1
|
Zhao W, Wu J, Tian M, Xu S, Hu S, Wei Z, Lin G, Tang L, Wang R, Feng B, Wang B, Lyu H, Paetz C, Feng X, Xue JY, Li P, Chen Y. Characterization of O-methyltransferases in the biosynthesis of phenylphenalenone phytoalexins based on the telomere-to-telomere gapless genome of Musella lasiocarpa. HORTICULTURE RESEARCH 2024; 11:uhae042. [PMID: 39493361 PMCID: PMC11528125 DOI: 10.1093/hr/uhae042] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/02/2024] [Indexed: 11/05/2024]
Abstract
Phenylphenalenones (PhPNs), phytoalexins in wild bananas (Musaceae), are known to act against various pathogens. However, the abundance of PhPNs in many Musaceae plants of economic importance is low. Knowledge of the biosynthesis of PhPNs and the application of biosynthetic approaches to improve their yield is vital for fighting banana diseases. However, the processes of PhPN biosynthesis, especially those involved in methylation modification, remain unclear. Musella lasiocarpa is a herbaceous plant belonging to Musaceae, and due to the abundant PhPNs, their biosynthesis in M. lasiocarpa has been the subject of much attention. In this study, we assembled a telomere-to-telomere gapless genome of M. lasiocarpa as the reference, and further integrated transcriptomic and metabolomic data to mine the candidate genes involved in PhPN biosynthesis. To elucidate the diversity of PhPNs in M. lasiocarpa, three screened O-methyltransferases (Ml01G0494, Ml04G2958, and Ml08G0855) by phylogenetic and expressional clues were subjected to in vitro enzymatic assays. The results show that the three were all novel O-methyltransferases involved in the biosynthesis of PhPN phytoalexins, among which Ml08G0855 was proved to function as a multifunctional enzyme targeting multiple hydroxyl groups in PhPN structure. Moreover, we tested the antifungal activity of PhPNs against Fusarium oxysporum and found that the methylated modification of PhPNs enhanced their antifungal activity. These findings provide valuable genetic resources in banana breeding and lay a foundation for improving disease resistance through molecular breeding.
Collapse
Affiliation(s)
- Wanli Zhao
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), 210014 Nanjing, China
| | - Junzhi Wu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), 210014 Nanjing, China
- Nanjing University of Chinese Medicine, 210023 Nanjing, China
| | - Mei Tian
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), 210014 Nanjing, China
| | - Shu Xu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), 210014 Nanjing, China
| | - Shuaiya Hu
- College of Horticulture, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, 210095 Nanjing, China
| | - Zhiyan Wei
- College of Horticulture, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, 210095 Nanjing, China
| | - Guyin Lin
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), 210014 Nanjing, China
| | - Liang Tang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), 210014 Nanjing, China
| | - Ruiyang Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), 210014 Nanjing, China
| | - Boya Feng
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), 210014 Nanjing, China
| | - Bi Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), 210014 Nanjing, China
| | - Hui Lyu
- NMR/Biosynthesis Group, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| | - Christian Paetz
- NMR/Biosynthesis Group, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| | - Xu Feng
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), 210014 Nanjing, China
| | - Jia-Yu Xue
- College of Horticulture, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, 210095 Nanjing, China
| | - Pirui Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), 210014 Nanjing, China
| | - Yu Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), 210014 Nanjing, China
| |
Collapse
|
2
|
Quattrone A, Yang Y, Yadav P, Weber KA, Russo SE. Nutrient and Microbiome-Mediated Plant-Soil Feedback in Domesticated and Wild Andropogoneae: Implications for Agroecosystems. Microorganisms 2023; 11:2978. [PMID: 38138123 PMCID: PMC10745641 DOI: 10.3390/microorganisms11122978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Plants influence the abiotic and biotic environment of the rhizosphere, affecting plant performance through plant-soil feedback (PSF). We compared the strength of nutrient and microbe-mediated PSF and its implications for plant performance in domesticated and wild grasses with a fully crossed greenhouse PSF experiment using four inbred maize genotypes (Zea mays ssp. mays b58, B73-wt, B73-rth3, and HP301), teosinte (Z. mays ssp. parviglumis), and two wild prairie grasses (Andropogon gerardii and Tripsacum dactyloides) to condition soils for three feedback species (maize B73-wt, teosinte, Andropogon gerardii). We found evidence of negative PSF based on growth, phenotypic traits, and foliar nutrient concentrations for maize B73-wt, which grew slower in maize-conditioned soil than prairie grass-conditioned soil. In contrast, teosinte and A. gerardii showed few consistent feedback responses. Both rhizobiome and nutrient-mediated mechanisms were implicated in PSF. Based on 16S rRNA gene amplicon sequencing, the rhizosphere bacterial community composition differed significantly after conditioning by prairie grass and maize plants, and the final soil nutrients were significantly influenced by conditioning, more so than by the feedback plants. These results suggest PSF-mediated soil domestication in agricultural settings can develop quickly and reduce crop productivity mediated by PSF involving changes to both the soil rhizobiomes and nutrient availability.
Collapse
Affiliation(s)
- Amanda Quattrone
- Complex Biosystems Ph.D. Program, University of Nebraska-Lincoln, Lincoln, NE 68583-0851, USA
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588-0118, USA; (Y.Y.)
