1
|
Prost-Boxoen L, Bafort Q, Van de Vloet A, Almeida-Silva F, Paing YT, Casteleyn G, D’hondt S, De Clerck O, de Peer YV. Asymmetric genome merging leads to gene expression novelty through nucleo-cytoplasmic disruptions and transcriptomic shock in Chlamydomonas triploids. THE NEW PHYTOLOGIST 2025; 245:869-884. [PMID: 39501615 PMCID: PMC7616817 DOI: 10.1111/nph.20249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/21/2024] [Indexed: 11/18/2024]
Abstract
Genome merging is a common phenomenon causing a wide range of consequences on phenotype, adaptation, and gene expression, yet its broader implications are not well-understood. Two consequences of genome merging on gene expression remain particularly poorly understood: dosage effects and evolution of expression. We employed Chlamydomonas reinhardtii as a model to investigate the effects of asymmetric genome merging by crossing a diploid with a haploid strain to create a novel triploid line. Five independent clonal lineages derived from this triploid line were evolved for 425 asexual generations in a laboratory natural selection experiment. Utilizing fitness assays, flow cytometry, and RNA-Seq, we assessed the immediate consequences of genome merging and subsequent evolution. Our findings reveal substantial alterations in genome size, gene expression, protein homeostasis, and cytonuclear stoichiometry. Gene expression exhibited expression-level dominance and transgressivity (i.e. expression level higher or lower than either parent). Ongoing expression-level dominance and a pattern of 'functional dominance' from the haploid parent was observed. Despite major genomic and nucleo-cytoplasmic disruptions, enhanced fitness was detected in the triploid strain. By comparing gene expression across generations, our results indicate that proteostasis restoration is a critical component of rapid adaptation following genome merging in Chlamydomonas reinhardtii and possibly other systems.
Collapse
Affiliation(s)
- Lucas Prost-Boxoen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, 9052Ghent, Belgium
- Department of Biology, Ghent University, Ghent, Belgium
| | - Quinten Bafort
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, 9052Ghent, Belgium
- Department of Biology, Ghent University, Ghent, Belgium
| | - Antoine Van de Vloet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, 9052Ghent, Belgium
| | - Fabricio Almeida-Silva
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, 9052Ghent, Belgium
| | - Yunn Thet Paing
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, 9052Ghent, Belgium
| | - Griet Casteleyn
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, 9052Ghent, Belgium
- Department of Biology, Ghent University, Ghent, Belgium
| | - Sofie D’hondt
- Department of Biology, Ghent University, Ghent, Belgium
| | | | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, 9052Ghent, Belgium
- Department of Biology, Ghent University, Ghent, Belgium
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria0028, South Africa
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
2
|
Aufiero G, Fruggiero C, D’Angelo D, D’Agostino N. Homoeologs in Allopolyploids: Navigating Redundancy as Both an Evolutionary Opportunity and a Technical Challenge-A Transcriptomics Perspective. Genes (Basel) 2024; 15:977. [PMID: 39202338 PMCID: PMC11353593 DOI: 10.3390/genes15080977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
Allopolyploidy in plants involves the merging of two or more distinct parental genomes into a single nucleus, a significant evolutionary process in the plant kingdom. Transcriptomic analysis provides invaluable insights into allopolyploid plants by elucidating the fate of duplicated genes, revealing evolutionary novelties and uncovering their environmental adaptations. By examining gene expression profiles, scientists can discern how duplicated genes have evolved to acquire new functions or regulatory roles. This process often leads to the development of novel traits and adaptive strategies that allopolyploid plants leverage to thrive in diverse ecological niches. Understanding these molecular mechanisms not only enhances our appreciation of the genetic complexity underlying allopolyploidy but also underscores their importance in agriculture and ecosystem resilience. However, transcriptome profiling is challenging due to genomic redundancy, which is further complicated by the presence of multiple chromosomes sets and the variations among homoeologs and allelic genes. Prior to transcriptome analysis, sub-genome phasing and homoeology inference are essential for obtaining a comprehensive view of gene expression. This review aims to clarify the terminology in this field, identify the most challenging aspects of transcriptome analysis, explain their inherent difficulties, and suggest reliable analytic strategies. Furthermore, bulk RNA-seq is highlighted as a primary method for studying allopolyploid gene expression, focusing on critical steps like read mapping and normalization in differential gene expression analysis. This approach effectively captures gene expression from both parental genomes, facilitating a comprehensive analysis of their combined profiles. Its sensitivity in detecting low-abundance transcripts allows for subtle differences between parental genomes to be identified, crucial for understanding regulatory dynamics and gene expression balance in allopolyploids.
Collapse
Affiliation(s)
| | | | | | - Nunzio D’Agostino
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (G.A.); (C.F.); (D.D.)
| |
Collapse
|
3
|
Banouh M, Armisen D, Bouguennec A, Huneau C, Sow MD, Pont C, Salse J, Civáň P. Low impact of polyploidization on the transcriptome of synthetic allohexaploid wheat. BMC Genomics 2023; 24:255. [PMID: 37170217 PMCID: PMC10173476 DOI: 10.1186/s12864-023-09324-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/20/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND Bread wheat is a recent allohexaploid (genomic constitution AABBDD) that emerged through a hybridization between tetraploid Triticum turgidum (AABB) and diploid Aegilops tauschii (DD) less than 10,000 years ago. The hexaploidization can be re-created artificially, producing synthetic wheat that has been used to study immediate genomic responses to polyploidization. The scale of the consequences of polyploidization, and their mechanism of establishment, remain uncertain. RESULTS Here we sampled several synthetic wheats from alternative parental genotypes and reciprocal crosses, and examined transcriptomes from two different tissues and successive generations. We did not detect any massive reprogramming in gene expression, with only around 1% of expressed genes showing significant differences compared to their lower-ploidy parents. Most of this differential expression is located on the D subgenome, without consistency in the direction of the expression change. Homoeolog expression bias in synthetic wheat is similar to the pattern observed in the parents. Both differential expression and homoeolog bias are tissue-specific. While up to three families of transposable elements became upregulated in wheat synthetics, their position and distance are not significantly associated with expression changes in proximal genes. DISCUSSION While only a few genes change their expression pattern after polyploidization, they can be involved in agronomically important pathways. Alternative parental combinations can lead to opposite changes on the same subset of D-located genes, which is relevant for harnessing new diversity in wheat breeding. Tissue specificity of the polyploidization-triggered expression changes indicates the remodelling of transcriptomes in synthetic wheat is plastic and likely caused by regulome interactions rather than permanent changes. We discuss the pitfalls of transcriptomic comparisons across ploidy levels that can inflate the de-regulation signal. CONCLUSIONS Transcriptomic response to polyploidization in synthetic AABBDD wheat is modest and much lower than some previous estimates. Homoeolog expression bias in wheat allohexaploids is mostly attributed to parental legacy, with polyploidy having a mild balancing effect.
