauskas AJ. Population-level approaches reveal novel aspects of lignin biosynthesis, content, composition and structure. Curr Opin Biotechnol 2019; 56:250-257. [PMID: 30925430 DOI: 10.1016/j.copbio.2019.02.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/20/2019] [Accepted: 02/22/2019] [Indexed: 10/27/2022]
Abstract
Population-level studies enabled by high-throughput phenotyping have revealed significant variation in lignin characteristics including content, S:G:H ratio, inter-unit linkage distributions, and molecular weights across multiple plant species. Coupled with genome-wide association mapping studies (GWAS) targeted at linking genetic mutations to phenotype, significant progress has been made in associating putative causal mutations to variation in lignin characteristics. Despite this progress, there are few examples, in which these associations have been molecularly validated to provide new insights into the genetic regulation of lignin biosynthesis. Given a recent report of a GWAS-discovered 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase moonlighting as a transcriptional regulator of lignin biosynthesis, the potential to bridge scientific disciplines in order to uncover hidden elements of lignin biosynthesis has been demonstrated, offering a path to alter lignin characteristics via genetic manipulation in order to expedite lignin valorization. To maximize this potential, however, there is a crucial need for (1) broader surveys of naturally varying diverse plant populations and (2) analytical platforms that can resolve subtle properties at fine chemical and biological scales.
Collapse
Affiliation(s)
- Gerald A Tuskan
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States.
| | - Wellington Muchero
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Timothy J Tschaplinski
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Arthur J Ragauskas
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States; University of Tennessee Governor's Chair, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| |
Collapse
|
20
|
Müller BSF, de Almeida Filho JE, Lima BM, Garcia CC, Missiaggia A, Aguiar AM, Takahashi E, Kirst M, Gezan SA, Silva-Junior OB, Neves LG, Grattapaglia D. Independent and Joint-GWAS for growth traits in Eucalyptus by assembling genome-wide data for 3373 individuals across four breeding populations. THE NEW PHYTOLOGIST 2019; 221:818-833. [PMID: 30252143 DOI: 10.1111/nph.15449] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/13/2018] [Indexed: 05/18/2023]
Abstract
Genome-wide association studies (GWAS) in plants typically suffer from limited statistical power. An alternative to the logistical and cost challenge of increasing sample sizes is to gain power by meta-analysis using information from independent studies. We carried out GWAS for growth traits with six single-marker models and regional heritability mapping (RHM) in four Eucalyptus breeding populations independently and by Joint-GWAS, using gene and segment-based models, with data for 3373 individuals genotyped with a communal EUChip60KSNP platform. While single-single nucleotide polymorphism (SNP) GWAS hardly detected significant associations at high-stringency in each population, gene-based Joint-GWAS revealed nine genes significantly associated with tree height. Associations detected using single-SNP GWAS, RHM and Joint-GWAS set-based models explained on average 3-20% of the phenotypic variance. Whole-genome regression, conversely, captured 64-89% of the pedigree-based heritability in all populations. Several associations independently detected for the same SNPs in different populations provided unprecedented GWAS validation results in forest trees. Rare and common associations were discovered in eight genes involved in cell wall biosynthesis and lignification. With the increasing adoption of genomic prediction of complex phenotypes using shared SNPs and much larger tree breeding populations, Joint-GWAS approaches should provide increasing power to pinpoint discrete associations potentially useful toward tree breeding and molecular applications.
Collapse
Affiliation(s)
- Bárbara S F Müller
- Molecular Biology Program, Cell Biology Department, Biological Sciences Institute, University of Brasília, Campus Darcy Ribeiro, Brasília, DF, 70910-900, Brazil
- EMBRAPA Genetic Resources and Biotechnology - EPqB, Brasília, DF, 70770-910, Brazil
| | - Janeo E de Almeida Filho
- Plant Breeding Laboratory, State University of North Fluminense "Darcy Ribeiro", Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Bruno M Lima
- FIBRIA S.A. Technology Center, Jacareí, SP, 12340-010, Brazil
| | - Carla C Garcia
- International Paper of Brazil, Rodovia SP 340 KM 171, Mogi Guaçu, SP, 13840-970, Brazil
| | | | | | - Elizabete Takahashi
- Celulose Nipo-Brasileira (CENIBRA) S.A., Belo Oriente, MG, 35196-000, Brazil
| | - Matias Kirst
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL, 32611, USA
| | - Salvador A Gezan
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL, 32611, USA
| | - Orzenil B Silva-Junior
- EMBRAPA Genetic Resources and Biotechnology - EPqB, Brasília, DF, 70770-910, Brazil
- Genomic Sciences and Biotechnology Program, SGAN, Catholic University of Brasília, 916 modulo B, Brasília, DF, 70790-160, Brazil
| | | | - Dario Grattapaglia
- Molecular Biology Program, Cell Biology Department, Biological Sciences Institute, University of Brasília, Campus Darcy Ribeiro, Brasília, DF, 70910-900, Brazil
- EMBRAPA Genetic Resources and Biotechnology - EPqB, Brasília, DF, 70770-910, Brazil
- Genomic Sciences and Biotechnology Program, SGAN, Catholic University of Brasília, 916 modulo B, Brasília, DF, 70790-160, Brazil
| |
Collapse
|
21
|
Quan M, Du Q, Xiao L, Lu W, Wang L, Xie J, Song Y, Xu B, Zhang D. Genetic architecture underlying the lignin biosynthesis pathway involves noncoding RNAs and transcription factors for growth and wood properties in Populus. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:302-315. [PMID: 29947466 PMCID: PMC6330548 DOI: 10.1111/pbi.12978] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 06/20/2018] [Accepted: 06/24/2018] [Indexed: 05/18/2023]
Abstract
Lignin provides structural support in perennial woody plants and is a complex phenolic polymer derived from phenylpropanoid pathway. Lignin biosynthesis is regulated by coordinated networks involving transcription factors (TFs), microRNAs (miRNAs) and long noncoding RNAs (lncRNAs). However, the genetic networks underlying the lignin biosynthesis pathway for tree growth and wood properties remain unknown. Here, we used association genetics (additive, dominant and epistasis) and expression quantitative trait nucleotide (eQTN) mapping to decipher the genetic networks for tree growth and wood properties in 435 unrelated individuals of Populus tomentosa. We detected 124 significant associations (P ≤ 6.89E-05) for 10 growth and wood property traits using 30 265 single nucleotide polymorphisms from 203 lignin biosynthetic genes, 81 TF genes, 36 miRNA genes and 71 lncRNA loci, implying their common roles in wood formation. Epistasis analysis uncovered 745 significant pairwise interactions, which helped to construct proposed genetic networks of lignin biosynthesis pathway and found that these regulators might affect phenotypes by linking two lignin biosynthetic genes. eQTNs were used to interpret how causal genes contributed to phenotypes. Lastly, we investigated the possible functions of the genes encoding 4-coumarate: CoA ligase and cinnamate-4-hydroxylase in wood traits using epistasis, eQTN mapping and enzymatic activity assays. Our study provides new insights into the lignin biosynthesis pathway in poplar and enables the novel genetic factors as biomarkers for facilitating genetic improvement of trees.
Collapse
Affiliation(s)
- Mingyang Quan
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignBeijing Forestry UniversityBeijingChina
- National Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental PlantsMinistry of EducationCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Qingzhang Du
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignBeijing Forestry UniversityBeijingChina
- National Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental PlantsMinistry of EducationCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Liang Xiao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignBeijing Forestry UniversityBeijingChina
- National Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental PlantsMinistry of EducationCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Wenjie Lu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignBeijing Forestry UniversityBeijingChina
- National Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental PlantsMinistry of EducationCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Longxin Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignBeijing Forestry UniversityBeijingChina
- National Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental PlantsMinistry of EducationCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Jianbo Xie
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignBeijing Forestry UniversityBeijingChina
- National Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental PlantsMinistry of EducationCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Yuepeng Song
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignBeijing Forestry UniversityBeijingChina
- National Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental PlantsMinistry of EducationCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Baohua Xu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignBeijing Forestry UniversityBeijingChina
- National Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental PlantsMinistry of EducationCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Deqiang Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignBeijing Forestry UniversityBeijingChina
- National Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental PlantsMinistry of EducationCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| |
Collapse
|
22
|
Du Q, Lu W, Quan M, Xiao L, Song F, Li P, Zhou D, Xie J, Wang L, Zhang D. Genome-Wide Association Studies to Improve Wood Properties: Challenges and Prospects. FRONTIERS IN PLANT SCIENCE 2018; 9:1912. [PMID: 30622554 PMCID: PMC6309013 DOI: 10.3389/fpls.2018.01912] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 12/10/2018] [Indexed: 05/02/2023]
Abstract
Wood formation is an excellent model system for quantitative trait analysis due to the strong associations between the transcriptional and metabolic traits that contribute to this complex process. Investigating the genetic architecture and regulatory mechanisms underlying wood formation will enhance our understanding of the quantitative genetics and genomics of complex phenotypic variation. Genome-wide association studies (GWASs) represent an ideal statistical strategy for dissecting the genetic basis of complex quantitative traits. However, elucidating the molecular mechanisms underlying many favorable loci that contribute to wood formation and optimizing GWAS design remain challenging in this omics era. In this review, we summarize the recent progress in GWAS-based functional genomics of wood property traits in major timber species such as Eucalyptus, Populus, and various coniferous species. We discuss several appropriate experimental designs for extensive GWAS in a given undomesticated tree population, such as omics-wide association studies and high-throughput phenotyping technologies. We also explain why more attention should be paid to rare allelic and major structural variation. Finally, we explore the potential use of GWAS for the molecular breeding of trees. Such studies will help provide an integrated understanding of complex quantitative traits and should enable the molecular design of new cultivars.
