1
|
Shukla A, Pagán I, Crevillén P, Alonso‐Blanco C, García‐Arenal F. A role of flowering genes in the tolerance of Arabidopsis thaliana to cucumber mosaic virus. MOLECULAR PLANT PATHOLOGY 2022; 23:175-187. [PMID: 34672409 PMCID: PMC8743021 DOI: 10.1111/mpp.13151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
The genetic basis of plant tolerance to parasites is poorly understood. We have previously shown that tolerance of Arabidopsis thaliana to its pathogen cucumber mosaic virus is achieved through changes in host life-history traits on infection that result in delaying flowering and reallocating resources from vegetative growth to reproduction. In this system we analyse here genetic determinants of tolerance using a recombinant inbred line family derived from a cross of two accessions with extreme phenotypes. Three major quantitative trait loci for tolerance were identified, which co-located with three flowering repressor genes, FLC, FRI, and HUA2. The role of these genes in tolerance was further examined in genotypes carrying functional or nonfunctional alleles. Functional alleles of FLC together with FRI and/or HUA2 were required for both tolerance and resource reallocation from growth to reproduction. Analyses of FLC alleles from wild accessions that differentially modulate flowering time showed that they ranked differently for their effects on tolerance and flowering. These results pinpoint a role of FLC in A. thaliana tolerance to cucmber mosaic virus, which is a novel major finding, as FLC has not been recognized previously to be involved in plant defence. Although tolerance is associated with a delay in flowering that allows resource reallocation, our results indicate that FLC regulates tolerance and flowering initiation by different mechanisms. Thus, we open a new avenue of research on the interplay between defence and development in plants.
Collapse
Affiliation(s)
- Aayushi Shukla
- Centro de Biotecnología y Genómica de PlantasUniversidad Politécnica de Madrid, Instituto Nacional de Investigación y Tecnología Agraria y AlimentariaMadridSpain
- Present address:
Department of Plant BiologyUppsala BioCenterSwedish University of Agricultural Sciences75007UppsalaSweden
| | - Israel Pagán
- Centro de Biotecnología y Genómica de PlantasUniversidad Politécnica de Madrid, Instituto Nacional de Investigación y Tecnología Agraria y AlimentariaMadridSpain
- ETSI Agronómica, Alimentaria y de BiosistemasMadridSpain
| | - Pedro Crevillén
- Centro de Biotecnología y Genómica de PlantasUniversidad Politécnica de Madrid, Instituto Nacional de Investigación y Tecnología Agraria y AlimentariaMadridSpain
| | - Carlos Alonso‐Blanco
- Departamento de Genética Molecular de PlantasCentro Nacional de BiotecnologíaConsejo Superior de Investigaciones CientíficasMadridSpain
| | - Fernando García‐Arenal
- Centro de Biotecnología y Genómica de PlantasUniversidad Politécnica de Madrid, Instituto Nacional de Investigación y Tecnología Agraria y AlimentariaMadridSpain
- ETSI Agronómica, Alimentaria y de BiosistemasMadridSpain
| |
Collapse
|
2
|
Abstract
Increasing evidence indicates that tolerance is a host defense strategy against pathogens as widespread and successful as resistance. Since the concept of tolerance was proposed more than a century ago, it has been in continuous evolution. In parallel, our understanding of its mechanistic bases and its consequences for host and pathogen interactions, ecology, and evolution has grown. This review aims at summarizing the conceptual changes in the meaning of tolerance inside and outside the field of phytopathology, emphasizing difficulties in demonstrating and quantifying this trait. We also discuss evidence of tolerance and current knowledge on its genetic regulation, mechanisms, and role in host-pathogen coevolution, highlighting common patterns across hosts and pathogens. We hope that this comprehensive review attracts more plant pathologists to the study of this key plant defense response.