Collapse
Grants
- PolyBléD Fonds de Soutien à l'Obtention Végétale
- SeedEX, SeedENCODE, MethylWheat Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement
- SeedEX, SeedENCODE, MethylWheat Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement
- SeedEX, SeedENCODE, MethylWheat Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement
- SeedEX, SeedENCODE, MethylWheat Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement
Collapse
Affiliation(s)
- Meriem Banouh
- INRAE/UCA UMR 1095, 5 Chemin de Beaulieu, Clermont Ferrand, 63100, France
| | - David Armisen
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR 5242, 46 allée d'Italie, Lyon, 69364, France
| | - Annaig Bouguennec
- INRAE/UCA UMR 1095, 5 Chemin de Beaulieu, Clermont Ferrand, 63100, France
| | - Cécile Huneau
- INRAE/UCA UMR 1095, 5 Chemin de Beaulieu, Clermont Ferrand, 63100, France
| | - Mamadou Dia Sow
- INRAE/UCA UMR 1095, 5 Chemin de Beaulieu, Clermont Ferrand, 63100, France
| | - Caroline Pont
- INRAE/UCA UMR 1095, 5 Chemin de Beaulieu, Clermont Ferrand, 63100, France
| | - Jérôme Salse
- INRAE/UCA UMR 1095, 5 Chemin de Beaulieu, Clermont Ferrand, 63100, France
| | - Peter Civáň
- INRAE/UCA UMR 1095, 5 Chemin de Beaulieu, Clermont Ferrand, 63100, France.
| |
Collapse
|
4
|
Dong Y, Hu G, Grover CE, Miller ER, Zhu S, Wendel JF. Parental legacy versus regulatory innovation in salt stress responsiveness of allopolyploid cotton (Gossypium) species. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:872-887. [PMID: 35686631 PMCID: PMC9540634 DOI: 10.1111/tpj.15863] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Polyploidy provides an opportunity for evolutionary innovation and species diversification, especially under stressful conditions. In allopolyploids, the conditional dynamics of homoeologous gene expression can be either inherited from ancestral states pre-existing in the parental diploids or novel upon polyploidization, the latter potentially permitting a wider range of phenotypic responses to stresses. To gain insight into regulatory mechanisms underlying the diversity of salt resistance in Gossypium species, we compared global transcriptomic responses to modest salinity stress in two allotetraploid (AD-genome) cotton species, Gossypium hirsutum and G. mustelinum, relative to their model diploid progenitors (A-genome and D-genome). Multivariate and pairwise analyses of salt-responsive changes revealed a profound alteration of gene expression for about one third of the transcriptome. Transcriptional responses and associated functional implications of salt acclimation varied across species, as did species-specific coexpression modules among species and ploidy levels. Salt responsiveness in both allopolyploids was strongly biased toward the D-genome progenitor. A much lower level of transgressive downregulation was observed in the more salt-tolerant G. mustelinum than in the less tolerant G. hirsutum. By disentangling inherited effects from evolved responses, we show that expression biases that are not conditional upon salt stress approximately equally reflect parental legacy and regulatory novelty upon allopolyploidization, whereas stress-responsive biases are predominantly novel, or evolved, in allopolyploids. Overall, our work suggests that allopolyploid cottons acquired a wide range of stress response flexibility relative to their diploid ancestors, most likely mediated by complex suites of duplicated genes and regulatory factors.
Collapse
Affiliation(s)
- Yating Dong
- Department of AgronomyZhejiang UniversityHangzhouZhejiang310 053China
- Department of Ecology, Evolution, and Organismal Biology (EEOB), Bessey HallIowa State UniversityAmesIA50011USA
| | - Guanjing Hu
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research, Chinese Academy of Agricultural SciencesAnyang455 000China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural AffairsAgricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhen518 120China
| | - Corrinne E. Grover
- Department of Ecology, Evolution, and Organismal Biology (EEOB), Bessey HallIowa State UniversityAmesIA50011USA
| | - Emma R. Miller
- Department of Ecology, Evolution, and Organismal Biology (EEOB), Bessey HallIowa State UniversityAmesIA50011USA
| | - Shuijin Zhu
- Department of AgronomyZhejiang UniversityHangzhouZhejiang310 053China
| | - Jonathan F. Wendel
- Department of Ecology, Evolution, and Organismal Biology (EEOB), Bessey HallIowa State UniversityAmesIA50011USA
| |
Collapse
|
5
|
He F, Wang W, Rutter WB, Jordan KW, Ren J, Taagen E, DeWitt N, Sehgal D, Sukumaran S, Dreisigacker S, Reynolds M, Halder J, Sehgal SK, Liu S, Chen J, Fritz A, Cook J, Brown-Guedira G, Pumphrey M, Carter A, Sorrells M, Dubcovsky J, Hayden MJ, Akhunova A, Morrell PL, Szabo L, Rouse M, Akhunov E. Genomic variants affecting homoeologous gene expression dosage contribute to agronomic trait variation in allopolyploid wheat. Nat Commun 2022; 13:826. [PMID: 35149708 PMCID: PMC8837796 DOI: 10.1038/s41467-022-28453-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 01/26/2022] [Indexed: 12/23/2022] Open
Abstract
Allopolyploidy greatly expands the range of possible regulatory interactions among functionally redundant homoeologous genes. However, connection between the emerging regulatory complexity and expression and phenotypic diversity in polyploid crops remains elusive. Here, we use diverse wheat accessions to map expression quantitative trait loci (eQTL) and evaluate their effects on the population-scale variation in homoeolog expression dosage. The relative contribution of cis- and trans-eQTL to homoeolog expression variation is strongly affected by both selection and demographic events. Though trans-acting effects play major role in expression regulation, the expression dosage of homoeologs is largely influenced by cis-acting variants, which appear to be subjected to selection. The frequency and expression of homoeologous gene alleles showing strong expression dosage bias are predictive of variation in yield-related traits, and have likely been impacted by breeding for increased productivity. Our study highlights the importance of genomic variants affecting homoeolog expression dosage in shaping agronomic phenotypes and points at their potential utility for improving yield in polyploid crops.