Collapse
Affiliation(s)
- Qingzhang Du
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Wenjie Lu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Mingyang Quan
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Liang Xiao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Fangyuan Song
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Peng Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Daling Zhou
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Jianbo Xie
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Longxin Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Deqiang Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
23
|
Rogier O, Chateigner A, Amanzougarene S, Lesage-Descauses MC, Balzergue S, Brunaud V, Caius J, Soubigou-Taconnat L, Jorge V, Segura V. Accuracy of RNAseq based SNP discovery and genotyping in Populusnigra. BMC Genomics 2018; 19:909. [PMID: 30541448 PMCID: PMC6291945 DOI: 10.1186/s12864-018-5239-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 11/09/2018] [Indexed: 12/30/2022] Open
Abstract
Backgroud Populus nigra is a major tree species of ecological and economic importance for which several initiatives have been set up to create genomic resources. In order to access the large number of Single Nucleotide Polymorphisms (SNPs) typically needed to carry out a genome scan, the present study aimed at evaluating RNA sequencing as a tool to discover and type SNPs in genes within natural populations of P. nigra. Results We have devised a bioinformatics pipeline to call and type SNPs from RNAseq reads and applied it to P. nigra transcriptomic data. The accuracy of the resulting RNAseq-based SNP calling and typing has been evaluated by (i) comparing their position and alleles to those previously reported in candidate genes, (ii) assessing their genotyping accuracy with respect to a previously available SNP chip and (iii) evaluating their inter-annual repeatability. We found that a combination of several callers yields a good compromise between the number of variants type and the accuracy of genotyping. We further used the resulting genotypic data to carry out basic genetic analyses whose results confirm the quality of the RNAseq-based SNP dataset. Conclusions We demonstrated the potential and accuracy of RNAseq as an efficient way to genotype SNPs in P. nigra. These results open prospects towards the use of this technology for quantitative and population genomics studies. Electronic supplementary material The online version of this article (10.1186/s12864-018-5239-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | - Sandrine Balzergue
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université Paris-Saclay, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Orsay, 91405, France.,IRHS, INRA, Agrocampus-Ouest, Université d'Angers, SFR 4207 QUASAV, Beaucouzé, 49071, France
| | - Véronique Brunaud
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université Paris-Saclay, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Orsay, 91405, France
| | - José Caius
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université Paris-Saclay, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Orsay, 91405, France
| | - Ludivine Soubigou-Taconnat
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université Paris-Saclay, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Orsay, 91405, France
| | | | | |
Collapse
|
24
|
Lu N, Mei F, Wang Z, Wang N, Xiao Y, Kong L, Qu G, Ma W, Wang J. Single-nucleotide polymorphisms(SNPs) in a sucrose synthase gene are associated with wood properties in Catalpa fargesii bur. BMC Genet 2018; 19:99. [PMID: 30384853 PMCID: PMC6211571 DOI: 10.1186/s12863-018-0686-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/19/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Association study is a powerful means for identifying molecular markers, such as single-nucleotide polymorphisms (SNPs) associated with important traits in forest trees. Catalpa fargesii Bur is a valuable commercial tree in China and identifying SNPs that associate with wood property would make a foundation of the marker-assisted breeding in the future. However, related work has not been reported yet. RESULTS We cloned a 2887 bp long sucrose synthase (SUS) gene from the genome of C. fargesii, which is a key enzyme in sucrose metabolism and also associated to wood formation in trees, coding 806 amino acids that expressed mainly in young branches, xylem, and leaves according to real-time quantitative PCR. Then we identified allelic variations of CfSUS associated with nine wood quality associated traits in Catalpa fargesii Bur. Totally, 135 SNPs were identified through cloning and sequencing the CfSUS locus from a mapping population (including 93 unrelated individuals) and 47 of which were genotyped as common SNPs (minor allele frequency > 5%) in the association population that comprised of 125 unrelated individuals collected from main distribution area. Nucleotide diversity and linkage disequilibrium (LD) analysis showed CfSUS has a relative low SNP diversity (πT = 0.0034) and low LD (r2 dropped below 0.1 within 1600 bp). Using the association analysis, we found 11 common SNPs and 14 haplotypes were significantly associated with the traits (false discovery rate, Q<0.1), explaining 3.21-12.41% of the phenotypic variance. These results provide molecular markers above associated with wood basic density, pore rate, and six other traits of wood, which have potential applications in breeding of Catalpa fargesii Bur. CONCLUSION We first cloned a SUS gene in C. fargesii, then identified several SNPs and haplotypes that associated with wood properties within this gene, suggesting CfSUS participates in the wood formation of C. fargesii. Moreover, molecular markers we identified in this study may be applied into marker-assisted breeding of C. fargesii in the future.
Collapse
Affiliation(s)
- Nan Lu
- State Key Laboratory of Forest Genetics and Tree Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 People’s Republic of China
| | - Fang Mei
- State Key Laboratory of Forest Genetics and Tree Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 People’s Republic of China
| | - Zhi Wang
- State Key Laboratory of Forest Genetics and Tree Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 People’s Republic of China
| | - Nan Wang
- State Key Laboratory of Forest Genetics and Tree Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 People’s Republic of China
| | - Yao Xiao
- State Key Laboratory of Forest Genetics and Tree Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 People’s Republic of China
| | - Lisheng Kong
- Department of Biology, Centre for Forest Biology, University of Victoria, 3800 Finnerty Road, Victoria, BC Canada
| | - Guanzheng Qu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040 People’s Republic of China
| | - Wenjun Ma
- State Key Laboratory of Forest Genetics and Tree Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 People’s Republic of China
| | - Junhui Wang
- State Key Laboratory of Forest Genetics and Tree Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 People’s Republic of China
| |
Collapse
|
25
|
Lamara M, Parent GJ, Giguère I, Beaulieu J, Bousquet J, MacKay JJ. Association genetics of acetophenone defence against spruce budworm in mature white spruce. BMC PLANT BIOLOGY 2018; 18:231. [PMID: 30309315 PMCID: PMC6182838 DOI: 10.1186/s12870-018-1434-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 09/23/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Outbreaks of spruce budworm (SBW, Choristoneura fumiferana Clem.) cause major recurrent damage in boreal conifers such as white spruce (Picea glauca [Moench] Voss) and large losses of forest biomass in North America. Although defensive phenolic compounds have recently been linked to chemical resistance against SBW, their genetic basis remains poorly understood in forest trees, especially in conifers. Here, we used diverse association genetics approaches to discover genes and their variants that may control the accumulation of acetophenones, and dissect the genetic architecture of these defence compounds against SBW in white spruce mature trees. RESULTS Out of 4747 single nucleotide polymorphisms (SNPs) from 2312 genes genotyped in a population of 211 unrelated individuals, genetic association analyses identified 35 SNPs in 33 different genes that were significantly associated with the defence traits by using single-locus, multi-locus and multi-trait approaches. The multi-locus approach was particularly effective at detecting SNP-trait associations that explained a large fraction of the phenotypic variance (from 20 to 43%). Significant genes were regulatory including the NAC transcription factor, or they were involved in carbohydrate metabolism, falling into the binding, catalytic or transporter activity functional classes. Most of them were highly expressed in foliage. Weak positive phenotypic correlations were observed between defence and growth traits, indicating little or no evidence of defence-growth trade-offs. CONCLUSIONS This study provides new insights on the genetic architecture of tree defence traits, contributing to our understanding of the physiology of resistance mechanisms to biotic factors and providing a basis for the genetic improvement of the constitutive defence of white spruce against SBW.
Collapse
Affiliation(s)
- Mebarek Lamara
- Forest Research Centre and Institute for Systems and Integrative Biology, Département des sciences du bois et de la forêt, Université Laval, Qc, Québec, G1V 0A6 Canada
- Canada Research Chair in Forest Genomics, Université Laval, Qc, Québec, G1V 0A6 Canada
| | | | - Isabelle Giguère
- Forest Research Centre and Institute for Systems and Integrative Biology, Département des sciences du bois et de la forêt, Université Laval, Qc, Québec, G1V 0A6 Canada
| | - Jean Beaulieu
- Forest Research Centre and Institute for Systems and Integrative Biology, Département des sciences du bois et de la forêt, Université Laval, Qc, Québec, G1V 0A6 Canada
- Canada Research Chair in Forest Genomics, Université Laval, Qc, Québec, G1V 0A6 Canada
| | - Jean Bousquet
- Forest Research Centre and Institute for Systems and Integrative Biology, Département des sciences du bois et de la forêt, Université Laval, Qc, Québec, G1V 0A6 Canada
- Canada Research Chair in Forest Genomics, Université Laval, Qc, Québec, G1V 0A6 Canada
| | - John J. MacKay
- Forest Research Centre and Institute for Systems and Integrative Biology, Département des sciences du bois et de la forêt, Université Laval, Qc, Québec, G1V 0A6 Canada
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB UK
- Canada Research Chair in Forest Genomics, Université Laval, Qc, Québec, G1V 0A6 Canada
| |
Collapse
|
26
|
Prunier J, Giguère I, Ryan N, Guy R, Soolanayakanahally R, Isabel N, MacKay J, Porth I. Gene copy number variations involved in balsam poplar (Populus balsamifera L.) adaptive variations. Mol Ecol 2018; 28:1476-1490. [PMID: 30270494 DOI: 10.1111/mec.14836] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/26/2018] [Accepted: 07/30/2018] [Indexed: 12/12/2022]
Abstract
Gene copy number variations (CNVs) involved in phenotypic variations have already been shown in plants, but genomewide testing of CNVs for adaptive variation was not doable until recent technological developments. Thus, reports of the genomic architecture of adaptation involving CNVs remain scarce to date. Here, we investigated F1 progenies of an intraprovenance cross (north-north cross, 58th parallel) and an interprovenances cross (north-south cross, 58th/49th parallels) for CNVs using comparative genomic hybridization on arrays of probes targeting gene sequences in balsam poplar (Populus balsamifera L.), a widespread North American forest tree. A total of 1,721 genes were found in varying copy numbers over the set of 19,823 tested genes. These gene CNVs presented an estimated average size of 8.3 kb and were distributed over poplar's 19 chromosomes including 22 hotspot regions. Gene CNVs number was higher for the interprovenance progeny in accordance with an expected higher genetic diversity related to the composite origin of this family. Regression analyses between gene CNVs and seven adaptive trait variations resulted in 23 significant links; among these adaptive gene CNVs, 30% were located in hotspots. One-to-five gene CNVs were found related to each of the measured adaptive traits and annotated for both biotic and abiotic stress responses. These annotations can be related to the occurrence of a higher pathogenic pressure in the southern parts of balsam poplar's distribution, and higher photosynthetic assimilation rates and water-use efficiency at high latitudes. Overall, our findings suggest that gene CNVs typically having higher mutation rates than SNPs may in fact represent efficient adaptive variations against fast-evolving pathogens.