Collapse
Affiliation(s)
- Israel Pagán
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain;
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain;
| |
Collapse
|
3
|
Bak A, Patton MF, Perilla-Henao LM, Aegerter BJ, Casteel CL. Ethylene signaling mediates potyvirus spread by aphid vectors. Oecologia 2019; 190:139-148. [DOI: 10.1007/s00442-019-04405-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/22/2019] [Indexed: 12/21/2022]
|
4
|
Montes N, Alonso-Blanco C, García-Arenal F. Cucumber mosaic virus infection as a potential selective pressure on Arabidopsis thaliana populations. PLoS Pathog 2019; 15:e1007810. [PMID: 31136630 PMCID: PMC6555541 DOI: 10.1371/journal.ppat.1007810] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 06/07/2019] [Accepted: 05/01/2019] [Indexed: 02/07/2023] Open
Abstract
It has been proposed that in wild ecosystems viruses are often plant mutualists, whereas agroecosystems favour pathogenicity. We seek evidence for virus pathogenicity in wild ecosystems through the analysis of plant-virus coevolution, which requires a negative effect of infection on the host fitness. We focus on the interaction between Arabidopsis thaliana and Cucumber mosaic virus (CMV), which is significant in nature. We studied the genetic diversity of A. thaliana for two defence traits, resistance and tolerance, to CMV. A set of 185 individuals collected in 76 A. thaliana Iberian wild populations were inoculated with different CMV strains. Resistance was estimated from the level of virus multiplication in infected plants, and tolerance from the effect of infection on host progeny production. Resistance and tolerance to CMV showed substantial genetic variation within and between host populations, and depended on the virus x host genotype interaction, two conditions for coevolution. Resistance and tolerance were co-occurring independent traits that have evolved independently from related life-history traits involved in adaptation to climate. The comparison of the genetic structure for resistance and tolerance with that for neutral traits (QST/FST analyses) indicated that both defence traits are likely under uniform selection. These results strongly suggest that CMV infection selects for defence on A. thaliana populations, and support plant-virus coevolution. Thus, we propose that CMV infection reduces host fitness under the field conditions of the wild A. thaliana populations studied.
Collapse
Affiliation(s)
- Nuria Montes
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón (Madrid), Spain
| | - Carlos Alonso-Blanco
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Campus Universidad Autónoma, Cantoblanco, Madrid, Spain
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón (Madrid), Spain
| |
Collapse
|
5
|
Abstract
The two major mechanisms of plant defense against pathogens are resistance (the host's ability to limit pathogen multiplication) and tolerance (the host's ability to reduce the effect of infection on its fitness regardless of the level of pathogen multiplication). There is abundant literature on virtually every aspect of plant resistance to pathogens. Although tolerance to plant pathogens is comparatively less understood, studies on this plant defense strategy have led to major insights into its evolution, mechanistic basis and genetic determinants. This review aims at summarizing current theories and experimental evidence on the evolutionary causes and consequences of plant tolerance to pathogens, as well as the existing knowledge on the genetic determinants and mechanisms of tolerance. Our review reveals that (i) in plant-pathogen systems, resistance and tolerance generally coexist, i.e., are not mutually exclusive; (ii) evidence of tolerance polymorphisms is abundant regardless of the pathogen considered; (iii) tolerance is an efficient strategy to reduce the damage on the infected host; and (iv) there is no evidence that tolerance results in increased pathogen multiplication. Taken together, the work discussed in this review indicates that tolerance may be as important as resistance in determining the dynamics of plant-pathogen interactions. Several aspects of plant tolerance to pathogens that still remain unclear and which should be explored in the future, are also outlined.
Collapse
Affiliation(s)
- Israel Pagán
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA) and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28223 Madrid, Spain.