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68583-0705, USA
| | - Yuguo Yang
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588-0118, USA; (Y.Y.)
| | - Pooja Yadav
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588-0118, USA; (Y.Y.)
| | - Karrie A. Weber
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588-0118, USA; (Y.Y.)
- Department of Earth and Atmospheric Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588-0340, USA
- Daugherty Water for Food Institute, University of Nebraska, Lincoln, NE 68588-6203, USA
| | - Sabrina E. Russo
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588-0118, USA; (Y.Y.)
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68583-0705, USA
| |
Collapse
|
3
|
Ravetta DA, Vilela AE, Gonzalez-Paleo L, Van Tassel DL. Unpredicted, rapid and unintended structural and functional changes occurred during early domestication of Silphium integrifolium, a perennial oilseed. PLANTA 2023; 258:18. [PMID: 37314591 DOI: 10.1007/s00425-023-04179-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 06/06/2023] [Indexed: 06/15/2023]
Abstract
MAIN CONCLUSION Selection for increased yield changed structure, physiology and overall resource-use strategy from conservative towards acquisitive leaves. Alternative criteria can be considered, to increase yield with less potentially negative traits. We compared the morphology, anatomy and physiology of wild and semi-domesticated (SD) accessions of Silphium integrifolium (Asteraceae), in multi-year experiments. We hypothesized that several cycles of selection for seed-yield would result in acquisitive leaves, including changes predicted by the leaf economic spectrum. Early-selection indirectly resulted in leaf structural and functional changes. Leaf anatomy changed, increasing mesophyll conductance and the size of xylem vessels and mesophyll cells increased. Leaves of SD plants were larger, heavier, with lower stomatal conductance, lower internal CO2 concentration, and lower resin concentration than those of wild types. Despite increased water use efficiency, SD plants transpired 25% more because their increase in leaf area. Unintended and undesired changes in functional plant traits could quickly become fixed during domestication, shortening the lifespan and increasing resource consumption of the crop as well as having consequences in the provision and regulation of ecosystem services.
Collapse
Affiliation(s)
- D A Ravetta
- CONICET, Museo Egidio Feruglio, Fontana 144, 9100, Trelew, Chubut, Argentina.
| | - A E Vilela
- CONICET, Museo Egidio Feruglio, Fontana 144, 9100, Trelew, Chubut, Argentina
| | - L Gonzalez-Paleo
- CONICET, Museo Egidio Feruglio, Fontana 144, 9100, Trelew, Chubut, Argentina
| | - D L Van Tassel
- The Land Institute, 2440 E Water Well Rd, Salina, KS, 67401, USA
| |
Collapse
|
4
|
Zhang L, Li J, Wang Z, Zhang D, Liu H, Wang J, Wu F, Wang X, Zhou X. Litter mixing promoted decomposition and altered microbial community in common bean root litter. BMC Microbiol 2023; 23:148. [PMID: 37217839 DOI: 10.1186/s12866-023-02871-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Decomposition of plant litter is a key driver of carbon and nutrient cycling in terrestrial ecosystems. Mixing litters of different plant species may alter the decomposition rate, but its effect on the microbial decomposer community in plant litter is not fully understood. Here, we tested the effects of mixing with maize (Zea mays L.) and soybean [Glycine max (Linn.) Merr.] stalk litters on the decomposition and microbial decomposer communities of common bean (Phaseolus vulgaris L.) root litter at the early decomposition stage in a litterbag experiment. RESULTS Mixing with maize stalk litter, soybean stalk litter, and both of these litters increased the decomposition rate of common bean root litter at 56 day but not 14 day after incubation. Litter mixing also increased the decomposition rate of the whole liter mixture at 56 day after incubation. Amplicon sequencing found that litter mixing altered the composition of bacterial (at 56 day after incubation) and fungal communities (at both 14 and 56 day after incubation) in common bean root litter. Litter mixing increased the abundance and alpha diversity of fungal communities in common bean root litter at 56 day after incubation. Particularly, litter mixing stimulated certain microbial taxa, such as Fusarium, Aspergillus and Stachybotrys spp. In addition, a pot experiment with adding litters in the soil showed that litter mixing promoted growth of common bean seedlings and increased soil nitrogen and phosphorus contents. CONCLUSIONS This study showed that litter mixing can promote the decomposition rate and cause shifts in microbial decomposer communities, which may positively affect crop growth.
Collapse
Affiliation(s)
- Linlin Zhang
- Department of Horticulture, Northeast Agricultural University, Harbin, China
| | - Jiawei Li
- Department of Horticulture, Northeast Agricultural University, Harbin, China
| | - Zhilin Wang
- Department of Horticulture, Northeast Agricultural University, Harbin, China
| | - Dinghong Zhang
- Department of Horticulture, Northeast Agricultural University, Harbin, China
| | - Hui Liu
- Department of Horticulture, Northeast Agricultural University, Harbin, China
| | - Jia Wang
- Department of Horticulture, Northeast Agricultural University, Harbin, China
| | - Fengzhi Wu
- Department of Horticulture, Northeast Agricultural University, Harbin, China
| | - Xue Wang
- Northeast Agricultural University Library, Northeast Agricultural University, Harbin, China.
| | - Xingang Zhou
- Department of Horticulture, Northeast Agricultural University, Harbin, China.