Collapse
Affiliation(s)
- Julien Prunier
- Institute for System and Integrated Biology (IBIS), Université Laval, Québec, Québec, Canada.,Centre for Forest Research, Université Laval, Québec, Quebec, Canada
| | - Isabelle Giguère
- Institute for System and Integrated Biology (IBIS), Université Laval, Québec, Québec, Canada.,Centre for Forest Research, Université Laval, Québec, Quebec, Canada
| | - Natalie Ryan
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Robert Guy
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Raju Soolanayakanahally
- Indian Head Research Farm, Agriculture and Agri-Food Canada, Indian Head, Saskatchewan, Canada
| | - Nathalie Isabel
- Laurentian Forest Centre, Canadian Forest Service, Natural Resources Canada, Québec, Quebec, Canada
| | - John MacKay
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | - Ilga Porth
- Institute for System and Integrated Biology (IBIS), Université Laval, Québec, Québec, Canada.,Centre for Forest Research, Université Laval, Québec, Quebec, Canada
| |
Collapse
|
27
|
Drought Sensitivity of Norway Spruce at the Species' Warmest Fringe: Quantitative and Molecular Analysis Reveals High Genetic Variation Among and Within Provenances. G3-GENES GENOMES GENETICS 2018; 8:1225-1245. [PMID: 29440346 PMCID: PMC5873913 DOI: 10.1534/g3.117.300524] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Norway spruce (Picea abies) is by far the most important timber species in Europe, but its outstanding role in future forests is jeopardized by its high sensitivity to drought. We analyzed drought response of Norway spruce at the warmest fringe of its natural range. Based on a 35-year old provenance experiment we tested for genetic variation among and within seed provenances across consecutively occurring strong drought events using dendroclimatic time series. Moreover, we tested for associations between ≈1,700 variable SNPs and traits related to drought response, wood characteristics and climate-growth relationships. We found significant adaptive genetic variation among provenances originating from the species’ Alpine, Central and Southeastern European range. Genetic variation between individuals varied significantly among provenances explaining up to 44% of the phenotypic variation in drought response. Varying phenotypic correlations between drought response and wood traits confirmed differences in selection intensity among seed provenances. Significant associations were found between 29 SNPs and traits related to drought, climate-growth relationships and wood properties which explained between 11 and 43% of trait variation, though 12 of them were due to single individuals having extreme phenotypes of the respective trait. The majority of these SNPs are located within exons of genes and the most important ones are preferentially expressed in cambium and xylem expansion layers. Phenotype-genotype associations were stronger if only provenances with significant quantitative genetic variation in drought response were considered. The present study confirms the high adaptive variation of Norway spruce in Central and Southeastern Europe and demonstrates how quantitative genetic, dendroclimatic and genomic data can be linked to understand the genetic basis of adaptation to climate extremes in trees.
Collapse
|
28
|
Wildhagen H, Paul S, Allwright M, Smith HK, Malinowska M, Schnabel SK, Paulo MJ, Cattonaro F, Vendramin V, Scalabrin S, Janz D, Douthe C, Brendel O, Buré C, Cohen D, Hummel I, Le Thiec D, van Eeuwijk F, Keurentjes JJB, Flexas J, Morgante M, Robson P, Bogeat-Triboulot MB, Taylor G, Polle A. Genes and gene clusters related to genotype and drought-induced variation in saccharification potential, lignin content and wood anatomical traits in Populus nigra. TREE PHYSIOLOGY 2018; 38:320-339. [PMID: 28541580 PMCID: PMC5982782 DOI: 10.1093/treephys/tpx054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/03/2017] [Indexed: 05/03/2023]
Abstract
Wood is a renewable resource that can be employed for the production of second generation biofuels by enzymatic saccharification and subsequent fermentation. Knowledge on how the saccharification potential is affected by genotype-related variation of wood traits and drought is scarce. Here, we used three Populus nigra L. genotypes from habitats differing in water availability to (i) investigate the relationships between wood anatomy, lignin content and saccharification and (ii) identify genes and co-expressed gene clusters related to genotype and drought-induced variation in wood traits and saccharification potential. The three poplar genotypes differed in wood anatomy, lignin content and saccharification potential. Drought resulted in reduced cambial activity, decreased vessel and fiber lumina, and increased the saccharification potential. The saccharification potential was unrelated to lignin content as well as to most wood anatomical traits. RNA sequencing of the developing xylem revealed that 1.5% of the analyzed genes were differentially expressed in response to drought, while 67% differed among the genotypes. Weighted gene correlation network analysis identified modules of co-expressed genes correlated with saccharification potential. These modules were enriched in gene ontology terms related to cell wall polysaccharide biosynthesis and modification and vesicle transport, but not to lignin biosynthesis. Among the most strongly saccharification-correlated genes, those with regulatory functions, especially kinases, were prominent. We further identified transcription factors whose transcript abundances differed among genotypes, and which were co-regulated with genes for biosynthesis and modifications of hemicelluloses and pectin. Overall, our study suggests that the regulation of pectin and hemicellulose metabolism is a promising target for improving wood quality of second generation bioenergy crops. The causal relationship of the identified genes and pathways with saccharification potential needs to be validated in further experiments.
Collapse
Affiliation(s)
- Henning Wildhagen
- Forest Botany and Tree Physiology, Georg-August University of Goettingen, Büsgenweg 2, 37077 Göttingen, Germany
- HAWK University of Applied Sciences and Arts, Faculty of Resource Management, Büsgenweg 1a, 37077 Göttingen, Germany
| | - Shanty Paul
- Forest Botany and Tree Physiology, Georg-August University of Goettingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Mike Allwright
- Center for Biological Sciences, University of Southampton, University Road, Southampton SO17 1BJ, UK
| | - Hazel K Smith
- Center for Biological Sciences, University of Southampton, University Road, Southampton SO17 1BJ, UK
| | - Marta Malinowska
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth, SY233EE, UK
| | - Sabine K Schnabel
- Biometris, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - M João Paulo
- Biometris, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | | | - Vera Vendramin
- IGA Technology Services, via Jacopo Linussio 51, 33100 Udine, Italy
| | - Simone Scalabrin
- IGA Technology Services, via Jacopo Linussio 51, 33100 Udine, Italy
| | - Dennis Janz
- Forest Botany and Tree Physiology, Georg-August University of Goettingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Cyril Douthe
- Universidad de les Illes Balears, Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain
| | - Oliver Brendel
- EEF, INRA, Université de Lorraine, rue d'Amance, 54280 Champenoux, France
| | - Cyril Buré
- EEF, INRA, Université de Lorraine, rue d'Amance, 54280 Champenoux, France
| | - David Cohen
- EEF, INRA, Université de Lorraine, rue d'Amance, 54280 Champenoux, France
| | - Irène Hummel
- EEF, INRA, Université de Lorraine, rue d'Amance, 54280 Champenoux, France
| | - Didier Le Thiec
- EEF, INRA, Université de Lorraine, rue d'Amance, 54280 Champenoux, France
| | - Fred van Eeuwijk
- Biometris, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Joost J B Keurentjes
- Laboratory of Genetics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Jaume Flexas
- Universidad de les Illes Balears, Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain
| | - Michele Morgante
- Università Di Udine, Istituto di Genomica Applicata, via Jacopo Linussio 51, 33100 Udine, Italy
| | - Paul Robson
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth, SY233EE, UK
| | | | - Gail Taylor
- Center for Biological Sciences, University of Southampton, University Road, Southampton SO17 1BJ, UK
| | - Andrea Polle
- Forest Botany and Tree Physiology, Georg-August University of Goettingen, Büsgenweg 2, 37077 Göttingen, Germany
- Corresponding author ()
| |
Collapse
|
29
|
Zhang M, Zhou C, Song Z, Weng Q, Li M, Ji H, Mo X, Huang H, Lu W, Luo J, Li F, Gan S. The first identification of genomic loci in plants associated with resistance to galling insects: a case study in Eucalyptus L'Hér. (Myrtaceae). Sci Rep 2018; 8:2319. [PMID: 29396525 DOI: 10.1038/s41598-41018-20780-41599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 01/24/2018] [Indexed: 05/28/2023] Open
Abstract
Genomic loci related with resistance to gall-inducing insects have not been identified in any plants. Here, association mapping was used to identify molecular markers for resistance to the gall wasp Leptocybe invasa in two Eucalyptus species. A total of 86 simple sequence repeats (SSR) markers were screened out from 839 SSRs and used for association mapping in E. grandis. By applying the mixed linear model, seven markers were identified to be associated significantly (P ≤ 0.05) with the gall wasp resistance in E. grandis, including two validated with a correction of permutation test (P ≤ 0.008). The proportion of the variance in resistance explained by a significant marker ranged from 3.3% to 37.8%. Four out of the seven significant associations in E. grandis were verified and also validated (P ≤ 0.073 in a permutation test) in E. tereticornis, with the variation explained ranging from 24.3% to 48.5%. Favourable alleles with positive effect were also mined from the significant markers in both species. These results provide insight into the genetic control of gall wasp resistance in plants and have great potential for marker-assisted selection for resistance to L. invasa in the important tree genus Eucalyptus.
Collapse
Affiliation(s)
- Miaomiao Zhang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Road, Beijing, 100091, China
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China
- College of Forestry, South China Agricultural University, 284 Block, Wushan Street, Guangzhou, 510642, China
| | - Changpin Zhou
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Road, Beijing, 100091, China
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China
| | - Zhijiao Song
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Road, Beijing, 100091, China
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China
- Baoshan University, Yuanzheng Road, Baoshan, 678000, China
| | - Qijie Weng
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China
| | - Mei Li
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China
| | - Hongxia Ji
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China
| | - Xiaoyong Mo
- College of Forestry, South China Agricultural University, 284 Block, Wushan Street, Guangzhou, 510642, China
| | - Huanhua Huang
- Guangdong Academy of Forestry, Longdong, Guangzhou, 510520, China
| | - Wanhong Lu
- China Eucalypt Research Centre, Zhanjiang, 524022, China
| | - Jianzhong Luo
- China Eucalypt Research Centre, Zhanjiang, 524022, China
| | - Fagen Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Road, Beijing, 100091, China.
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China.
| | - Siming Gan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Road, Beijing, 100091, China.
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China.
| |
Collapse
|
30
|
Zhang M, Zhou C, Song Z, Weng Q, Li M, Ji H, Mo X, Huang H, Lu W, Luo J, Li F, Gan S. The first identification of genomic loci in plants associated with resistance to galling insects: a case study in Eucalyptus L'Hér. (Myrtaceae). Sci Rep 2018; 8:2319. [PMID: 29396525 PMCID: PMC5797152 DOI: 10.1038/s41598-018-20780-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 01/24/2018] [Indexed: 01/30/2023] Open
Abstract
Genomic loci related with resistance to gall-inducing insects have not been identified in any plants. Here, association mapping was used to identify molecular markers for resistance to the gall wasp Leptocybe invasa in two Eucalyptus species. A total of 86 simple sequence repeats (SSR) markers were screened out from 839 SSRs and used for association mapping in E. grandis. By applying the mixed linear model, seven markers were identified to be associated significantly (P ≤ 0.05) with the gall wasp resistance in E. grandis, including two validated with a correction of permutation test (P ≤ 0.008). The proportion of the variance in resistance explained by a significant marker ranged from 3.3% to 37.8%. Four out of the seven significant associations in E. grandis were verified and also validated (P ≤ 0.073 in a permutation test) in E. tereticornis, with the variation explained ranging from 24.3% to 48.5%. Favourable alleles with positive effect were also mined from the significant markers in both species. These results provide insight into the genetic control of gall wasp resistance in plants and have great potential for marker-assisted selection for resistance to L. invasa in the important tree genus Eucalyptus.