Collapse
Affiliation(s)
- Fei He
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA.,State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Wei Wang
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA.,Wheat Genetic Resources Center, Kansas State University, Manhattan, KS, USA
| | - William B Rutter
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA.,USDA-ARS, U.S. Vegetable Laboratory, Charleston, SC, USA
| | - Katherine W Jordan
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA.,USDA-ARS, Hard Winter Wheat Genetics Research Unit, Manhattan, KS, USA
| | - Jie Ren
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA.,Integrated Genomics Facility, Kansas State University, Manhattan, KS, USA
| | - Ellie Taagen
- School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Noah DeWitt
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, USA.,USDA-ARS SAA, Plant Science Research, Raleigh, NC, USA
| | - Deepmala Sehgal
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | | | | | - Matthew Reynolds
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Jyotirmoy Halder
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, USA
| | - Sunish Kumar Sehgal
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, USA
| | - Shuyu Liu
- Texas A&M AgriLife Research, Amarillo, TX, USA
| | - Jianli Chen
- Department of Plant Sciences, University of Idaho, Aberdeen, ID, USA
| | - Allan Fritz
- Department of Agronomy, Kansas State University, Manhattan, KS, USA
| | - Jason Cook
- Department of Plant Sciences & Plant Pathology, Montana State University, Bozeman, MT, USA
| | - Gina Brown-Guedira
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, USA.,USDA-ARS SAA, Plant Science Research, Raleigh, NC, USA
| | - Mike Pumphrey
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA
| | - Arron Carter
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA
| | - Mark Sorrells
- School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Matthew J Hayden
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia.,Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
| | - Alina Akhunova
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA.,Integrated Genomics Facility, Kansas State University, Manhattan, KS, USA
| | - Peter L Morrell
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, USA
| | - Les Szabo
- USDA-ARS Cereal Disease Lab, St. Paul, MN, USA
| | | | - Eduard Akhunov
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA. .,Wheat Genetic Resources Center, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
6
|
Lu FH, McKenzie N, Gardiner LJ, Luo MC, Hall A, Bevan MW. Reduced chromatin accessibility underlies gene expression differences in homologous chromosome arms of diploid Aegilops tauschii and hexaploid wheat. Gigascience 2020; 9:5860314. [PMID: 32562491 PMCID: PMC7305686 DOI: 10.1093/gigascience/giaa070] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/17/2020] [Accepted: 06/02/2020] [Indexed: 12/18/2022] Open
Abstract
Background Polyploidy is centrally important in the evolution and domestication of plants because it leads to major genomic changes, such as altered patterns of gene expression, which are thought to underlie the emergence of new traits. Despite the common occurrence of these globally altered patterns of gene expression in polyploids, the mechanisms involved are not well understood. Results Using a precisely defined framework of highly conserved syntenic genes on hexaploid wheat chromosome 3DL and its progenitor 3 L chromosome arm of diploid Aegilops tauschii, we show that 70% of these gene pairs exhibited proportionately reduced gene expression, in which expression in the hexaploid context of the 3DL genes was ∼40% of the levels observed in diploid Ae tauschii. Several genes showed elevated expression during the later stages of grain development in wheat compared with Ae tauschii. Gene sequence and methylation differences probably accounted for only a few cases of differences in gene expression. In contrast, chromosome-wide patterns of reduced chromatin accessibility of genes in the hexaploid chromosome arm compared with its diploid progenitor were correlated with both reduced gene expression and the imposition of new patterns of gene expression. Conclusions Our pilot-scale analyses show that chromatin compaction may orchestrate reduced gene expression levels in the hexaploid chromosome arm of wheat compared to its diploid progenitor chromosome arm.
Collapse
Affiliation(s)
- Fu-Hao Lu
- Department Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Neil McKenzie
- Department Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Laura-Jayne Gardiner
- Earlham Institute, Norwich Research Park, Norwich Research Park, Norwich NR4 7UZ, UK
| | - Ming-Cheng Luo
- Department of Plant Sciences, University of California, 1 Shields Avenue, Davis, CA 95616, USA
| | - Anthony Hall
- Earlham Institute, Norwich Research Park, Norwich Research Park, Norwich NR4 7UZ, UK
| | - Michael W Bevan
- Correspondence address. Michael W Bevan, Department Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK. E-mail:
| |
Collapse
|
7
|
Glombik M, Bačovský V, Hobza R, Kopecký D. Competition of Parental Genomes in Plant Hybrids. FRONTIERS IN PLANT SCIENCE 2020; 11:200. [PMID: 32158461 PMCID: PMC7052263 DOI: 10.3389/fpls.2020.00200] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/11/2020] [Indexed: 05/17/2023]
Abstract
Interspecific hybridization represents one of the main mechanisms of plant speciation. Merging of two genomes from different subspecies, species, or even genera is frequently accompanied by whole-genome duplication (WGD). Besides its evolutionary role, interspecific hybridization has also been successfully implemented in multiple breeding programs. Interspecific hybrids combine agronomic traits of two crop species or can be used to introgress specific loci of interests, such as those for resistance against abiotic or biotic stresses. The genomes of newly established interspecific hybrids (both allopolyploids and homoploids) undergo dramatic changes, including chromosome rearrangements, amplifications of tandem repeats, activation of mobile repetitive elements, and gene expression modifications. To ensure genome stability and proper transmission of chromosomes from both parental genomes into subsequent generations, allopolyploids often evolve mechanisms regulating chromosome pairing. Such regulatory systems allow only pairing of homologous chromosomes and hamper pairing of homoeologs. Despite such regulatory systems, several hybrid examples with frequent homoeologous chromosome pairing have been reported. These reports open a way for the replacement of one parental genome by the other. In this review, we provide an overview of the current knowledge of genomic changes in interspecific homoploid and allopolyploid hybrids, with strictly homologous pairing and with relaxed pairing of homoeologs.
Collapse
Affiliation(s)
- Marek Glombik
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - Václav Bačovský
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
| | - Roman Hobza
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czechia
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
| | - David Kopecký
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czechia
| |
Collapse
|
8
|
Hu G, Wendel JF. Cis-trans controls and regulatory novelty accompanying allopolyploidization. THE NEW PHYTOLOGIST 2019; 221:1691-1700. [PMID: 30290011 DOI: 10.1111/nph.15515] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/30/2018] [Indexed: 05/20/2023]
Abstract
Allopolyploidy is a prevalent process in plants, having important physiological, ecological and evolutionary consequences. Transcriptomic responses to genomic merger and doubling have been demonstrated in many allopolyploid systems, encompassing a diversity of phenomena including homoeolog expression bias, genome dominance, expression-level dominance and revamping of co-expression networks. Notwithstanding the foregoing, there remains a need to develop a conceptual framework that will stimulate a deeper understanding of these diverse phenomena and their mechanistic interrelationships. Here we introduce considerations relevant to this framework with a focus on cis-trans interactions among duplicated genes and alleles in hybrids and allopolyploids. By extending classic allele-specific expression analysis to the allopolyploid level, we distinguish the distinct effects of progenitor regulatory interactions from the novel intergenomic interactions that arise from genome merger and allopolyploidization. This perspective informs experiments designed to reveal the molecular genetic basis of gene regulatory control, and will facilitate the disentangling of genetic from epigenetic and higher-order effects that impact gene expression. Finally, we suggest that the extended cis-trans model may help conceptually unify several presently disparate hallmarks of allopolyploid evolution, including genome-wide expression dominance and biased fractionation, and lead to a new level of understanding of phenotypic novelty accompanying polyploidy.