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, China.
| |
Collapse
|
5
|
Cornelissen JHC, Cornwell WK, Freschet GT, Weedon JT, Berg MP, Zanne AE. Coevolutionary legacies for plant decomposition. Trends Ecol Evol 2023; 38:44-54. [PMID: 35945074 DOI: 10.1016/j.tree.2022.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 12/24/2022]
Abstract
Coevolution has driven speciation and evolutionary novelty in functional traits across the Tree of Life. Classic coevolutionary syndromes such as plant-pollinator, plant-herbivore, and host-parasite have focused strongly on the fitness consequences during the lifetime of the interacting partners. Less is known about the consequences of coevolved traits for ecosystem-level processes, in particular their 'afterlife' legacies for litter decomposition, nutrient cycling, and the functional ecology of decomposers. We review the mechanisms by which traits resulting from coevolution between plants and their consumers, microbial symbionts, or humans, and between microbial decomposers and invertebrates, drive plant litter decomposition pathways and rates. This supports the idea that much of current global variation in the decomposition of plant material is a legacy of coevolution.
Collapse
Affiliation(s)
- J Hans C Cornelissen
- Amsterdam Institute for Life and Environment (A-LIFE), Systems Ecology Section, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081, HV, Amsterdam, The Netherlands.
| | - William K Cornwell
- Evolution and Ecology Research Centre, School of Biological, Earth, and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Grégoire T Freschet
- Station d'Ecologie Théorique et Expérimentale, Centre National de la Recherche Scientifique (CNRS), Moulis, France
| | - James T Weedon
- Amsterdam Institute for Life and Environment (A-LIFE), Systems Ecology Section, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081, HV, Amsterdam, The Netherlands
| | - Matty P Berg
- A-LIFE, Ecology and Evolution Section, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Community and Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Amy E Zanne
- Department of Biology, University of Miami, Miami, FL, USA
| |
Collapse
|
6
|
Ferreira P, Gabriel A, Sousa JP, Natal-da-Luz T. Representativeness of Folsomia candida to assess toxicity of a new generation insecticide in different temperature scenarios. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155712. [PMID: 35525360 DOI: 10.1016/j.scitotenv.2022.155712] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/19/2022] [Accepted: 05/01/2022] [Indexed: 06/14/2023]
Abstract
Climate change may interfere with the behavior of pesticides and organisms, influencing pesticides toxicity to non-target organisms like collembolans. Aiming to assess the representativeness of the standardized species F. candida to the Collembola group under different temperatures, four species of collembolans - Folsomia candida, Folsomia fimetaria, Proisotoma minuta and Sinella curviseta - were exposed to a new generation insecticide of Chlorantraniliprole, under the standardized temperature of 20 °C, and a temperature foreseeing a global warming scenario of 25 °C. Results showed that F. candida, F. fimetaria and P. minuta were sensitive to Chlorantraniliprole at both temperatures, while S. curviseta was insensitive to the insecticide concentrations up to 457 mg a.i./kg of soil, regardless of the temperature. The sensitivity of F. candida and P. minuta was significantly higher at 25 °C than at 20 °C, while F. fimetaria and S. curviseta remained equally sensitive/insensitive to both temperatures. Results suggest that F. candida can be representative of F. fimetaria under standard conditions but not for F. fimetaria under 25 °C nor for P. minuta and S. curviseta under both temperatures due to the higher sensitivity of F. candida. On the other hand, due to its higher sensitivity, F. candida can be used to define environmentally protective measures (at both test temperatures) but the use of additional Collembola species is recommended to avoid the definition of over-protective goals.
Collapse
Affiliation(s)
- Patrícia Ferreira
- CFE - Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal.
| | - Antonieta Gabriel
- CESAM & Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal. The Center of Environmental and Marine Studies of University of Aveiro, Portugal
| | - José Paulo Sousa
- CFE - Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Tiago Natal-da-Luz
- CFE - Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| |
Collapse
|
7
|
Martin AR. Crop domestication, functional traits and the boundaries of nature. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Adam R. Martin
- Department of Physical and Environmental Sciences University of Toronto Scarborough Toronto ON Canada
| |
Collapse
|
8
|
Fernandez AR, Sáez A, Quintero C, Gleiser G, Aizen MA. Intentional and unintentional selection during plant domestication: herbivore damage, plant defensive traits and nutritional quality of fruit and seed crops. THE NEW PHYTOLOGIST 2021; 231:1586-1598. [PMID: 33977519 DOI: 10.1111/nph.17452] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/23/2021] [Indexed: 05/19/2023]
Abstract
Greater susceptibility to herbivory can arise as an effect of crop domestication. One proposed explanation is that defenses decreased intentionally or unintentionally during the domestication process, but evidence for this remains elusive. An alternative but nonexclusive explanation is presumed selection for higher nutritional quality. We used a metaanalytical approach to examine susceptibility to herbivores in fruit and seed crops and their wild relatives. Our analyses provide novel insights into the mechanisms of increased susceptibility by evaluating whether it can be attributed to either a reduction in herbivore defensive traits, including direct/indirect and constitutive/inducible defenses, or an increase in the nutritional content of crops. The results confirm higher herbivory and lower levels of all types of defenses in crops compared to wild relatives, although indirect defenses were more affected than direct ones. Contrary to expectations, nutritional quality was lower in crops than in wild relatives, which may enhance biomass loss to herbivores if they increase consumption to meet nutritional requirements. Our findings represent an important advance in our understanding of how changes in defensive and nutritional traits following domestication could influence, in combination or individually, crop susceptibility to herbivore attacks.