Collapse
Affiliation(s)
- Miaomiao Zhang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Road, Beijing, 100091, China
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China
- College of Forestry, South China Agricultural University, 284 Block, Wushan Street, Guangzhou, 510642, China
| | - Changpin Zhou
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Road, Beijing, 100091, China
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China
| | - Zhijiao Song
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Road, Beijing, 100091, China
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China
- Baoshan University, Yuanzheng Road, Baoshan, 678000, China
| | - Qijie Weng
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China
| | - Mei Li
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China
| | - Hongxia Ji
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China
| | - Xiaoyong Mo
- College of Forestry, South China Agricultural University, 284 Block, Wushan Street, Guangzhou, 510642, China
| | - Huanhua Huang
- Guangdong Academy of Forestry, Longdong, Guangzhou, 510520, China
| | - Wanhong Lu
- China Eucalypt Research Centre, Zhanjiang, 524022, China
| | - Jianzhong Luo
- China Eucalypt Research Centre, Zhanjiang, 524022, China
| | - Fagen Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Road, Beijing, 100091, China.
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China.
| | - Siming Gan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Road, Beijing, 100091, China.
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China.
| |
Collapse
|
31
|
Fahrenkrog AM, Neves LG, Resende MFR, Vazquez AI, de Los Campos G, Dervinis C, Sykes R, Davis M, Davenport R, Barbazuk WB, Kirst M. Genome-wide association study reveals putative regulators of bioenergy traits in Populus deltoides. THE NEW PHYTOLOGIST 2017; 213:799-811. [PMID: 27596807 DOI: 10.1111/nph.14154] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 07/13/2016] [Indexed: 05/18/2023]
Abstract
Genome-wide association studies (GWAS) have been used extensively to dissect the genetic regulation of complex traits in plants. These studies have focused largely on the analysis of common genetic variants despite the abundance of rare polymorphisms in several species, and their potential role in trait variation. Here, we conducted the first GWAS in Populus deltoides, a genetically diverse keystone forest species in North America and an important short rotation woody crop for the bioenergy industry. We searched for associations between eight growth and wood composition traits, and common and low-frequency single-nucleotide polymorphisms detected by targeted resequencing of 18 153 genes in a population of 391 unrelated individuals. To increase power to detect associations with low-frequency variants, multiple-marker association tests were used in combination with single-marker association tests. Significant associations were discovered for all phenotypes and are indicative that low-frequency polymorphisms contribute to phenotypic variance of several bioenergy traits. Our results suggest that both common and low-frequency variants need to be considered for a comprehensive understanding of the genetic regulation of complex traits, particularly in species that carry large numbers of rare polymorphisms. These polymorphisms may be critical for the development of specialized plant feedstocks for bioenergy.
Collapse
Affiliation(s)
- Annette M Fahrenkrog
- School of Forest Resources and Conservation, University of Florida, PO Box 110410, Gainesville, FL, 32611, USA
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, PO Box 110690, Gainesville, FL, 32610, USA
| | - Leandro G Neves
- School of Forest Resources and Conservation, University of Florida, PO Box 110410, Gainesville, FL, 32611, USA
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, PO Box 110690, Gainesville, FL, 32610, USA
| | - Márcio F R Resende
- School of Forest Resources and Conservation, University of Florida, PO Box 110410, Gainesville, FL, 32611, USA
- Genetics and Genomics Graduate Program, University of Florida, PO Box 103610, Gainesville, FL, 32610, USA
| | - Ana I Vazquez
- Department of Epidemiology and Biostatistics, Michigan State University, 909 Fee Road, East Lansing, MI, 48824, USA
| | - Gustavo de Los Campos
- Department of Epidemiology and Biostatistics, Michigan State University, 909 Fee Road, East Lansing, MI, 48824, USA
- Statistics Department, Michigan State University, 619 Red Cedar Road, MI, 48824, USA
| | - Christopher Dervinis
- School of Forest Resources and Conservation, University of Florida, PO Box 110410, Gainesville, FL, 32611, USA
| | - Robert Sykes
- National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
| | - Mark Davis
- National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
| | - Ruth Davenport
- Biology Department, University of Florida, PO Box 118525, Gainesville, FL, 32611, USA
| | - William B Barbazuk
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, PO Box 110690, Gainesville, FL, 32610, USA
- Biology Department, University of Florida, PO Box 118525, Gainesville, FL, 32611, USA
- University of Florida Genetics Institute, University of Florida, PO Box 103610, Gainesville, FL, 32611, USA
| | - Matias Kirst
- School of Forest Resources and Conservation, University of Florida, PO Box 110410, Gainesville, FL, 32611, USA
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, PO Box 110690, Gainesville, FL, 32610, USA
- University of Florida Genetics Institute, University of Florida, PO Box 103610, Gainesville, FL, 32611, USA
| |
Collapse
|
32
|
Wu J, Cheng F, Cai C, Zhong Y, Jie X. Association mapping for floral traits in cultivated Paeonia rockii based on SSR markers. Mol Genet Genomics 2016; 292:187-200. [PMID: 27807670 DOI: 10.1007/s00438-016-1266-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 10/25/2016] [Indexed: 01/29/2023]
Abstract
Tree peony (Paeonia Sect. Moutan) is an economically important ornamental plant, but little is known about the genetic architecture of important ornamental traits. To effectively improve ornamental value, we require a better understanding of genetic architecture in the complex traits of the tree peony. Association mapping is a powerful tool for detection of variation associated with traits. Thus, we examined the genetic diversity and the population structure of 462 unrelated cultivated P. rockii individuals, then performed association mapping to identify simple sequence repeat (SSR) markers associated with 12 floral traits. We observed a moderate level of genetic diversity (PIC = 0.459) and low linkage disequilibrium (LD) between markers, demonstrating that the potential value of an LD approach in elucidating the molecular basis of the quantitative variation in this species. An analysis of population structure revealed three subgroups in the association population. Subsequent single-marker association analysis identified 46 significant associations, involving the 11 traits with 37 SSRs. These loci explained a small proportion of the phenotypic variance, ranging from 2.68 to 23.97% (mean 5.50%). We also validated 15 of the 46 associations in a linkage mapping population of 159 individuals. Finally, five associations were further confirmed in the linkage mapping population, involving the four traits with four SSRs. These results can serve as a foundation for further analyses of the genetic architecture of floral traits, and the SSRs associated in this work have potential applications in marker-assisted breeding in tree peony.
Collapse
Affiliation(s)
- Jing Wu
- National Flower Engineering Research Centre, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, College of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Fangyun Cheng
- National Flower Engineering Research Centre, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, College of Landscape Architecture, Beijing Forestry University, Beijing, China.
| | - Changfu Cai
- National Flower Engineering Research Centre, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, College of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Yuan Zhong
- National Flower Engineering Research Centre, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, College of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Xiao Jie
- National Flower Engineering Research Centre, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, College of Landscape Architecture, Beijing Forestry University, Beijing, China
| |
Collapse
|
33
|
Wang L, Wang B, Du Q, Chen J, Tian J, Yang X, Zhang D. Allelic variation in PtoPsbW associated with photosynthesis, growth, and wood properties in Populus tomentosa. Mol Genet Genomics 2016; 292:77-91. [PMID: 27722913 DOI: 10.1007/s00438-016-1257-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 10/03/2016] [Indexed: 02/06/2023]
Abstract
Photosynthesis is one of the most important reactions on earth. PsbW, a nuclear-encoded subunit of photosystem II (PSII), stabilizes PSII structure and plays an important role in photosynthesis. Here, we used candidate gene-based linkage disequilibrium (LD) mapping to detect significant associations between allelic variations of PtoPsbW and traits related to photosynthesis, growth, and wood properties in Populus tomentosa. PtoPsbW showed the highest expression in leaves and it increased during the development of these leaves, suggesting that PtoPsbW may play an important role in plant growth and development. Analysis of nucleotide diversity and LD revealed that PtoPsbW has low single-nucleotide polymorphism (SNP) diversity (π tot = 0.0048 and θ w = 0.0050) and relatively low average value of LD (0.1500), indicating that PtoPsbW is conserved due to its indispensable function. Using single-SNP associations in an association population of 435 individuals, we identified five significant associations at the threshold of P ≤ 0.05, explaining 3.28-15.98 % of the phenotypic variation. Haplotype-based association analyses indicated that 13 haplotypes (P ≤ 0.05) from six blocks were associated with photosynthesis, growth, and wood properties. Our work shows that identifying allelic variation and LD can help to decipher the genetic basis of photosynthesis and could potentially be applied for molecular marker-assisted selection in Populus.
Collapse
Affiliation(s)
- Longxin Wang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Bowen Wang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Qingzhang Du
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Jinhui Chen
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Jiaxing Tian
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Xiaohui Yang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Deqiang Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China. .,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
34
|
Lamara M, Raherison E, Lenz P, Beaulieu J, Bousquet J, MacKay J. Genetic architecture of wood properties based on association analysis and co-expression networks in white spruce. THE NEW PHYTOLOGIST 2016; 210:240-55. [PMID: 26619072 PMCID: PMC5063130 DOI: 10.1111/nph.13762] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 10/13/2015] [Indexed: 05/02/2023]
Abstract
Association studies are widely utilized to analyze complex traits but their ability to disclose genetic architectures is often limited by statistical constraints, and functional insights are usually minimal in nonmodel organisms like forest trees. We developed an approach to integrate association mapping results with co-expression networks. We tested single nucleotide polymorphisms (SNPs) in 2652 candidate genes for statistical associations with wood density, stiffness, microfibril angle and ring width in a population of 1694 white spruce trees (Picea glauca). Associations mapping identified 229-292 genes per wood trait using a statistical significance level of P < 0.05 to maximize discovery. Over-representation of genes associated for nearly all traits was found in a xylem preferential co-expression group developed in independent experiments. A xylem co-expression network was reconstructed with 180 wood associated genes and several known MYB and NAC regulators were identified as network hubs. The network revealed a link between the gene PgNAC8, wood stiffness and microfibril angle, as well as considerable within-season variation for both genetic control of wood traits and gene expression. Trait associations were distributed throughout the network suggesting complex interactions and pleiotropic effects. Our findings indicate that integration of association mapping and co-expression networks enhances our understanding of complex wood traits.