Collapse
Affiliation(s)
- Guanjing Hu
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - Jonathan F Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
9
|
A Genome-wide View of Transcriptome Dynamics During Early Spike Development in Bread Wheat. Sci Rep 2018; 8:15338. [PMID: 30337587 PMCID: PMC6194122 DOI: 10.1038/s41598-018-33718-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 10/03/2018] [Indexed: 11/08/2022] Open
Abstract
Wheat spike development is a coordinated process of cell proliferation and differentiation with distinctive phases and architecture changes. However, the dynamic alteration of gene expression in this process remains enigmatic. Here, we characterized and dissected bread wheat spike into six developmental stages, and used genome-wide gene expression profiling, to investigate the underlying regulatory mechanisms. High gene expression correlations between any two given stages indicated that wheat early spike development is controlled by a small subset of genes. Throughout, auxin signaling increased, while cytokinin signaling decreased. Besides, many genes associated with stress responses highly expressed during the double ridge stage. Among the differentially expressed genes (DEGs), were identified 375 transcription factor (TF) genes, of which some homologs in rice or Arabidopsis are proposed to function in meristem maintenance, flowering time, meristem initiation or transition, floral organ development or response to stress. Gene expression profiling demonstrated that these genes had either similar or distinct expression pattern in wheat. Several genes regulating spike development were expressed in the early spike, of which Earliness per se 3 (Eps-3) was found might function in the initiation of spikelet meristem. Our study helps uncover important genes associated with apical meristem morphology and development in wheat.
Collapse
|
10
|
Zhang M, Liu XK, Fan W, Yan DF, Zhong NS, Gao JY, Zhang WJ. Transcriptome analysis reveals hybridization-induced genome shock in an interspecific F 1 hybrid from Camellia. Genome 2018; 61:477-485. [PMID: 29718690 DOI: 10.1139/gen-2017-0105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The combination of two divergent genomes during hybridization can result in "genome shock". Although genome shock has been reported in the hybrids of some herbaceous plants, the pattern and the principle it follows are far from understood, especially in woody plants. Here, the gene expression patterns were remodeled in the F1 hybrid from the crossing of Camellia azalea × Camellia amplexicaulis compared with the parents as revealed by RNA-seq. About 54.5% of all unigenes were differentially expressed between the F1 hybrid and at least one of the parents, including 6404 unigenes with the highest expression level in the F1 hybrid. A series of genes, related to flower development, essential for RNA-directed DNA methylation and histone methylation, as well as 223 transposable elements, were enriched; and most of them exhibited a higher level of expression in the F1 hybrid. These results indicated that the genome shock induced by interspecific hybridization in Camellia could indeed result in changes of gene expression patterns, potentially through regulating DNA methylation and histone methylation which may be helpful for the maintaining of genome stability and even related to the unique phenotype of the F1 hybrid.
Collapse
Affiliation(s)
- Min Zhang
- a Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xin-Kai Liu
- b Palm Eco-Town Development Co., Ltd., Guangzhou, Guangdong 510627, China
| | - Wen Fan
- a Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Dan-Feng Yan
- b Palm Eco-Town Development Co., Ltd., Guangzhou, Guangdong 510627, China
| | - Nai-Sheng Zhong
- b Palm Eco-Town Development Co., Ltd., Guangzhou, Guangdong 510627, China
| | - Ji-Yin Gao
- b Palm Eco-Town Development Co., Ltd., Guangzhou, Guangdong 510627, China.,c Research Institute of Subtropical Forest, Chinese Academy of Forestry, Fuyang, Zhejiang 311400, China
| | - Wen-Ju Zhang
- a Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
11
|
Hao M, Li A, Shi T, Luo J, Zhang L, Zhang X, Ning S, Yuan Z, Zeng D, Kong X, Li X, Zheng H, Lan X, Zhang H, Zheng Y, Mao L, Liu D. The abundance of homoeologue transcripts is disrupted by hybridization and is partially restored by genome doubling in synthetic hexaploid wheat. BMC Genomics 2017; 18:149. [PMID: 28187716 PMCID: PMC5303294 DOI: 10.1186/s12864-017-3558-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 02/07/2017] [Indexed: 11/10/2022] Open
Abstract
Background The formation of an allopolyploid is a two step process, comprising an initial wide hybridization event, which is later followed by a whole genome doubling. Both processes can affect the transcription of homoeologues. Here, RNA-Seq was used to obtain the genome-wide leaf transcriptome of two independent Triticum turgidum × Aegilops tauschii allotriploids (F1), along with their spontaneous allohexaploids (S1) and their parental lines. The resulting sequence data were then used to characterize variation in homoeologue transcript abundance. Results The hybridization event strongly down-regulated D-subgenome homoeologues, but this effect was in many cases reversed by whole genome doubling. The suppression of D-subgenome homoeologue transcription resulted in a marked frequency of parental transcription level dominance, especially with respect to genes encoding proteins involved in photosynthesis. Singletons (genes where no homoeologues were present) were frequently transcribed at both the allotriploid and allohexaploid plants. Conclusions The implication is that whole genome doubling helps to overcome the phenotypic weakness of the allotriploid, restoring a more favourable gene dosage in genes experiencing transcription level dominance in hexaploid wheat. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3558-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ming Hao
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Aili Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tongwei Shi
- Biomarker Technologies Corporation, Beijing, 101300, China
| | - Jiangtao Luo
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Lianquan Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xuechuan Zhang
- Biomarker Technologies Corporation, Beijing, 101300, China
| | - Shunzong Ning
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Zhongwei Yuan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Deying Zeng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xingchen Kong
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xiaolong Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Hongkun Zheng
- Biomarker Technologies Corporation, Beijing, 101300, China
| | - Xiujin Lan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Huaigang Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, China
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Long Mao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Dengcai Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China. .,Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, China.