Collapse
Affiliation(s)
- Anahí R Fernandez
- Laboratorio Ecotono, INIBIOMA, CONICET, Universidad Nacional del Comahue, Quintral 1250, Bariloche, 8400, Argentina
- IRNAD, CONICET, Universidad Nacional de Río Negro, Mitre 630, Bariloche, 8400, Argentina
| | - Agustín Sáez
- Laboratorio Ecotono, INIBIOMA, CONICET, Universidad Nacional del Comahue, Quintral 1250, Bariloche, 8400, Argentina
| | - Carolina Quintero
- Laboratorio Ecotono, INIBIOMA, CONICET, Universidad Nacional del Comahue, Quintral 1250, Bariloche, 8400, Argentina
| | - Gabriela Gleiser
- Laboratorio Ecotono, INIBIOMA, CONICET, Universidad Nacional del Comahue, Quintral 1250, Bariloche, 8400, Argentina
| | - Marcelo A Aizen
- Laboratorio Ecotono, INIBIOMA, CONICET, Universidad Nacional del Comahue, Quintral 1250, Bariloche, 8400, Argentina
- Wissenschaftskolleg zu Berlin, Berlin, 14193, Germany
| |
Collapse
|
9
|
Pathogen-Induced Tree Mortality Modifies Key Components of the C and N Cycles with No Changes on Microbial Functional Diversity. Ecosystems 2020. [DOI: 10.1007/s10021-020-00528-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Tabima JF, Søndreli KL, Keriö S, Feau N, Sakalidis ML, Hamelin RC, LeBoldus JM. Population Genomic Analyses Reveal Connectivity via Human-Mediated Transport across Populus Plantations in North America and an Undescribed Subpopulation of Sphaerulina musiva. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:189-199. [PMID: 31593527 DOI: 10.1094/mpmi-05-19-0131-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Domestication of plant species has affected the evolutionary dynamics of plant pathogens in agriculture and forestry. A model system for studying the consequences of plant domestication on the evolution of an emergent plant disease is the fungal pathogen Sphaerulina musiva. This ascomycete causes leaf spot and stem canker disease of Populus spp. and their hybrids. A population genomics approach was used to determine the degree of population structure and evidence for selection on the North American population of S. musiva. In total, 122 samples of the fungus were genotyped identifying 120,016 single-nucleotide polymorphisms after quality filtering. In North America, S. musiva has low to moderate degrees of differentiation among locations. Three main genetic clusters were detected: southeastern United States, midwestern United States and Canada, and a new British Columbia cluster (BC2). Population genomics suggest that BC2 is a novel genetic cluster from central British Columbia, clearly differentiated from previously reported S. musiva from coastal British Columbia, and the product of a single migration event. Phenotypic measurements from greenhouse experiments indicate lower aggressiveness of BC2 on Populus trichocarpa. In summary, S. musiva has geographic structure across broad regions indicative of gene flow among clusters. The interconnectedness of the North American S. musiva populations across large geographic distances further supports the hypothesis of anthropogenic-facilitated transport of the pathogen.
Collapse
Affiliation(s)
- J F Tabima
- Department of Botany and Plant Pathology, College of Agricultural Sciences, Oregon State University, Corvallis, U.S.A
| | - K L Søndreli
- Department of Botany and Plant Pathology, College of Agricultural Sciences, Oregon State University, Corvallis, U.S.A
| | - S Keriö
- Department of Botany and Plant Pathology, College of Agricultural Sciences, Oregon State University, Corvallis, U.S.A
| | - N Feau
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Canada
| | - M L Sakalidis
- Department of Plant, Soil and Microbial Sciences and the Department of Forestry, College of Agriculture & Natural Resources, Michigan State University, East Lansing, U.S.A
| | - R C Hamelin
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Canada
| | - J M LeBoldus
- Department of Botany and Plant Pathology, College of Agricultural Sciences, Oregon State University, Corvallis, U.S.A
- Department of Forest Engineering, Resources and Management, College of Forestry, Oregon State University
| |
Collapse
|
11
|
Accumulating crop functional trait data with citizen science. Sci Rep 2019; 9:15715. [PMID: 31673016 PMCID: PMC6823441 DOI: 10.1038/s41598-019-51927-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/10/2019] [Indexed: 12/19/2022] Open
Abstract
Trait-based ecology is greatly informed by large datasets for the analyses of inter- and intraspecific trait variation (ITV) in plants. This is especially true in trait-based agricultural research where crop ITV is high, yet crop trait data remains limited. Based on farmer-led collections, we developed and evaluated the first citizen science plant trait initiative. Here we generated a dataset of eight leaf traits for a commercially important crop species (Daucus carota), sampled from two distinct regions in Canada, which is 25-fold larger than datasets available in existing trait databases. Citizen-collected trait data supported analyses addressing theoretical and applied questions related to (i) intraspecific trait dimensionality, (ii) the extent and drivers of ITV, and (iii) the sampling intensity needed to derive accurate trait values. Citizen science is a viable means to enhance functional trait data coverage across terrestrial ecosystems, and in doing so, can directly support theoretical and applied trait-based analyses of plants.