Collapse
Affiliation(s)
- Mebarek Lamara
- Forest Research Centre, and Institute for System and Integrative BiologyUniversité LavalQuébecQCG1V 0A6Canada
| | - Elie Raherison
- Forest Research Centre, and Institute for System and Integrative BiologyUniversité LavalQuébecQCG1V 0A6Canada
| | - Patrick Lenz
- Forest Research Centre, and Institute for System and Integrative BiologyUniversité LavalQuébecQCG1V 0A6Canada
- Canadian Wood Fibre CentreCanadian Forest ServiceNatural Resources CanadaQuébecQCG1V 4C7Canada
| | - Jean Beaulieu
- Forest Research Centre, and Institute for System and Integrative BiologyUniversité LavalQuébecQCG1V 0A6Canada
- Canadian Wood Fibre CentreCanadian Forest ServiceNatural Resources CanadaQuébecQCG1V 4C7Canada
- Canada Research Chair in Forest and Environmental GenomicsUniversité LavalQuébecQCG1V 0A6Canada
| | - Jean Bousquet
- Forest Research Centre, and Institute for System and Integrative BiologyUniversité LavalQuébecQCG1V 0A6Canada
- Canada Research Chair in Forest and Environmental GenomicsUniversité LavalQuébecQCG1V 0A6Canada
| | - John MacKay
- Forest Research Centre, and Institute for System and Integrative BiologyUniversité LavalQuébecQCG1V 0A6Canada
- Department of Plant SciencesUniversity of OxfordOxford0X1 3RBUK
| |
Collapse
|
35
|
Faivre-Rampant P, Zaina G, Jorge V, Giacomello S, Segura V, Scalabrin S, Guérin V, De Paoli E, Aluome C, Viger M, Cattonaro F, Payne A, PaulStephenRaj P, Le Paslier MC, Berard A, Allwright MR, Villar M, Taylor G, Bastien C, Morgante M. New resources for genetic studies in Populus nigra: genome-wide SNP discovery and development of a 12k Infinium array. Mol Ecol Resour 2016; 16:1023-36. [PMID: 26929265 DOI: 10.1111/1755-0998.12513] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 12/17/2015] [Accepted: 12/22/2015] [Indexed: 11/30/2022]
Abstract
Whole genome resequencing of 51 Populus nigra (L.) individuals from across Western Europe was performed using Illumina platforms. A total number of 1 878 727 SNPs distributed along the P. nigra reference sequence were identified. The SNP calling accuracy was validated with Sanger sequencing. SNPs were selected within 14 previously identified QTL regions, 2916 expressional candidate genes related to rust resistance, wood properties, water-use efficiency and bud phenology and 1732 genes randomly spread across the genome. Over 10 000 SNPs were selected for the construction of a 12k Infinium Bead-Chip array dedicated to association mapping. The SNP genotyping assay was performed with 888 P. nigra individuals. The genotyping success rate was 91%. Our high success rate was due to the discovery panel design and the stringent parameters applied for SNP calling and selection. In the same set of P. nigra genotypes, linkage disequilibrium throughout the genome decayed on average within 5-7 kb to half of its maximum value. As an application test, ADMIXTURE analysis was performed with a selection of 600 SNPs spread throughout the genome and 706 individuals collected along 12 river basins. The admixture pattern was consistent with genetic diversity revealed by neutral markers and the geographical distribution of the populations. These newly developed SNP resources and genotyping array provide a valuable tool for population genetic studies and identification of QTLs through natural-population based genetic association studies in P. nigra.
Collapse
Affiliation(s)
| | - G Zaina
- DI4A, University of Udine, via delle Scienze 206, 33100, Udine, Italy
| | - V Jorge
- INRA, UR 0588 AGPF, Centre INRA Val de Loire, 2163 avenue de la Pomme de Pin, CS 40001 - Ardon, 45075, Orléans, France
| | - S Giacomello
- IGA, Parco Scientifico e Tecnologico Luigi Danieli, via Jacopo Linussio 51, 33100, Udine, Italy
| | - V Segura
- INRA, UR 0588 AGPF, Centre INRA Val de Loire, 2163 avenue de la Pomme de Pin, CS 40001 - Ardon, 45075, Orléans, France
| | - S Scalabrin
- IGA, Parco Scientifico e Tecnologico Luigi Danieli, via Jacopo Linussio 51, 33100, Udine, Italy
| | - V Guérin
- INRA, UR 0588 AGPF, Centre INRA Val de Loire, 2163 avenue de la Pomme de Pin, CS 40001 - Ardon, 45075, Orléans, France
| | - E De Paoli
- IGA, Parco Scientifico e Tecnologico Luigi Danieli, via Jacopo Linussio 51, 33100, Udine, Italy
| | - C Aluome
- INRA, US1279 EPGV, CEA-IG/CNG, F-91057, Evry, France.,INRA, UR 0588 AGPF, Centre INRA Val de Loire, 2163 avenue de la Pomme de Pin, CS 40001 - Ardon, 45075, Orléans, France
| | - M Viger
- Centre For Biological Sciences, University of Southampton, Life Sciences, SO17 1BJ, Southampton, UK
| | - F Cattonaro
- IGA, Parco Scientifico e Tecnologico Luigi Danieli, via Jacopo Linussio 51, 33100, Udine, Italy
| | - A Payne
- Centre For Biological Sciences, University of Southampton, Life Sciences, SO17 1BJ, Southampton, UK
| | | | | | - A Berard
- INRA, US1279 EPGV, CEA-IG/CNG, F-91057, Evry, France
| | - M R Allwright
- Centre For Biological Sciences, University of Southampton, Life Sciences, SO17 1BJ, Southampton, UK
| | - M Villar
- INRA, UR 0588 AGPF, Centre INRA Val de Loire, 2163 avenue de la Pomme de Pin, CS 40001 - Ardon, 45075, Orléans, France
| | - G Taylor
- Centre For Biological Sciences, University of Southampton, Life Sciences, SO17 1BJ, Southampton, UK
| | - C Bastien
- INRA, UR 0588 AGPF, Centre INRA Val de Loire, 2163 avenue de la Pomme de Pin, CS 40001 - Ardon, 45075, Orléans, France
| | - M Morgante
- DI4A, University of Udine, via delle Scienze 206, 33100, Udine, Italy.,IGA, Parco Scientifico e Tecnologico Luigi Danieli, via Jacopo Linussio 51, 33100, Udine, Italy
| |
Collapse
|
36
|
Allwright MR, Payne A, Emiliani G, Milner S, Viger M, Rouse F, Keurentjes JJB, Bérard A, Wildhagen H, Faivre-Rampant P, Polle A, Morgante M, Taylor G. Biomass traits and candidate genes for bioenergy revealed through association genetics in coppiced European Populus nigra (L.). BIOTECHNOLOGY FOR BIOFUELS 2016; 9:195. [PMID: 27617034 PMCID: PMC5017058 DOI: 10.1186/s13068-016-0603-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/22/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND Second generation (2G) bioenergy from lignocellulosic feedstocks has the potential to develop as a sustainable source of renewable energy; however, significant hurdles still remain for large-scale commercialisation. Populus is considered as a promising 2G feedstock and understanding the genetic basis of biomass yield and feedstock quality are a research priority in this model tree species. RESULTS We report the first coppiced biomass study for 714 members of a wide population of European black poplar (Populus nigra L.), a native European tree, selected from 20 river populations ranging in latitude and longitude between 40.5 and 52.1°N and 1.0 and 16.4°E, respectively. When grown at a single site in southern UK, significant Site of Origin (SO) effects were seen for 14 of the 15 directly measured or derived traits including biomass yield, leaf area and stomatal index. There was significant correlation (p < 0.001) between biomass yield traits over 3 years of harvest which identified leaf size and cell production as strong predictors of biomass yield. A 12 K Illumina genotyping array (constructed from 10,331 SNPs in 14 QTL regions and 4648 genes) highlighted significant population genetic structure with pairwise FST showing strong differentiation (p < 0.001) between the Spanish and Italian subpopulations. Robust associations reaching genome-wide significance are reported for main stem height and cell number per leaf; two traits tightly linked to biomass yield. These genotyping and phenotypic data were also used to show the presence of significant isolation by distance (IBD) and isolation by adaption (IBA) within this population. CONCLUSIONS The three associations identified reaching genome-wide significance at p < 0.05 include a transcription factor; a putative stress response gene and a gene of unknown function. None of them have been previously linked to bioenergy yield; were shown to be differentially expressed in a panel of three selected genotypes from the collection and represent exciting, novel candidates for further study in a bioenergy tree native to Europe and Euro-Asia. A further 26 markers (22 genes) were found to reach putative significance and are also of interest for biomass yield, leaf area, epidermal cell expansion and stomatal patterning. This research on European P. nigra provides an important foundation for the development of commercial native trees for bioenergy and for advanced, molecular breeding in these species.