| |
Collapse
|
12
|
Li X, Shahid MQ, Xia J, Lu Z, Fang N, Wang L, Wu J, Chen Z, Liu X. Analysis of small RNAs revealed differential expressions during pollen and embryo sac development in autotetraploid rice. BMC Genomics 2017; 18:129. [PMID: 28166742 PMCID: PMC5295217 DOI: 10.1186/s12864-017-3526-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/28/2017] [Indexed: 12/12/2022] Open
Abstract
Background Partial pollen and embryo sac sterilities are the two main reasons for low fertility in autotetraploid rice. Our previous study revealed that small RNAs changes may associate with pollen fertility in autotetraploid rice. However, knowledge on comparative analysis between the development of pollen and embryo sac by small RNAs in autotetraploid rice is still unknown. In the present study, WE-CLSM (whole-mount eosin B-staining confocal laser scanning microscopy) and high-throughput sequencing technology was employed to examine the cytological variations and to analyze small RNAs changes during pollen and embryo sac development in autotetraploid rice compared with its diploid counterpart. Results A total of 321 and 368 differentially expressed miRNAs (DEM) were detected during pollen and embryo sac development in autotetraploid rice, respectively. Gene Ontology enrichment analysis on the targets of DEM associated with embryo sac and pollen development revealed 30 prominent functional gene classes, such as cell differentiation and signal transduction during embryo sac development, while only 7 prominent functional gene classes, such as flower development and transcription factor activity, were detected during pollen development in autotetraploid rice. The expression levels of 39 DEM, which revealed interaction with meiosis-related genes, showed opposite expression patterns during pollen and embryo sac development. Of these DEM, osa-miR1436_L + 3_1ss5CT and osa-miR167h-3p were associated with the female meiosis, while osa-miR159a.1 and osa-MIR159a-p5 were related with the male meiosis. 21 nt-phasiRNAs were detected during both pollen and embryo sac development, while 24 nt-phasiRNAs were found only in pollen development, which displayed down-regulation in autotetraploid compared to diploid rice and their spatial-temporal expression patterns were similar to osa-miR2275d. 24 nt TEs-siRNAs were found to be up-regulated in embryo sac but down-regulated in pollen development. Conclusion The above results not only provide the small RNAs changes during four landmark stages of pollen and embryo sac development in autotetraploid rice but also have identified specifically expressed miRNAs, especially meiosis-related miRNAs, pollen-specific-24 nt-phasiRNAs and TEs-siRNAs in autotetraploid rice. Together, these findings provide a foundation for understanding the effect of polyploidy on small RNAs expression patterns during pollen and embryo sac development that may lead to different abnormalities in autotetraploid rice. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3526-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiang Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Juan Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Zijun Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Na Fang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Lan Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Jinwen Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Zhixiong Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Xiangdong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
13
|
Correlation analysis of the mRNA and miRNA expression profiles in the nascent synthetic allotetraploid Raphanobrassica. Sci Rep 2016; 6:37416. [PMID: 27874043 PMCID: PMC5118723 DOI: 10.1038/srep37416] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 10/27/2016] [Indexed: 11/08/2022] Open
Abstract
Raphanobrassica is an allopolyploid species derived from inter-generic hybridization that combines the R genome from R. sativus and the C genome from B. oleracea var. alboglabra. In the present study, we used a high-throughput sequencing method to identify the mRNA and miRNA profiles in Raphanobrassica and its parents. A total of 33,561 mRNAs and 283 miRNAs were detected, 9,209 mRNAs and 134 miRNAs were differentially expressed respectively, 7,633 mRNAs and 39 miRNAs showed ELD expression, 5,219 mRNAs and 57 miRNAs were non-additively expressed in Raphanobrassica. Remarkably, differentially expressed genes (DEGs) were up-regulated and maternal bias was detected in Raphanobrassica. In addition, a miRNA-mRNA interaction network was constructed based on reverse regulated miRNA-mRNAs, which included 75 miRNAs and 178 mRNAs, 31 miRNAs were non-additively expressed target by 13 miRNAs. The related target genes were significantly enriched in the GO term 'metabolic processes'. Non-additive related target genes regulation is involved in a range of biological pathways, like providing a driving force for variation and adaption in this allopolyploid. The integrative analysis of mRNA and miRNA profiling provides more information to elucidate gene expression mechanism and may supply a comprehensive and corresponding method to study genetic and transcription variation of allopolyploid.
Collapse
|
14
|
Transcriptome shock invokes disruption of parental expression-conserved genes in tetraploid wheat. Sci Rep 2016; 6:26363. [PMID: 27198893 PMCID: PMC4873831 DOI: 10.1038/srep26363] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/27/2016] [Indexed: 11/08/2022] Open
Abstract
Allopolyploidy often triggers phenotypic novelty and gene expression remolding in the resulting polyploids. In this study, we employed multiple phenotypic and genetic approaches to investigate the nature and consequences of allotetraploidization between A- and S-subgenome of tetraploid wheat. Results showed that karyotype of the nascent allopolyploid plants (AT2) is stable but they showed clear novelty in multiple morphological traits which might have positively contributed to the initial establishment of the tetraploids. Further microarray-based transcriptome profiling and gene-specific cDNA-pyrosequencing have documented that transcriptome shock was exceptionally strong in AT2, but a substantial proportion of the induced expression changes was rapidly stabilized in early generations. Meanwhile, both additive and nonadditive expression genes showed extensive homeolog expression remodeling and which have led to the subgenome expression dominance in leaf and young inflorescence of AT2. Through comparing the homeolog-expressing patterns between synthetic and natural tetraploid wheats, it appears that the shock-induced expression changes at both the total expression level and subgenome homeolog partitioning are evolutionarily persistent. Together, our study shed new light on how gene expression changes have rapidly occurred at the initial stage following allotetraploidization, as well as their evolutionary relevance, which may have implications for wheat improvements.
Collapse
|
15
|
Wang X, Zhang H, Li Y, Zhang Z, Li L, Liu B. Transcriptome asymmetry in synthetic and natural allotetraploid wheats, revealed by RNA-sequencing. THE NEW PHYTOLOGIST 2016; 209:1264-77. [PMID: 26436593 DOI: 10.1111/nph.13678] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/20/2015] [Indexed: 05/20/2023]
Abstract
Allopolyploidization has occurred frequently within the Triticum-Aegilops complex which provides a suitable system to investigate how allopolyploidization shapes the expression patterns of duplicated homeologs. We have conducted transcriptome-profiling of leaves and young inflorescences in wild and domesticated tetraploid wheats, Triticum turgidum ssp. dicoccoides (BBAA) and ssp. durum (BBAA), an extracted tetraploid (BBAA), and a synthetic tetraploid (S(l) S(l) AA) wheat together with its diploid parents, Aegilops longissima (S(l) S(l) ) and Triticum urartu (AA). The two diploid species showed tissue-specific differences in genome-wide ortholog expression, which plays an important role in transcriptome shock-mediated homeolog expression rewiring and hence transcriptome asymmetry in the synthetic tetraploid. Further changes of homeolog expression apparently occurred in natural tetraploid wheats, which led to novel transcriptome asymmetry between the two subgenomes. In particular, our results showed that extremely biased homeolog expression can occur rapidly upon the allotetraploidzation and this trend is further enhanced in the course of domestication and evolution of polyploid wheats. Our results suggest that allopolyploidization is accompanied by distinct phases of homeolog expression changes, with parental legacy playing major roles in the immediate rewiring of homeolog expression upon allopolyploidization, while evolution and domestication under allotetraploidy drive further homeolog-expression changes toward re-established subgenome expression asymmetry.