Collapse
|
12
|
Zhang CJ, Delgado-Baquerizo M, Drake JE, Reich PB, Tjoelker MG, Tissue DT, Wang JT, He JZ, Singh BK. Intraspecies variation in a widely distributed tree species regulates the responses of soil microbiome to different temperature regimes. ENVIRONMENTAL MICROBIOLOGY REPORTS 2018; 10:167-178. [PMID: 29327437 DOI: 10.1111/1758-2229.12613] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 01/06/2018] [Indexed: 06/07/2023]
Abstract
Plant characteristics in different provenances within a single species may vary in response to climate change, which might alter soil microbial communities and ecosystem functions. We conducted a glasshouse experiment and grew seedlings of three provenances (temperate, subtropical and tropical origins) of a tree species (i.e., Eucalyptus tereticornis) at different growth temperatures (18, 21.5, 25, 28.5, 32 and 35.5°C) for 54 days. At the end of the experiment, bacterial and fungal community composition, diversity and abundance were characterized. Measured soil functions included surrogates of microbial respiration, enzyme activities and nutrient cycling. Using Permutation multivariate analysis of variance (PerMANOVA) and network analysis, we found that the identity of tree provenances regulated both structure and function of soil microbiomes. In some cases, tree provenances substantially affected the response of microbial communities to the temperature treatments. For example, we found significant interactions of temperature and tree provenance on bacterial community and relative abundances of Chloroflexi and Zygomycota, and inorganic nitrogen. Microbial abundance was altered in response to increasing temperature, but was not affected by tree provenances. Our study provides novel evidence that even a small variation in biotic components (i.e., intraspecies tree variation) can significantly influence the response of soil microbial community composition and specific soil functions to global warming.
Collapse
Affiliation(s)
- Cui-Jing Zhang
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, New South Wales 2751, Australia
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Manuel Delgado-Baquerizo
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, New South Wales 2751, Australia
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309, USA
| | - John E Drake
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, New South Wales 2751, Australia
| | - Peter B Reich
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, New South Wales 2751, Australia
- Department of Forest Resources, University of Minnesota, St. Paul, MN 55108, USA
| | - Mark G Tjoelker
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, New South Wales 2751, Australia
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, New South Wales 2751, Australia
| | - Jun-Tao Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ji-Zheng He
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, New South Wales 2751, Australia
- Global Centre for Land Based Innovation, Western Sydney University, Locked Bag 1797, Penrith, New South Wales 2751, Australia
| |
Collapse
|
13
|
Mariotte P, Mehrabi Z, Bezemer TM, De Deyn GB, Kulmatiski A, Drigo B, Veen G(C, van der Heijden MG, Kardol P. Plant–Soil Feedback: Bridging Natural and Agricultural Sciences. Trends Ecol Evol 2018; 33:129-142. [DOI: 10.1016/j.tree.2017.11.005] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 01/24/2023]
|
14
|
Martin AR, Hale CE, Cerabolini BEL, Cornelissen JHC, Craine J, Gough WA, Kattge J, Tirona CKF. Inter- and intraspecific variation in leaf economic traits in wheat and maize. AOB PLANTS 2018; 10:ply006. [PMID: 29484152 PMCID: PMC5814918 DOI: 10.1093/aobpla/ply006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 01/22/2018] [Indexed: 05/29/2023]
Abstract
Leaf Economics Spectrum (LES) trait variation underpins multiple agroecological processes and many prominent crop yield models. While there are numerous independent studies assessing trait variation in crops, to date there have been no comprehensive assessments of intraspecific trait variation (ITV) in LES traits for wheat and maize: the world's most widespread crops. Using trait databases and peer-reviewed literature, we compiled over 700 records of specific leaf area (SLA), maximum photosynthetic rates (Amax) and leaf nitrogen (N) concentrations, for wheat and maize. We evaluated intraspecific LES trait variation, and intraspecific trait-environment relationships. While wheat and maize occupy the upper 90th percentile of LES trait values observed across a global species pool, ITV ranged widely across the LES in wheat and maize. Fertilization treatments had strong impacts on leaf N, while plant developmental stage (here standardized as the number of days since planting) had strong impacts on Amax; days since planting, N fertilization and irrigation all influenced SLA. When controlling for these factors, intraspecific responses to temperature and precipitation explained 39.4 and 43.7 % of the variation in Amax and SLA, respectively, but only 5.4 % of the variation in leaf N. Despite a long history of domestication in these species, ITV in wheat and maize among and within cultivars remains large. Intraspecific trait variation is a critical consideration to refine regional to global models of agroecosystem structure, function and food security. Considerable opportunities and benefits exist for consolidating a crop trait database for a wider range of domesticated plant species.