Collapse
Affiliation(s)
- Mike Robert Allwright
- Centre for Biological Sciences, Life Sciences Building, University of Southampton, Southampton, SO17 1BJ UK
| | - Adrienne Payne
- Centre for Biological Sciences, Life Sciences Building, University of Southampton, Southampton, SO17 1BJ UK
| | - Giovanni Emiliani
- CNR-IVALSA, Sesto Fiorentino, via Madonna del Piano, 10, 50019 Sesto Fiorentino, FI Italy
| | - Suzanne Milner
- Centre for Biological Sciences, Life Sciences Building, University of Southampton, Southampton, SO17 1BJ UK
| | - Maud Viger
- Centre for Biological Sciences, Life Sciences Building, University of Southampton, Southampton, SO17 1BJ UK
| | - Franchesca Rouse
- Centre for Biological Sciences, Life Sciences Building, University of Southampton, Southampton, SO17 1BJ UK
| | - Joost J. B. Keurentjes
- Laboratory of Genetics, Wageningen University and Research, 6708PB Wageningen, The Netherlands
| | | | | | | | - Andrea Polle
- Georg-August-Universität Göttingen, 37077 Göttingen, Germany
| | - Michele Morgante
- Dipartimento di Scienze agroalimentari, ambientali e animali, Università di Udine, Via delle Scienze 206, 33100 Udine, Italy
- Istituto di Genomica Applicata (IGA), via J. Linussio 51, 33100 Udine, Italy
| | - Gail Taylor
- Centre for Biological Sciences, Life Sciences Building, University of Southampton, Southampton, SO17 1BJ UK
| |
Collapse
|
37
|
Yang X, Wei Z, Du Q, Chen J, Wang Q, Quan M, Song Y, Xie J, Zhang D. The genetic regulatory network centered on Pto-Wuschela and its targets involved in wood formation revealed by association studies. Sci Rep 2015; 5:16507. [PMID: 26549216 PMCID: PMC4637887 DOI: 10.1038/srep16507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 10/14/2015] [Indexed: 11/25/2022] Open
Abstract
Transcription factors (TFs) regulate gene expression and can strongly affect phenotypes. However, few studies have examined TF variants and TF interactions with their targets in plants. Here, we used genetic association in 435 unrelated individuals of Populus tomentosa to explore the variants in Pto-Wuschela and its targets to decipher the genetic regulatory network of Pto-Wuschela. Our bioinformatics and co-expression analysis identified 53 genes with the motif TCACGTGA as putative targets of Pto-Wuschela. Single-marker association analysis showed that Pto-Wuschela was associated with wood properties, which is in agreement with the observation that it has higher expression in stem vascular tissues in Populus. Also, SNPs in the 53 targets were associated with growth or wood properties under additive or dominance effects, suggesting these genes and Pto-Wuschela may act in the same genetic pathways that affect variation in these quantitative traits. Epistasis analysis indicated that 75.5% of these genes directly or indirectly interacted Pto-Wuschela, revealing the coordinated genetic regulatory network formed by Pto-Wuschela and its targets. Thus, our study provides an alternative method for dissection of the interactions between a TF and its targets, which will strength our understanding of the regulatory roles of TFs in complex traits in plants.
Collapse
Affiliation(s)
- Xiaohui Yang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
| | - Zunzheng Wei
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Key Laboratory of Urban Agriculture (North), Ministry of Agriculture, No. 50, Zhanghua Road, Beijing 10097, China
| | - Qingzhang Du
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
| | - Jinhui Chen
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
| | - Qingshi Wang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
| | - Mingyang Quan
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
| | - Yuepeng Song
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
| | - Jianbo Xie
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
| | - Deqiang Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
| |
Collapse
|
38
|
Biotechnological aspects of cytoskeletal regulation in plants. Biotechnol Adv 2015; 33:1043-62. [DOI: 10.1016/j.biotechadv.2015.03.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 03/03/2015] [Accepted: 03/09/2015] [Indexed: 11/23/2022]
|
39
|
Plomion C, Bartholomé J, Lesur I, Boury C, Rodríguez-Quilón I, Lagraulet H, Ehrenmann F, Bouffier L, Gion JM, Grivet D, de Miguel M, de María N, Cervera MT, Bagnoli F, Isik F, Vendramin GG, González-Martínez SC. High-density SNP assay development for genetic analysis in maritime pine (Pinus pinaster). Mol Ecol Resour 2015; 16:574-87. [PMID: 26358548 DOI: 10.1111/1755-0998.12464] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 08/28/2015] [Accepted: 09/03/2015] [Indexed: 12/18/2022]
Abstract
Maritime pine provides essential ecosystem services in the south-western Mediterranean basin, where it covers around 4 million ha. Its scattered distribution over a range of environmental conditions makes it an ideal forest tree species for studies of local adaptation and evolutionary responses to climatic change. Highly multiplexed single nucleotide polymorphism (SNP) genotyping arrays are increasingly used to study genetic variation in living organisms and for practical applications in plant and animal breeding and genetic resource conservation. We developed a 9k Illumina Infinium SNP array and genotyped maritime pine trees from (i) a three-generation inbred (F2) pedigree, (ii) the French breeding population and (iii) natural populations from Portugal and the French Atlantic coast. A large proportion of the exploitable SNPs (2052/8410, i.e. 24.4%) segregated in the mapping population and could be mapped, providing the densest ever gene-based linkage map for this species. Based on 5016 SNPs, natural and breeding populations from the French gene pool exhibited similar level of genetic diversity. Population genetics and structure analyses based on 3981 SNP markers common to the Portuguese and French gene pools revealed high levels of differentiation, leading to the identification of a set of highly differentiated SNPs that could be used for seed provenance certification. Finally, we discuss how the validated SNPs could facilitate the identification of ecologically and economically relevant genes in this species, improving our understanding of the demography and selective forces shaping its natural genetic diversity, and providing support for new breeding strategies.
Collapse
Affiliation(s)
- C Plomion
- BIOGECO, UMR 1202, INRA, F-33610, Cestas, France.,BIOGECO, UMR 1202, University of Bordeaux, F-33400, Talence, France
| | - J Bartholomé
- BIOGECO, UMR 1202, INRA, F-33610, Cestas, France.,BIOGECO, UMR 1202, University of Bordeaux, F-33400, Talence, France
| | - I Lesur
- BIOGECO, UMR 1202, INRA, F-33610, Cestas, France.,HelixVenture, F-33700, Mérignac, France
| | - C Boury
- BIOGECO, UMR 1202, INRA, F-33610, Cestas, France.,BIOGECO, UMR 1202, University of Bordeaux, F-33400, Talence, France
| | | | - H Lagraulet
- BIOGECO, UMR 1202, INRA, F-33610, Cestas, France.,BIOGECO, UMR 1202, University of Bordeaux, F-33400, Talence, France
| | - F Ehrenmann
- BIOGECO, UMR 1202, INRA, F-33610, Cestas, France.,BIOGECO, UMR 1202, University of Bordeaux, F-33400, Talence, France
| | - L Bouffier
- BIOGECO, UMR 1202, INRA, F-33610, Cestas, France.,BIOGECO, UMR 1202, University of Bordeaux, F-33400, Talence, France
| | - J M Gion
- BIOGECO, UMR 1202, INRA, F-33610, Cestas, France.,UMR AGAP, CIRAD, F-33612, Cestas, France
| | - D Grivet
- Forest Research Centre, INIA, E-28040, Madrid, Spain
| | - M de Miguel
- BIOGECO, UMR 1202, INRA, F-33610, Cestas, France.,BIOGECO, UMR 1202, University of Bordeaux, F-33400, Talence, France
| | - N de María
- Forest Research Centre, INIA, E-28040, Madrid, Spain
| | - M T Cervera
- Forest Research Centre, INIA, E-28040, Madrid, Spain
| | - F Bagnoli
- Institute of Biosciences and Bioresources, National Research Council, Sesto Fiorentino (FI), Italy
| | - F Isik
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, USA
| | - G G Vendramin
- Institute of Biosciences and Bioresources, National Research Council, Sesto Fiorentino (FI), Italy
| | | |
Collapse
|
40
|
De Kort H, Vandepitte K, Mergeay J, Mijnsbrugge KV, Honnay O. The population genomic signature of environmental selection in the widespread insect-pollinated tree species Frangula alnus at different geographical scales. Heredity (Edinb) 2015; 115:415-25. [PMID: 25944466 DOI: 10.1038/hdy.2015.41] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 02/20/2015] [Accepted: 03/20/2015] [Indexed: 01/17/2023] Open
Abstract
The evaluation of the molecular signatures of selection in species lacking an available closely related reference genome remains challenging, yet it may provide valuable fundamental insights into the capacity of populations to respond to environmental cues. We screened 25 native populations of the tree species Frangula alnus subsp. alnus (Rhamnaceae), covering three different geographical scales, for 183 annotated single-nucleotide polymorphisms (SNPs). Standard population genomic outlier screens were combined with individual-based and multivariate landscape genomic approaches to examine the strength of selection relative to neutral processes in shaping genomic variation, and to identify the main environmental agents driving selection. Our results demonstrate a more distinct signature of selection with increasing geographical distance, as indicated by the proportion of SNPs (i) showing exceptional patterns of genetic diversity and differentiation (outliers) and (ii) associated with climate. Both temperature and precipitation have an important role as selective agents in shaping adaptive genomic differentiation in F. alnus subsp. alnus, although their relative importance differed among spatial scales. At the 'intermediate' and 'regional' scales, where limited genetic clustering and high population diversity were observed, some indications of natural selection may suggest a major role for gene flow in safeguarding adaptability. High genetic diversity at loci under selection in particular, indicated considerable adaptive potential, which may nevertheless be compromised by the combined effects of climate change and habitat fragmentation.
Collapse
Affiliation(s)
- H De Kort
- Biology Department, University of Leuven, Plant Conservation and Population Biology, Kasteelpark Arenberg 31, Heverlee, Belgium
| | - K Vandepitte
- Biology Department, University of Leuven, Plant Conservation and Population Biology, Kasteelpark Arenberg 31, Heverlee, Belgium
| | - J Mergeay
- Department of Genetic Diversity, Research Institute for Nature and Forest, Gaverstraat 4, Geraardsbergen, Belgium
| | - K V Mijnsbrugge
- Department of Genetic Diversity, Research Institute for Nature and Forest, Gaverstraat 4, Geraardsbergen, Belgium.,Department of Nature Conservation, Agency for Nature and Forest, Koning Albert II laan 20, Brussels, Belgium
| | - O Honnay
- Biology Department, University of Leuven, Plant Conservation and Population Biology, Kasteelpark Arenberg 31, Heverlee, Belgium
| |
Collapse
|
41
|
Porth I, El-Kassaby YA. Using Populus as a lignocellulosic feedstock for bioethanol. Biotechnol J 2015; 10:510-24. [PMID: 25676392 DOI: 10.1002/biot.201400194] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 11/11/2014] [Accepted: 12/30/2014] [Indexed: 11/10/2022]
Abstract
Populus species along with species from the sister genus Salix will provide valuable feedstock resources for advanced second-generation biofuels. Their inherent fast growth characteristics can particularly be exploited for short rotation management, a time and energy saving cultivation alternative for lignocellulosic feedstock supply. Salicaceae possess inherent cell wall characteristics with favorable cellulose to lignin ratios for utilization as bioethanol crop. We review economically important traits relevant for intensively managed biofuel crop plantations, genomic and phenotypic resources available for Populus, breeding strategies for forest trees dedicated to bioenergy provision, and bioprocesses and downstream applications related to opportunities using Salicaceae as a renewable resource. Challenges need to be resolved for every single step of the conversion process chain, i.e., starting from tree domestication for improved performance as a bioenergy crop, bioconversion process, policy development for land use changes associated with advanced biofuels, and harvest and supply logistics associated with industrial-scale biorefinery plants using Populus as feedstock. Significant hurdles towards cost and energy efficiency, environmental friendliness, and yield maximization with regards to biomass pretreatment, saccharification, and fermentation of celluloses and the sustainability of biorefineries as a whole still need to be overcome.