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA) and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28223 Madrid, Spain.
| |
Collapse
|
6
|
Brusini J, Wayne ML, Franc A, Robin C. The impact of parasitism on resource allocation in a fungal host: the case of Cryphonectria parasitica and its mycovirus, Cryphonectria Hypovirus 1. Ecol Evol 2017; 7:5967-5976. [PMID: 28808558 PMCID: PMC5551080 DOI: 10.1002/ece3.3143] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 04/18/2017] [Accepted: 04/25/2017] [Indexed: 12/04/2022] Open
Abstract
Parasites are known to profoundly affect resource allocation in their host. In order to investigate the effects of Cryphonectria Hypovirus 1 (CHV1) on the life-history traits of its fungal host Cryphonectria parasitica, an infection matrix was completed with the cross-infection of six fungal isolates by six different viruses. Mycelial growth, asexual sporulation, and spore size were measured in the 36 combinations, for which horizontal and vertical transmission of the viruses was also assessed. As expected by life-history theory, a significant negative correlation was found between host somatic growth and asexual reproduction in virus-free isolates. Interestingly this trade-off was found to be positive in infected isolates, illustrating the profound changes in host resource allocation induced by CHV1 infection. A significant and positive relationship was also found in infected isolates between vertical transmission and somatic growth. This last relationship suggests that in this system, high levels of virulence could be detrimental to the vertical transmission of the parasite. Those results underscore the interest of studying host-parasite interaction within the life-history theory framework, which might permit a more accurate understanding of the nature of the modifications triggered by parasite infection on host biology.
Collapse
Affiliation(s)
- Jérémie Brusini
- Harbor Branch Oceanographic InstituteFlorida Atlantic UniversityFort PierceFLUSA
- BIOGECOINRAUniversity of BordeauxCestasFrance
- Department of BiologyUniversity of FloridaGainesvilleFLUSA
| | - Marta L. Wayne
- Department of BiologyUniversity of FloridaGainesvilleFLUSA
| | - Alain Franc
- BIOGECOINRAUniversity of BordeauxCestasFrance
| | | |
Collapse
|
7
|
Hily JM, Poulicard N, Mora MÁ, Pagán I, García-Arenal F. Environment and host genotype determine the outcome of a plant-virus interaction: from antagonism to mutualism. THE NEW PHYTOLOGIST 2016; 209:812-22. [PMID: 26365599 DOI: 10.1111/nph.13631] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 07/31/2015] [Indexed: 05/21/2023]
Abstract
It has been hypothesized that plant-virus interactions vary between antagonism and conditional mutualism according to environmental conditions. This hypothesis is based on scant experimental evidence, and to test it we examined the effect of abiotic factors on the Arabidopsis thaliana-Cucumber mosaic virus (CMV) interaction. Four Arabidopsis genotypes clustering into two allometric groups were grown under six environments defined by three temperature and two light-intensity conditions. Plants were either CMV-infected or mock-inoculated, and the effects of environment and infection on temporal and resource allocation life-history traits were quantified. Life-history traits significantly differed between allometric groups over all environments, with group 1 plants tolerating abiotic stress better than those of group 2. The effect of CMV infection on host fitness (virulence) differed between genotypes, being lower in group 1 genotypes. Tolerance to abiotic stress and to infection was similarly achieved through life-history trait responses, which resulted in resource reallocation from growth to reproduction. Effects of infection varied according to plant genotype and environment from detrimental to beneficial for host fitness. These results are highly relevant and demonstrate that plant viruses can be pleiotropic parasites along the antagonism-mutualism continuum, which should be considered in analyses of the evolution of plant-virus interactions.
Collapse
Affiliation(s)
- Jean-Michel Hily
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA) & Escuela Técnica Superior de Ingenieros (ETSI) Agrónomos, Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón (Madrid), 28223, Spain
| | - Nils Poulicard
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA) & Escuela Técnica Superior de Ingenieros (ETSI) Agrónomos, Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón (Madrid), 28223, Spain
| | - Miguel-Ángel Mora
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA) & Escuela Técnica Superior de Ingenieros (ETSI) Agrónomos, Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón (Madrid), 28223, Spain
| | - Israel Pagán
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA) & Escuela Técnica Superior de Ingenieros (ETSI) Agrónomos, Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón (Madrid), 28223, Spain
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA) & Escuela Técnica Superior de Ingenieros (ETSI) Agrónomos, Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón (Madrid), 28223, Spain
| |
Collapse
|