Collapse
Affiliation(s)
- Adam R Martin
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Canada
- Centre for Critical Development Studies, University of Toronto Scarborough, Toronto, Canada
| | - Christine E Hale
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Canada
| | - Bruno E L Cerabolini
- Department of Theoretical and Applied Sciences, University of Insubria, Varese, Italy
| | - Johannes H C Cornelissen
- Systems Ecology, Department of Ecological Science, Vrije Universiteit, De Boelelaan, The Netherlands
| | - Joseph Craine
- Jonah Ventures, Manhattan, 1908 Bluehills Road, KS, USA
| | - William A Gough
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Canada
| | - Jens Kattge
- Max-Planck-Institute for Biogeochemistry, Hans-Knöll Straβe, Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig, Germany
| | - Cairan K F Tirona
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Canada
| |
Collapse
|
15
|
Martin AR, Isaac ME. Functional traits in agroecology: Advancing description and prediction in agroecosystems. J Appl Ecol 2017. [DOI: 10.1111/1365-2664.13039] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Adam R. Martin
- Department of Physical and Environmental Sciences; and the Centre for Critical Development of Toronto Scarborough; Toronto Ontario Canada
| | - Marney E. Isaac
- Department of Physical and Environmental Sciences; and the Centre for Critical Development of Toronto Scarborough; Toronto Ontario Canada
- Department of Geography; University of Toronto; Toronto Ontario Canada
| |
Collapse
|
16
|
Leff JW, Lynch RC, Kane NC, Fierer N. Plant domestication and the assembly of bacterial and fungal communities associated with strains of the common sunflower, Helianthus annuus. THE NEW PHYTOLOGIST 2017; 214:412-423. [PMID: 27879004 DOI: 10.1111/nph.14323] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 10/09/2016] [Indexed: 05/21/2023]
Abstract
Root and rhizosphere microbial communities can affect plant health, but it remains undetermined how plant domestication may influence these bacterial and fungal communities. We grew 33 sunflower (Helianthus annuus) strains (n = 5) that varied in their extent of domestication and assessed rhizosphere and root endosphere bacterial and fungal communities. We also assessed fungal communities in the sunflower seeds to investigate the degree to which root and rhizosphere communities were influenced by vertical transmission of the microbiome through seeds. Neither root nor rhizosphere bacterial communities were affected by the extent of sunflower domestication, but domestication did affect the composition of rhizosphere fungal communities. In particular, more modern sunflower strains had lower relative abundances of putative fungal pathogens. Seed-associated fungal communities strongly differed across strains, but several lines of evidence suggest that there is minimal vertical transmission of fungi from seeds to the adult plants. Our results indicate that plant-associated fungal communities are more strongly influenced by host genetic factors and plant breeding than bacterial communities, a finding that could influence strategies for optimizing microbial communities to improve crop yields.
Collapse
Affiliation(s)
- Jonathan W Leff
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, 80309-0216, USA
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309, USA
| | - Ryan C Lynch
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309, USA
- Medicinal Genomics, 12 Gill St, Woburn, MA, 01801, USA
| | - Nolan C Kane
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309, USA
| | - Noah Fierer
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, 80309-0216, USA
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309, USA
| |
Collapse
|
17
|
Conversion from long-term cultivated wheat field to Jerusalem artichoke plantation changed soil fungal communities. Sci Rep 2017; 7:41502. [PMID: 28134269 PMCID: PMC5278349 DOI: 10.1038/srep41502] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 12/20/2016] [Indexed: 11/09/2022] Open
Abstract
Understanding soil microbial communities in agroecosystems has the potential to contribute to the improvement of agricultural productivity and sustainability. Effects of conversion from long-term wheat plantation to Jerusalem artichoke (JA) plantation on soil fungal communities were determined by amplicon sequencing of total fungal ITS regions. Quantitative PCR and PCR-denaturing gradient gel electrophoresis were also used to analyze total fungal and Trichoderma spp. ITS regions and Fusarium spp. Ef1α genes. Results showed that soil organic carbon was higher in the first cropping of JA and Olsen P was lower in the third cropping of JA. Plantation conversion changed soil total fungal and Fusarium but not Trichoderma spp. community structures and compositions. The third cropping of JA had the lowest total fungal community diversity and Fusarium spp. community abundance, but had the highest total fungal and Trichoderma spp. community abundances. The relative abundances of potential fungal pathogens of wheat were higher in the wheat field. Fungal taxa with plant growth promoting, plant pathogen or insect antagonistic potentials were enriched in the first and second cropping of JA. Overall, short-term conversion from wheat to JA plantation changed soil fungal communities, which is related to changes in soil organic carbon and Olsen P contents.