Collapse
Affiliation(s)
- Ilga Porth
- Forest and Conservation Sciences, University of British Columbia, Vancouver, Canada.
| | | |
Collapse
|
42
|
Du Q, Tian J, Yang X, Pan W, Xu B, Li B, Ingvarsson PK, Zhang D. Identification of additive, dominant, and epistatic variation conferred by key genes in cellulose biosynthesis pathway in Populus tomentosa†. DNA Res 2015; 22:53-67. [PMID: 25428896 PMCID: PMC4379978 DOI: 10.1093/dnares/dsu040] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 10/22/2014] [Indexed: 12/29/2022] Open
Abstract
Economically important traits in many species generally show polygenic, quantitative inheritance. The components of genetic variation (additive, dominant and epistatic effects) of these traits conferred by multiple genes in shared biological pathways remain to be defined. Here, we investigated 11 full-length genes in cellulose biosynthesis, on 10 growth and wood-property traits, within a population of 460 unrelated Populus tomentosa individuals, via multi-gene association. To validate positive associations, we conducted single-marker analysis in a linkage population of 1,200 individuals. We identified 118, 121, and 43 associations (P< 0.01) corresponding to additive, dominant, and epistatic effects, respectively, with low to moderate proportions of phenotypic variance (R(2)). Epistatic interaction models uncovered a combination of three non-synonymous sites from three unique genes, representing a significant epistasis for diameter at breast height and stem volume. Single-marker analysis validated 61 associations (false discovery rate, Q ≤ 0.10), representing 38 SNPs from nine genes, and its average effect (R(2) = 3.8%) nearly 2-fold higher than that identified with multi-gene association, suggesting that multi-gene association can capture smaller individual variants. Moreover, a structural gene-gene network based on tissue-specific transcript abundances provides a better understanding of the multi-gene pathway affecting tree growth and lignocellulose biosynthesis. Our study highlights the importance of pathway-based multiple gene associations to uncover the nature of genetic variance for quantitative traits and may drive novel progress in molecular breeding.
Collapse
Affiliation(s)
- Qingzhang Du
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P. R. China Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P. R. China
| | - Jiaxing Tian
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P. R. China Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P. R. China
| | - Xiaohui Yang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P. R. China Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P. R. China
| | - Wei Pan
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P. R. China Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P. R. China
| | - Baohua Xu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P. R. China Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P. R. China
| | - Bailian Li
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P. R. China Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P. R. China Department of Forestry, North Carolina State University, Raleigh, NC 27695-8203, USA
| | - Pär K Ingvarsson
- Department of Ecology and Environmental Science, Umeå Plant Science Centre, Umeå University, Umeå SE-901 87, Sweden
| | - Deqiang Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P. R. China Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P. R. China
| |
Collapse
|
43
|
Muchero W, Guo J, DiFazio SP, Chen JG, Ranjan P, Slavov GT, Gunter LE, Jawdy S, Bryan AC, Sykes R, Ziebell A, Klápště J, Porth I, Skyba O, Unda F, El-Kassaby YA, Douglas CJ, Mansfield SD, Martin J, Schackwitz W, Evans LM, Czarnecki O, Tuskan GA. High-resolution genetic mapping of allelic variants associated with cell wall chemistry in Populus. BMC Genomics 2015; 16:24. [PMID: 25613058 PMCID: PMC4307895 DOI: 10.1186/s12864-015-1215-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 01/02/2015] [Indexed: 11/13/2022] Open
Abstract
Background QTL cloning for the discovery of genes underlying polygenic traits has historically been cumbersome in long-lived perennial plants like Populus. Linkage disequilibrium-based association mapping has been proposed as a cloning tool, and recent advances in high-throughput genotyping and whole-genome resequencing enable marker saturation to levels sufficient for association mapping with no a priori candidate gene selection. Here, multiyear and multienvironment evaluation of cell wall phenotypes was conducted in an interspecific P. trichocarpa x P. deltoides pseudo-backcross mapping pedigree and two partially overlapping populations of unrelated P. trichocarpa genotypes using pyrolysis molecular beam mass spectrometry, saccharification, and/ or traditional wet chemistry. QTL mapping was conducted using a high-density genetic map with 3,568 SNP markers. As a fine-mapping approach, chromosome-wide association mapping targeting a QTL hot-spot on linkage group XIV was performed in the two P. trichocarpa populations. Both populations were genotyped using the 34 K Populus Infinium SNP array and whole-genome resequencing of one of the populations facilitated marker-saturation of candidate intervals for gene identification. Results Five QTLs ranging in size from 0.6 to 1.8 Mb were mapped on linkage group XIV for lignin content, syringyl to guaiacyl (S/G) ratio, 5- and 6-carbon sugars using the mapping pedigree. Six candidate loci exhibiting significant associations with phenotypes were identified within QTL intervals. These associations were reproducible across multiple environments, two independent genotyping platforms, and different plant growth stages. cDNA sequencing for allelic variants of three of the six loci identified polymorphisms leading to variable length poly glutamine (PolyQ) stretch in a transcription factor annotated as an ANGUSTIFOLIA C-terminus Binding Protein (CtBP) and premature stop codons in a KANADI transcription factor as well as a protein kinase. Results from protoplast transient expression assays suggested that each of the polymorphisms conferred allelic differences in the activation of cellulose, hemicelluloses, and lignin pathway marker genes. Conclusion This study illustrates the utility of complementary QTL and association mapping as tools for gene discovery with no a priori candidate gene selection. This proof of concept in a perennial organism opens up opportunities for discovery of novel genetic determinants of economically important but complex traits in plants. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1215-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wellington Muchero
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| | - Jianjun Guo
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA. .,Current address: Department of Plant Biology, Carnegie Institute for Science, Stanford, CA, 94305, USA.
| | - Stephen P DiFazio
- Department of Biology, West Virginia University, Morgantown, WV, 26506, USA.
| | - Jin-Gui Chen
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| | - Priya Ranjan
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| | - Gancho T Slavov
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3EB, UK.
| | - Lee E Gunter
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| | - Sara Jawdy
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| | - Anthony C Bryan
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| | - Robert Sykes
- Bioscience Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401, USA.
| | - Angela Ziebell
- Bioscience Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401, USA.
| | - Jaroslav Klápště
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada. .,Department of Genetics and Physiology of Forest Trees, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences in Prague, Kamýcká 129, 165 21, Praha 6, Czech Republic.
| | - Ilga Porth
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada.
| | - Oleksandr Skyba
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada.
| | - Faride Unda
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada.
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada.
| | - Carl J Douglas
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| | - Shawn D Mansfield
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada.
| | - Joel Martin
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA.
| | - Wendy Schackwitz
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA.
| | - Luke M Evans
- Department of Biology, West Virginia University, Morgantown, WV, 26506, USA.
| | - Olaf Czarnecki
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| | - Gerald A Tuskan
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| |
Collapse
|
44
|
Hayward AC, Tollenaere R, Dalton-Morgan J, Batley J. Molecular marker applications in plants. Methods Mol Biol 2015; 1245:13-27. [PMID: 25373746 DOI: 10.1007/978-1-4939-1966-6_2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Individuals within a population of a sexually reproducing species will have some degree of heritable genomic variation caused by mutations, insertion/deletions (INDELS), inversions, duplications, and translocations. Such variation can be detected and screened using molecular, or genetic, markers. By definition, molecular markers are genetic loci that can be easily tracked and quantified in a population and may be associated with a particular gene or trait of interest. This chapter will review the current major applications of molecular markers in plants.
Collapse
Affiliation(s)
- Alice C Hayward
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
| | | | | | | |
Collapse
|
45
|
Xu B, Tian J, Du Q, Gong C, Pan W, Zhang D. Single nucleotide polymorphisms in a cellulose synthase gene (PtoCesA3) are associated with growth and wood properties in Populus tomentosa. PLANTA 2014; 240:1269-86. [PMID: 25143249 DOI: 10.1007/s00425-014-2149-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 08/08/2014] [Indexed: 05/21/2023]
Abstract
In plants, the composition and organization of the cell wall determine cell shape, enable cell expansion, and affect the properties of woody tissues. Cellulose synthase (CesA) genes encode the enzymes involved in the synthesis of cellulose which is the major component of plant primary and secondary cell walls. Here, we isolated a full-length PtoCesA3 cDNA from the stem cambium tissue of Populus tomentosa. Tissue-specific expression profiling showed that PtoCesA3 is highly expressed during primary cell wall formation. Estimation of single nucleotide polymorphism (SNP) diversity and linkage disequilibrium (LD) revealed that PtoCesA3 harbors high SNP diversity (π(T) = 0.00995 and θ(w) = 0.0102) and low LD (r(2) ≥ 0.1, within 1,280 bp). Association analysis in a P. tomentosa association population (460 individuals) showed that seven SNPs (false discovery rate Q < 0.10) and five haplotypes (Q < 0.10) were significantly associated with growth and wood properties, explaining 4.09-7.02% of the phenotypic variance. All significant marker-trait associations were validated in at least one of the three smaller subsets (climatic regions) while five associations were repeated in the linkage population. Variation in RNA transcript abundance among genotypic classes of significant loci was also confirmed in the association or linkage populations. Identification of PtoCesA3 and examining its allelic polymorphisms using association studies open an avenue to understand the mechanism of cellulose synthesis in the primary cell wall and its effects on the properties of woody tissues.