Collapse
Affiliation(s)
- Xutong Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Huakun Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Yaling Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Zhibin Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Linfeng Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
- Department of Biology, Washington University in St Louis, St Louis, MO, 63130, USA
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
16
|
Fu D, Mason AS, Xiao M, Yan H. Effects of genome structure variation, homeologous genes and repetitive DNA on polyploid crop research in the age of genomics. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 242:37-46. [PMID: 26566823 DOI: 10.1016/j.plantsci.2015.09.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 09/10/2015] [Accepted: 09/22/2015] [Indexed: 06/05/2023]
Abstract
Compared to diploid species, allopolyploid crop species possess more complex genomes, higher productivity, and greater adaptability to changing environments. Next generation sequencing techniques have produced high-density genetic maps, whole genome sequences, transcriptomes and epigenomes for important polyploid crops. However, several problems interfere with the full application of next generation sequencing techniques to these crops. Firstly, different types of genomic variation affect sequence assembly and QTL mapping. Secondly, duplicated or homoeologous genes can diverge in function and then lead to emergence of many minor QTL, which increases difficulties in fine mapping, cloning and marker assisted selection. Thirdly, repetitive DNA sequences arising in polyploid crop genomes also impact sequence assembly, and are increasingly being shown to produce small RNAs to regulate gene expression and hence phenotypic traits. We propose that these three key features should be considered together when analyzing polyploid crop genomes. It is apparent that dissection of genomic structural variation, elucidation of the function and mechanism of interaction of homoeologous genes, and investigation of the de novo roles of repeat sequences in agronomic traits are necessary for genomics-based crop breeding in polyploids.
Collapse
Affiliation(s)
- Donghui Fu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Annaliese S Mason
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Meili Xiao
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang 330045, China
| | - Hui Yan
- Key Laboratory of Poyang Lake Basin Agricultural Resources and Ecology of Jiangxi Province, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
17
|
Zhang D, Pan Q, Tan C, Zhu B, Ge X, Shao Y, Li Z. Genome-Wide Gene Expressions Respond Differently to A-subgenome Origins in Brassica napus Synthetic Hybrids and Natural Allotetraploid. FRONTIERS IN PLANT SCIENCE 2016; 7:1508. [PMID: 27790227 PMCID: PMC5061818 DOI: 10.3389/fpls.2016.01508] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/22/2016] [Indexed: 05/02/2023]
Abstract
The young allotetraploid Brassica napus (2n = 38, AACC) is one of models to study genomic responses to allopolyploidization. The extraction of AA component from natural B. napus and then restitution of progenitor B. rapa should provide a unique opportunity to reveal the genome interplay for gene expressions during the evolution. Herein, B. napus hybrids (2n = 19, AC) between the extracted and extant B. rapa (2n = 20, AA) and the same B. oleracea genotype (2n = 18, CC) were studied by RNA-seq and compared with natural B. napus donor, to reveal the gene expression changes from hybridization and domestication and the effects of A genome with different origins. Upon the initial merger of two diploid genomes, additive gene expression was prevalent in these two hybrids, for non-additively expressed genes only represented a small portion of total expressed genes. A high proportion of genes exhibited expression level dominance, with no preference to either of the parental genomes. Comparison of homoeolog expressions also showed no bias toward any genomes and the parental expression patterns were often maintained in the hybrids and natural allotetraploids. Although, the overall patterns of gene expression were highly conserved between two hybrids, the extracted B. rapa responded less and appeared more compatible for hybridization than the extant B. rapa. Our results suggested that expression level dominance and homoeolog expressions bias were balanced at the initial stage of genome merger, and such balance were largely maintained during the domestication of B. napus, despite the increased extent over time.
Collapse
Affiliation(s)
- Dawei Zhang
- National Key Lab of Crop Genetic Improvement, National Center of Crop Molecular Breeding Technology, National Center of Oil Crop Improvement, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
- Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal-Polluted Soils, College of Life Science, Hunan University of Science and TechnologyXiangtan, China
| | - Qi Pan
- National Key Lab of Crop Genetic Improvement, National Center of Crop Molecular Breeding Technology, National Center of Oil Crop Improvement, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Chen Tan
- National Key Lab of Crop Genetic Improvement, National Center of Crop Molecular Breeding Technology, National Center of Oil Crop Improvement, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Bin Zhu
- National Key Lab of Crop Genetic Improvement, National Center of Crop Molecular Breeding Technology, National Center of Oil Crop Improvement, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Xianhong Ge
- National Key Lab of Crop Genetic Improvement, National Center of Crop Molecular Breeding Technology, National Center of Oil Crop Improvement, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Yujiao Shao
- College of Chemistry and Life Science, Hubei University of EducationWuhan, China
- *Correspondence: Yujiao Shao
| | - Zaiyun Li
- National Key Lab of Crop Genetic Improvement, National Center of Crop Molecular Breeding Technology, National Center of Oil Crop Improvement, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
- Zaiyun Li
| |
Collapse
|
18
|
Cheng S, Yang J, Liao T, Zhu X, Suo Y, Zhang P, Wang J, Kang X. Transcriptomic changes following synthesis of a Populus full-sib diploid and allotriploid population with different heterozygosities driven by three types of 2n female gamete. PLANT MOLECULAR BIOLOGY 2015; 89:493-510. [PMID: 26419948 DOI: 10.1007/s11103-015-0384-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 09/20/2015] [Indexed: 06/05/2023]
Abstract
Diploid gametes are usually applied to produce triploids of Populus [originating from first-division restitution (FDR), second-division restitution (SDR), and postmeiotic restitution (PMR) 2n eggs]. Three types of 2n gametes transmitted different parental heterozygosities in Populus. Failed spindle formation and no chromosomal separation to opposite poles during meiosis I mean that FDR 2n gametes carry nonsister chromatids that are potentially heterozygous. By contrast, SDR 2n gametes result from failed sister chromatid separation in meiosis II, and therefore, they carry sister chromatid that are potentially homozygous. Completely homozygous 2n gametes can arise from the PMR mechanism. The alteration of gene expression resulting from allopolyploidization is a prominent feature in plants. We compared gene expression in the full-sib progeny of three allotriploid Populus populations (triploid-F, triploid-S, and triploid-P) with that in its parent species, and their full-sib diploid F1 hybrid. Genome-wide expression level dominance was biased toward the maternal in the diploid F1 hybrid and three allotriploid populations, whereas our data indicated important, but different, effects of the transmission of different heterozygosity by 2n female gametes in the expression patterns of allopolyploids. Because of the higher level of heterozygosity, the triploids had higher rates of non-additive and transgressive expression patterns in the triploid-F than in triploid-S and triploid-P. Compared with diploid F1, about 30-fold more genes (251) were differently expressed in the triploid-F than in the triploid-S (9) and triploid-P (8), respectively. These findings indicate that hybridization and polyploidization have immediate and distinct effects on the large-scale patterns of gene expression, and different effects on the transmission of heterozygosity by three 2n female gametes.