Collapse
|
18
|
Martin AR, Rapidel B, Roupsard O, Van den Meersche K, Melo Virginio Filho E, Barrios M, Isaac ME. Intraspecific trait variation across multiple scales: the leaf economics spectrum in coffee. Funct Ecol 2016. [DOI: 10.1111/1365-2435.12790] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Adam R. Martin
- Department of Physical and Environmental Sciences & Centre for Critical Development Studies University of Toronto Scarborough 1265 Military Trail Toronto ONM1C 1A4 Canada
| | - Bruno Rapidel
- Centro Agronómico Tropical de Investigación y Enseñanza (CATIE) 7170 Turrialba 30501 Costa Rica
- CIRAD UMR SYSTEM 2 Place Viala 34060 Montpellier France
| | - Olivier Roupsard
- Centro Agronómico Tropical de Investigación y Enseñanza (CATIE) 7170 Turrialba 30501 Costa Rica
- CIRAD UMR Eco&Sols (Ecologie Fonctionnelle & Biogéochimie des Sols et des Agroécosystèmes) 34060 Montpellier France
| | - Karel Van den Meersche
- Centro Agronómico Tropical de Investigación y Enseñanza (CATIE) 7170 Turrialba 30501 Costa Rica
- CIRAD UMR Eco&Sols (Ecologie Fonctionnelle & Biogéochimie des Sols et des Agroécosystèmes) 34060 Montpellier France
| | | | - Mirna Barrios
- Centro Agronómico Tropical de Investigación y Enseñanza (CATIE) A.P. 4830 KM 8.5 Carretera a Masaya Edificio MAGFOR Managua Nicaragua
| | - Marney E. Isaac
- Department of Physical and Environmental Sciences & Centre for Critical Development Studies University of Toronto Scarborough 1265 Military Trail Toronto ONM1C 1A4 Canada
| |
Collapse
|
19
|
Pérez-Jaramillo JE, Mendes R, Raaijmakers JM. Impact of plant domestication on rhizosphere microbiome assembly and functions. PLANT MOLECULAR BIOLOGY 2016; 90:635-44. [PMID: 26085172 PMCID: PMC4819786 DOI: 10.1007/s11103-015-0337-7] [Citation(s) in RCA: 326] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/04/2015] [Indexed: 05/18/2023]
Abstract
The rhizosphere microbiome is pivotal for plant health and growth, providing defence against pests and diseases, facilitating nutrient acquisition and helping plants to withstand abiotic stresses. Plants can actively recruit members of the soil microbial community for positive feedbacks, but the underlying mechanisms and plant traits that drive microbiome assembly and functions are largely unknown. Domestication of plant species has substantially contributed to human civilization, but also caused a strong decrease in the genetic diversity of modern crop cultivars that may have affected the ability of plants to establish beneficial associations with rhizosphere microbes. Here, we review how plants shape the rhizosphere microbiome and how domestication may have impacted rhizosphere microbiome assembly and functions via habitat expansion and via changes in crop management practices, root exudation, root architecture, and plant litter quality. We also propose a "back to the roots" framework that comprises the exploration of the microbiome of indigenous plants and their native habitats for the identification of plant and microbial traits with the ultimate goal to reinstate beneficial associations that may have been undermined during plant domestication.
Collapse
Affiliation(s)
- Juan E Pérez-Jaramillo
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6708 PB, Wageningen, The Netherlands
- Sylvius Laboratories, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Rodrigo Mendes
- Laboratory of Environmental Microbiology, Brazilian Agricultural Research Corporation, Embrapa Environment, Rodovia SP 340 - km 127.5, Jaguariúna, 13820-000, Brazil
| | - Jos M Raaijmakers
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6708 PB, Wageningen, The Netherlands.
- Sylvius Laboratories, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands.
| |
Collapse
|
20
|
Delgado-Baquerizo M, Reich PB, García-Palacios P, Milla R. Biogeographic bases for a shift in crop C : N : P stoichiometries during domestication. Ecol Lett 2016; 19:564-75. [DOI: 10.1111/ele.12593] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/12/2016] [Accepted: 02/04/2016] [Indexed: 02/02/2023]
Affiliation(s)
- Manuel Delgado-Baquerizo
- Hawkesbury Institute for the Environment; Western Sydney University; Penrith 2751 New South Wales Australia
| | - Peter B. Reich
- Hawkesbury Institute for the Environment; Western Sydney University; Penrith 2751 New South Wales Australia
- Department of Forest Resources; University of Minnesota; St. Paul MN 55108 USA
| | - Pablo García-Palacios
- Área de Biodiversidad y Conservación; Departamento de Biología, Geología, Física y Química Inorgánica, Escuela Superior de Ciencias Experimentales y Tecnología; Universidad Rey Juan Carlos; c/Tulipán s/n 28933 Móstoles Spain
| | - Rubén Milla
- Área de Biodiversidad y Conservación; Departamento de Biología, Geología, Física y Química Inorgánica, Escuela Superior de Ciencias Experimentales y Tecnología; Universidad Rey Juan Carlos; c/Tulipán s/n 28933 Móstoles Spain
| |
Collapse
|
21
|
Schmidt JE, Bowles TM, Gaudin ACM. Using Ancient Traits to Convert Soil Health into Crop Yield: Impact of Selection on Maize Root and Rhizosphere Function. FRONTIERS IN PLANT SCIENCE 2016; 7:373. [PMID: 27066028 PMCID: PMC4811947 DOI: 10.3389/fpls.2016.00373] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 03/11/2016] [Indexed: 05/21/2023]
Abstract
The effect of domestication and modern breeding on aboveground traits in maize (Zea mays) has been well-characterized, but the impact on root systems and the rhizosphere remain unclear. The transition from wild ecosystems to modern agriculture has focused on selecting traits that yielded the largest aboveground production with increasing levels of crop management and nutrient inputs. Root morphology, anatomy, and ecophysiological processes may have been affected by the substantial environmental and genetic shifts associated with this transition. As a result, root and rhizosphere traits that allow more efficient foraging and uptake in lower synthetic input environments might have been lost. The development of modern maize has led to a shift in microbiome community composition, but questions remain as to the dynamics and drivers of this change during maize evolution and its implications for resource acquisition and agroecosystem functioning under different management practices. Better understanding of how domestication and breeding affected root and rhizosphere microbial traits could inform breeding strategies, facilitate the sourcing of favorable alleles, and open new frontiers to improve resource use efficiency through greater integration of root development and ecophysiology with agroecosystem functioning.