Collapse
Affiliation(s)
- Baohua Xu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
| | | | | | | | | | | |
Collapse
|
46
|
Du Q, Wang L, Zhou D, Yang H, Gong C, Pan W, Zhang D. Allelic variation within the S-adenosyl-L-homocysteine hydrolase gene family is associated with wood properties in Chinese white poplar (Populus tomentosa). BMC Genet 2014; 15 Suppl 1:S4. [PMID: 25079429 PMCID: PMC4118623 DOI: 10.1186/1471-2156-15-s1-s4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background S-adenosyl-l-homocysteine hydrolase (SAHH) is the only eukaryotic enzyme capable of S-adenosyl-l-homocysteine (SAH) catabolism for the maintenance of cellular transmethylation potential. Recently, biochemical and genetic studies in herbaceous species have obtained important discoveries in the function of SAHH, and an extensive characterization of SAHH family in even one tree species is essential, but currently lacking. Results Here, we first identified the SAHH family from Populus tomentosa using molecular cloning method. Phylogenetic analyses of 28 SAHH proteins from dicotyledons, monocotyledons, and lower plants revealed that the sequences formed two monophyletic groups: the PtrSAHHA with PtoSAHHA and PtrSAHHB with PtoSAHHB. Examination of tissue-specific expression profiles of the PtoSAHH family revealed similar expression patterns; high levels of expression in xylem were found. Nucleotide diversity and linkage disequilibrium (LD) in the PtoSAHH family, sampled from P. tomentosa natural distribution, revealed that PtoSAHH harbors high single-nucleotide polymorphism (SNP) diversity (π=0.01059±0.00122 and 0.00930±0.00079,respectively) and low LD (r2 > 0.1, within 800 bp and 2,200 bp, respectively). Using an LD-linkage analysis approach, two noncoding SNPs (PtoSAHHB_1065 and PtoSAHHA_2203) and the corresponding haplotypes were found to significantly associate with α-cellulose content, and a nonsynonymous SNP (PtoSAHHB_410) within the SAHH signature motifs showed significant association with fiber length, with an average of 3.14% of the phenotypic variance explained. Conclusions The present study demonstrates that PtoSAHHs were split off prior to the divergence of interspecies in Populus, and SAHHs may play a key role promoting transmethylation reactions in the secondary cell walls biosynthesis in trees. Hence, our findings provide insights into SAHH function and evolution in woody species and also offer a theoretical basis for marker-aided selection breeding to improve the wood quality of Populus.
Collapse
|
47
|
Ye M, Chen Z, Su X, Ji L, Wang J, Liao W, Ma H, An X. Study of seed hair growth in Populus tomentosa, an important character of female floral bud development. BMC Genomics 2014; 15:475. [PMID: 24929561 PMCID: PMC4089023 DOI: 10.1186/1471-2164-15-475] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 06/11/2014] [Indexed: 11/10/2022] Open
Abstract
Background Poplar seed hair is an environmental annoyance in northern China due to its abundance and widespread airborne distribution after maturation. The morphogenesis and molecular mechanisms of its development are not well understood, and little attention has been focused on the dynamics of its development. To better understand the mechanism of poplar seed hair development, paraffin sections were used to examine the initiation and elongation of poplar seed hairs. RNA-seq technology was also employed to provide a comprehensive overview of transcriptional changes that occur during seed hair development. Results The placenta at the base of ovary, was identified as the origin of seed hair development, which is in sharp contrast to cotton fibers that originate from epidermal cells of the seed coat. An enlarged cell nucleus in seed hair cells was also observed, which was supported by our gene ontology enrichment analysis. The significant enriched GO term of “endoreduplication” indicated that cycles of endoreduplication, bypassing normal mitosis, is the underlying mechanisms for the maintenance of the uni-cellular structure of seed hairs. By analyzing global changes in the transcriptome, many genes regulating cell cycle, cell elongation, cell well modification were identified. Additionally, in an analysis of differential expression, cellulose synthesis and cell wall biosynthesis-related biological processes were enriched, indicating that this component of fiber structure in poplar seed hairs is consistent with what is found in cotton fibers. Differentially expressed transcription factors exhibited a stage-specific up-regulation. A dramatic down-regulation was also revealed during the mid-to-late stage of poplar seed hair development, which may point to novel mechanisms regulating cell fate determination and cell elongation. Conclusions This study revealed the initiation site of poplar seed hairs and also provided a comprehensive overview of transcriptome dynamics during the process of seed hair development. The high level of resolution on dynamic changes in the transcriptome provided in this study may serve as a valuable resource for developing a more complete understanding of this important biological process. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-475) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xinmin An
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory, Beijing Forestry University, Beijing 100083, People's Republic of China.
| |
Collapse
|
48
|
McKown AD, Guy RD, Klápště J, Geraldes A, Friedmann M, Cronk QCB, El-Kassaby YA, Mansfield SD, Douglas CJ. Geographical and environmental gradients shape phenotypic trait variation and genetic structure in Populus trichocarpa. THE NEW PHYTOLOGIST 2014; 201:1263-1276. [PMID: 24491114 DOI: 10.1111/nph.12601] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 10/09/2013] [Indexed: 05/18/2023]
Abstract
• Populus trichocarpa is widespread across western North America spanning extensive variation in photoperiod, growing season and climate. We investigated trait variation in P. trichocarpa using over 2000 trees from a common garden at Vancouver, Canada, representing replicate plantings of 461 genotypes originating from 136 provenance localities. • We measured 40 traits encompassing phenological events, biomass accumulation, growth rates, and leaf, isotope and gas exchange-based ecophysiology traits. With replicated plantings and 29,354 single nucleotide polymorphisms (SNPs) from 3518 genes, we estimated both broad-sense trait heritability (H(2)) and overall population genetic structure from principal component analysis. • Populus trichocarpa had high phenotypic variation and moderate/high H(2) for many traits. H(2) ranged from 0.3 to 0.9 in phenology, 0.3 to 0.8 in biomass and 0.1 to 0.8 in ecophysiology traits. Most traits correlated strongly with latitude, maximum daylength and temperature of tree origin, but not necessarily with elevation, precipitation or heat : moisture indices. Trait H(2) values reflected trait correlation strength with geoclimate variables. The population genetic structure had one significant principal component (PC1) which correlated with daylength and showed enrichment for genes relating to circadian rhythm and photoperiod. • Robust relationships between traits, population structure and geoclimate in P. trichocarpa reflect patterns which suggest that range-wide geographical and environment gradients have shaped its genotypic and phenotypic variability.
Collapse
Affiliation(s)
- Athena D McKown
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Robert D Guy
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Jaroslav Klápště
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Dendrology and Forest Tree Breeding, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, 165 21, Czech Republic
| | - Armando Geraldes
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Michael Friedmann
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Quentin C B Cronk
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Shawn D Mansfield
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Carl J Douglas
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
49
|
Tian J, Chang M, Du Q, Xu B, Zhang D. Single-nucleotide polymorphisms in PtoCesA7 and their association with growth and wood properties in Populus tomentosa. Mol Genet Genomics 2014; 289:439-55. [PMID: 24549852 DOI: 10.1007/s00438-014-0824-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 02/04/2014] [Indexed: 12/30/2022]
Abstract
Cellulose synthase (CesA) genes encode the enzymes that synthesize cellulose; therefore, CesAs play central roles in plant development and affect the yield and quality of wood, essential properties for industrial applications of plant biomass. To effectively manipulate wood biosynthesis in trees and improve wood quality, we thus require a better understanding of the natural variation in CesAs. Association studies have emerged as a powerful tool for identification of variation associated with quantitative traits. Here, we used a candidate gene-based association mapping approach to identify PtoCesA7 allelic variants that associate with growth and wood quality traits in Populus tomentosa. We isolated a full-length PtoCesA7 cDNA and observed high PtoCesA7 expression in xylem, consistent with the xylem-specific expression of CesA7. Nucleotide diversity and linkage disequilibrium (LD) in PtoCesA7, sampled from the P. tomentosa natural distribution, revealed that PtoCesA7 harbors high nucleotide diversity (π(T) = 0.0091) and low LD (r(2) ≥ 0.1, within 800 bp). By association analysis, we identified seven single-nucleotide polymorphisms (SNPs) (false discovery rate Q < 0.10) and 12 haplotypes (Q < 0.10) that associated with growth and wood properties, explaining 3.62-10.59 % of the phenotypic variance. We also validated 9 of the 10 significant marker-trait associations in at least one of three smaller subsets (climatic regions) or in a linkage-mapping population. Thus, our study identified functional PtoCesA7 allelic variants associated with growth and wood quality traits, giving new insights into genes affecting wood quality and quantity. From an applied perspective, the SNPs revealed in this study have potential applications in marker-assisted breeding.
Collapse
Affiliation(s)
- Jiaxing Tian
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | | | | | | | | |
Collapse
|
50
|
Du Q, Xu B, Pan W, Gong C, Wang Q, Tian J, Li B, Zhang D. Allelic variation in a cellulose synthase gene (PtoCesA4) associated with growth and wood properties in Populus tomentosa. G3 (BETHESDA, MD.) 2013; 3:2069-84. [PMID: 24048648 PMCID: PMC3815066 DOI: 10.1534/g3.113.007724] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 09/11/2013] [Indexed: 12/12/2022]
Abstract
Lignocellulosic biomass from trees provides a renewable feedstock for biofuels, lumber, pulp, paper, and other uses. Dissecting the mechanism underlying natural variation of the complex traits controlling growth and lignocellulose biosynthesis in trees can enable marker-assisted breeding to improve wood quality and yield. Here, we combined linkage disequilibrium (LD)-based association analysis with traditional linkage analysis to detect the genetic effect of a Populus tomentosa cellulose synthase gene, PtoCesA4. PtoCesA4 is strongly expressed in developing xylem and leaves. Nucleotide diversity and LD in PtoCesA4, sampled from the P. tomentosa natural distribution, revealed that PtoCesA4 harbors high single nucleotide polymorphism (SNP) diversity (πT = 0.0080 and θw = 0.0098) and low LD (r(2) ≥ 0.1, within 1400 bp), demonstrating that the potential of a candidate-gene-based LD approach in understanding the molecular basis underlying quantitative variation in this species. By combining single SNP, multi-SNP, and haplotype-based associations in an association population of 460 individuals with single SNP linkage analysis in a family-based linkage populations (1200 individuals), we identified three strong associations (false discovery rate Q < 0.05) in both populations. These include two nonsynonymous markers (SNP49 associated with α-cellulose content and SNP59 associated with fiber width) and a noncoding marker (SNP18 associated with α-cellulose content). Variation in RNA transcript abundance among genotypic classes of SNP49 was confirmed in these two populations. Therefore, combining different methods allowed us to examine functional PtoCesA4 allelic variation underlying natural variation in complex quantitative traits related to growth and lignocellulosic biosynthesis.
Collapse
Affiliation(s)
- Qingzhang Du
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People’s Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People’s Republic of China
| | - Baohua Xu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People’s Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People’s Republic of China
| | - Wei Pan
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People’s Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People’s Republic of China
| | - Chenrui Gong
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People’s Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People’s Republic of China
| | - Qingshi Wang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People’s Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People’s Republic of China
| | - Jiaxing Tian
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People’s Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People’s Republic of China
| | - Bailian Li
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People’s Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People’s Republic of China
- Department of Forestry, North Carolina State University, Raleigh, North Carolina 27695-8203
| | - Deqiang Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People’s Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People’s Republic of China
| |
Collapse
|