Collapse
Affiliation(s)
- Shiping Cheng
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
- Pingdingshan University, Pingdingshan, 467000, Henan Province, People's Republic of China
| | - Jun Yang
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
| | - Ting Liao
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
| | - Xiaohu Zhu
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
- College of Forestry and Horticulture, Xinjiang Agricultural University, No. 311, East Nongda Road, Urumqi, 830052, People's Republic of China
| | - Yujing Suo
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
| | - Pingdong Zhang
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
| | - Jun Wang
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
| | - Xiangyang Kang
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China.
| |
Collapse
|
19
|
Jung Y, Kawaura K, Kishii M, Sakuma S, Ogihara Y. Comparison of genome-wide gene expression patterns in the seedlings of nascent allohexaploid wheats produced by two combinations of hybrids. Genes Genet Syst 2015; 90:79-88. [PMID: 26399767 DOI: 10.1266/ggs.90.79] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Allopolyploidization in plants is an important event that enhances heterosis and environmental adaptation. Common wheat, Triticum aestivum (AABBDD), which is an allohexaploid that evolved from an allopolyploidization event between T. turgidum (AABB) and Aegilops tauschii (DD), shows more growth vigor and wider adaptation than tetraploid wheats. To better understand the molecular basis for the heterosis of hexaploid wheat, we systematically analyzed the genome-wide gene expression patterns of two combinations of newly hybridized triploids (ABD), their chromosome-doubled hexaploids (AABBDD), stable synthetic hexaploids (AABBDD) and natural hexaploids, in addition to their parents, T. turgidum (AABB) and Ae. tauschii (DD), using a microarray to reconstruct the events of allopolyploidization and genome stabilization. Overall comparisons of gene expression profiles showed that the newly generated hexaploids exhibited gene expression patterns similar to those of their maternal tetraploids, irrespective of hybrid combination. With successive generations, the gene expression profiles of nascent hexaploids became less similar to the maternal profiles, and belonged to a separate cluster from the natural hexaploids. Triploids revealed characteristic expression patterns, suggesting endosperm effects. In the newly hybridized triploids (ABD) of two independent synthetic lines, approximately one-fifth of expressed genes displayed non-additive expression; the number of these genes decreased with polyploidization and genome stabilization. Approximately 20% of the non-additively expressed genes were transmitted across generations throughout allopolyploidization and successive self-pollinations, and 43 genes overlapped between the two combinations, indicating that shared gene expression patterns can be seen during allohexaploidization. Furthermore, four of these 43 genes were involved in starch and sucrose metabolism, suggesting that these metabolic events play key roles in the hybrid vigor of hexaploid wheat.
Collapse
Affiliation(s)
- Yeonju Jung
- Department of Life and Environmental System Science, Kihara Institute for Biological Research, Yokohama City University
| | | | | | | | | |
Collapse
|
20
|
Li AL, Geng SF, Zhang LQ, Liu DC, Mao L. Making the Bread: Insights from Newly Synthesized Allohexaploid Wheat. MOLECULAR PLANT 2015; 8:847-59. [PMID: 25747845 DOI: 10.1016/j.molp.2015.02.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 02/13/2015] [Accepted: 02/25/2015] [Indexed: 05/27/2023]
Abstract
Bread wheat (or common wheat, Triticum aestivum) is an allohexaploid (AABBDD, 2n = 6x = 42) that arose by hybridization between a cultivated tetraploid wheat T. turgidum (AABB, 2n = 4x = 28) and the wild goatgrass Aegilops tauschii (DD, 2n = 2x = 14). Polyploidization provided niches for rigorous genome modification at cytogenetic, genetic, and epigenetic levels, rendering a broader spread than its progenitors. This review summarizes the latest advances in understanding gene regulation mechanisms in newly synthesized allohexaploid wheat and possible correlation with polyploid growth vigor and adaptation. Cytogenetic studies reveal persistent association of whole-chromosome aneuploidy with nascent allopolyploids, in contrast to the genetic stability in common wheat. Transcriptome analysis of the euploid wheat shows that small RNAs are driving forces for homoeo-allele expression regulation via genetic and epigenetic mechanisms. The ensuing non-additively expressed genes and those with expression level dominance to the respective progenitor may play distinct functions in growth vigor and adaptation in nascent allohexaploid wheat. Further genetic diploidization of allohexaploid wheat is not random. Regional asymmetrical gene distribution, rather than subgenome dominance, is observed in both synthetic and natural allohexaploid wheats. The combinatorial effects of diverged genomes, subsequent selection of specific gene categories, and subgenome-specific traits are essential for the successful establishment of common wheat.
Collapse
Affiliation(s)
- Ai-li Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shuai-Feng Geng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lian-quan Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Deng-cai Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Long Mao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
21
|
Gene-expression novelty in allopolyploid cotton: a proteomic perspective. Genetics 2015; 200:91-104. [PMID: 25735302 DOI: 10.1534/genetics.115.174367] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 02/28/2015] [Indexed: 01/20/2023] Open
Abstract
Allopolyploidization is accompanied by changes in gene expression that are thought to contribute to phenotypic diversification. Here we describe global changes in the single-celled cotton fiber proteome of two natural allopolyploid species (Gossypium hirsutum and G. barbadense) and living models of their diploid parents using two different proteomic approaches. In total, 1323 two-dimensional gel electrophoresis spots and 1652 identified proteins by isobaric tags for relative and absolute quantitation were quantitatively profiled during fiber elongation. Between allopolyploids and their diploid A- and D-genome progenitors, amounts of differential expression ranged from 4.4 to 12.8%. Over 80% of the allopolyploid proteome was additively expressed with respect to progenitor diploids. Interestingly, the fiber proteome of G. hirsutum resembles the parental A-genome more closely, where long, spinable fiber first evolved, than does the fiber proteome of G. barbadense. More protein expression patterns were A-dominant than D-dominant in G. hirsutum, but in G. barbadense, the direction of expression-level dominance switched from the D-genome to the A-genome during fiber development. Comparison of developmental changes between the two allopolyploid species revealed a high level of proteomic differentiation despite their shared ancestry, relatively recent evolutionary divergence, and similar gross morphology. These results suggest that the two allopolyploid species have achieved superficially similar modern fiber phenotypes through different evolutionary routes at the proteome level. We also detected homeolog-specific expression for 1001 proteins and present a novel approach to infer the relationship between homeolog-specific and duplicate expression patterns. Our study provides a proteomic perspective on understanding evolutionary consequences of allopolyploidization, showing how protein expression has been altered by polyploidization and subsequently has diversified among species.
Collapse
|
22
|
Leder EH, McCairns RJS, Leinonen T, Cano JM, Viitaniemi HM, Nikinmaa M, Primmer CR, Merilä J. The evolution and adaptive potential of transcriptional variation in sticklebacks--signatures of selection and widespread heritability. Mol Biol Evol 2015; 32:674-89. [PMID: 25429004 PMCID: PMC4327155 DOI: 10.1093/molbev/msu328] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Evidence implicating differential gene expression as a significant driver of evolutionary novelty continues to accumulate, but our understanding of the underlying sources of variation in expression, both environmental and genetic, is wanting. Heritability in particular may be underestimated when inferred from genetic mapping studies, the predominant "genetical genomics" approach to the study of expression variation. Such uncertainty represents a fundamental limitation to testing for adaptive evolution at the transcriptomic level. By studying the inheritance of expression levels in 10,495 genes (10,527 splice variants) in a threespine stickleback pedigree consisting of 563 individuals, half of which were subjected to a thermal treatment, we show that 74-98% of transcripts exhibit significant additive genetic variance. Dominance variance is also prevalent (41-99% of transcripts), and genetic sources of variation seem to play a more significant role in expression variance in the liver than a key environmental variable, temperature. Among-population comparisons suggest that the majority of differential expression in the liver is likely due to neutral divergence; however, we also show that signatures of directional selection may be more prevalent than those of stabilizing selection. This predominantly aligns with the neutral model of evolution for gene expression but also suggests that natural selection may still act on transcriptional variation in the wild. As genetic variation both within- and among-populations ultimately defines adaptive potential, these results indicate that broad adaptive potential may be found within the transcriptome.
Collapse
Affiliation(s)
- Erica H Leder
- Division of Genetics and Physiology, Department of Biology, University of Turku, Turku, Finland
| | - R J Scott McCairns
- Ecological Genetics Research Unit, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Tuomas Leinonen
- Ecological Genetics Research Unit, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - José M Cano
- Research Unit of Biodiversity (UO-CSIC-PA), University of Oviedo, Mieres, Spain
| | - Heidi M Viitaniemi
- Division of Genetics and Physiology, Department of Biology, University of Turku, Turku, Finland
| | - Mikko Nikinmaa
- Division of Genetics and Physiology, Department of Biology, University of Turku, Turku, Finland
| | - Craig R Primmer
- Division of Genetics and Physiology, Department of Biology, University of Turku, Turku, Finland
| | - Juha Merilä
- Ecological Genetics Research Unit, Department of Biosciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
23
|
Buggs RJA, Wendel JF, Doyle JJ, Soltis DE, Soltis PS, Coate JE. The legacy of diploid progenitors in allopolyploid gene expression patterns. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0354. [PMID: 24958927 DOI: 10.1098/rstb.2013.0354] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Allopolyploidization (hybridization and whole-genome duplication) is a common phenomenon in plant evolution with immediate saltational effects on genome structure and gene expression. New technologies have allowed rapid progress over the past decade in our understanding of the consequences of allopolyploidy. A major question, raised by early pioneer of this field Leslie Gottlieb, concerned the extent to which gene expression differences among duplicate genes present in an allopolyploid are a legacy of expression differences that were already present in the progenitor diploid species. Addressing this question necessitates phylogenetically well-understood natural study systems, appropriate technology, availability of genomic resources and a suitable analytical framework, including a sufficiently detailed and generally accepted terminology. Here, we review these requirements and illustrate their application to a natural study system that Gottlieb worked on and recommended for this purpose: recent allopolyploids of Tragopogon (Asteraceae). We reanalyse recent data from this system within the conceptual framework of parental legacies on duplicate gene expression in allopolyploids. On a broader level, we highlight the intellectual connection between Gottlieb's phrasing of this issue and the more contemporary framework of cis- versus trans-regulation of duplicate gene expression in allopolyploid plants.
Collapse
Affiliation(s)
- Richard J A Buggs
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Jonathan F Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames IA 50011, USA
| | - Jeffrey J Doyle
- L. H. Bailey Hortorium, Department of Plant Biology, Cornell University, Ithaca, NY 14853, USA
| | - Douglas E Soltis
- Department of Biology, University of Florida, Gainesville, FL 32611, USA Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Jeremy E Coate
- Department of Biology, Reed College, Portland, OR 97202, USA
| |
Collapse
|
24
|
Abstract
An ordered draft sequence of the 17-gigabase hexaploid bread wheat (Triticum aestivum) genome has been produced by sequencing isolated chromosome arms. We have annotated 124,201 gene loci distributed nearly evenly across the homeologous chromosomes and subgenomes. Comparative gene analysis of wheat subgenomes and extant diploid and tetraploid wheat relatives showed that high sequence similarity and structural conservation are retained, with limited gene loss, after polyploidization. However, across the genomes there was evidence of dynamic gene gain, loss, and duplication since the divergence of the wheat lineages. A high degree of transcriptional autonomy and no global dominance was found for the subgenomes. These insights into the genome biology of a polyploid crop provide a springboard for faster gene isolation, rapid genetic marker development, and precise breeding to meet the needs of increasing food demand worldwide.
Collapse
|
25
|
Moghe GD, Shiu SH. The causes and molecular consequences of polyploidy in flowering plants. Ann N Y Acad Sci 2014; 1320:16-34. [PMID: 24903334 DOI: 10.1111/nyas.12466] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Polyploidy is an important force shaping plant genomes. All flowering plants are descendants of an ancestral polyploid species, and up to 70% of extant vascular plant species are believed to be recent polyploids. Over the past century, a significant body of knowledge has accumulated regarding the prevalence and ecology of polyploid plants. In this review, we summarize our current understanding of the causes and molecular consequences of polyploidization in angiosperms. We also provide a discussion on the relationships between polyploidy and adaptation and suggest areas where further research may provide a better understanding of polyploidy.
Collapse
|
26
|
Matsuoka Y, Takumi S, Nasuda S. Genetic mechanisms of allopolyploid speciation through hybrid genome doubling: novel insights from wheat (Triticum and Aegilops) studies. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 309:199-258. [PMID: 24529724 DOI: 10.1016/b978-0-12-800255-1.00004-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Polyploidy, which arises through complex genetic and ecological processes, is an important mode of plant speciation. This review provides an overview of recent advances in understanding why plant polyploid species are so ubiquitous and diverse. We consider how the modern framework for understanding genetic mechanisms of speciation could be used to study allopolyploid speciation that occurs through hybrid genome doubling, that is, whole genome doubling of interspecific F1 hybrids by the union of male and female unreduced gametes. We outline genetic and ecological mechanisms that may have positive or negative impacts on the process of allopolyploid speciation through hybrid genome doubling. We also discuss the current status of studies on the underlying genetic mechanisms focusing on the wheat (Triticum and Aegilops) hybrid-specific reproductive phenomena that are well known but deserve renewed attention from an evolutionary viewpoint.
Collapse
Affiliation(s)
- Yoshihiro Matsuoka
- Department of Bioscience, Fukui Prefectural University, Matsuoka, Eiheiji, Yoshida, Fukui, Japan.
| | - Shigeo Takumi
- Laboratory of Plant Genetics, Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe, Japan
| | - Shuhei Nasuda
- Laboratory of Plant Genetics, Graduate School of Agriculture, Kyoto University, Kitashirakawaoiwake-cho, Sakyo-ku, Kyoto, Japan
| |
Collapse
|