Collapse
Affiliation(s)
- Jennifer E. Schmidt
- Department of Plant Sciences, University of California at DavisDavis, CA, USA
| | - Timothy M. Bowles
- Department of Natural Resources and the Environment, University of New HampshireDurham, NH, USA
| | - Amélie C. M. Gaudin
- Department of Plant Sciences, University of California at DavisDavis, CA, USA
- *Correspondence: Amélie C. M. Gaudin
| |
Collapse
|
22
|
Carreño-Rocabado G, Peña-Claros M, Bongers F, Díaz S, Quetier F, Chuviña J, Poorter L. Land-use intensification effects on functional properties in tropical plant communities. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2016; 26:174-189. [PMID: 27039518 DOI: 10.1890/14-0340] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
There is consensus that plant diversity and ecosystem processes are negatively affected by land-use intensification (LUI), but, at the same time, there is empirical evidence that a large heterogeneity can be found in the responses. This heterogeneity is especially poorly understood in tropical ecosystems. We evaluated changes in community functional properties across five common land-use types in the wet tropics with different land-use intensity: mature forest, logged forest, secondary forest, agricultural land, and pastureland, located in the lowlands of Bolivia. For the dominant plant species, we measured 12 functional response traits related to their life history, acquisition and conservation of resources, plant domestication, and breeding. We used three single-trait metrics to describe community functional properties: community abundance-weighted mean (CWM) traits values, coefficient of variation, and kurtosis of distribution. The CWM of all 12 traits clearly responded to LUI. Overall, we found that an increase in LUI resulted in communities dominated by plants with acquisitive leaf trait values. However, contrary to our expectations, secondary forests had more conservative trait values (i.e., lower specific leaf area) than mature and logged forest, probably because they were dominated by palm species. Functional variation peaked at intermediate land-use intensity (high coefficient of variation and low kurtosis), which included secondary forest but, unexpectedly, also agricultural land, which is an intensely managed system. The high functional variation of these systems is due to a combination of how response traits (and species) are filtered out by biophysical filters and how management practices introduced a range of exotic species and their trait values into the local species pool. Our results showed that, at local scales and depending on prevailing environmental and management practices, LUI does not necessarily result in communities with more acquisitive trait values or with less functional variation. Instead of the widely expected negative impacts of LUI on plant diversity, we found varying responses of functional variation, with possible repercussions on many ecosystem services. These findings provide a background for actively mitigating negative effects of LUI while meeting the needs of local communities that rely mainly on provisioning ecosystem services for their livelihoods.
Collapse
|
23
|
García-Palacios P, Prieto I, Ourcival JM, Hättenschwiler S. Disentangling the Litter Quality and Soil Microbial Contribution to Leaf and Fine Root Litter Decomposition Responses to Reduced Rainfall. Ecosystems 2015. [DOI: 10.1007/s10021-015-9946-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
24
|
Mason CM, Donovan LA. Evolution of the leaf economics spectrum in herbs: Evidence from environmental divergences in leaf physiology acrossHelianthus(Asteraceae). Evolution 2015; 69:2705-20. [DOI: 10.1111/evo.12768] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 08/19/2015] [Accepted: 08/23/2015] [Indexed: 12/15/2022]
Affiliation(s)
- Chase M. Mason
- Department of Plant Biology; University of Georgia; Athens Georgia 30602
| | - Lisa A. Donovan
- Department of Plant Biology; University of Georgia; Athens Georgia 30602
| |
Collapse
|
25
|
Martin AR, Isaac ME. REVIEW: Plant functional traits in agroecosystems: a blueprint for research. J Appl Ecol 2015. [DOI: 10.1111/1365-2664.12526] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Adam R. Martin
- Department of Physical and Environmental Sciences and Centre for Critical Development Studies; University of Toronto Scarborough; 1265 Military Trail Toronto ON M1C 1A4 Canada
| | - Marney E. Isaac
- Department of Physical and Environmental Sciences and Centre for Critical Development Studies; University of Toronto Scarborough; 1265 Military Trail Toronto ON M1C 1A4 Canada
| |
Collapse
|
26
|
Milla R, Osborne CP, Turcotte MM, Violle C. Plant domestication through an ecological lens. Trends Ecol Evol 2015; 30:463-9. [DOI: 10.1016/j.tree.2015.06.006] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/05/2015] [Accepted: 06/08/2015] [Indexed: 01/20/2023]
|
27
|
Turcotte MM, Lochab AK, Turley NE, Johnson MTJ. Plant domestication slows pest evolution. Ecol Lett 2015; 18:907-15. [DOI: 10.1111/ele.12467] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 04/20/2015] [Accepted: 05/27/2015] [Indexed: 12/28/2022]
Affiliation(s)
- Martin M. Turcotte
- Department of Biology; University of Toronto at Mississauga; Mississauga ON L5L 1C6 Canada
- Institute of Integrative Biology; ETH Zürich; Universitätstrasse 16; Zürich 8092 Switzerland
| | - Amaneet K. Lochab
- Department of Biology; University of Toronto at Mississauga; Mississauga ON L5L 1C6 Canada
| | - Nash E. Turley
- Department of Biology; University of Toronto at Mississauga; Mississauga ON L5L 1C6 Canada
- Department of Plant Biology; Michigan State University; East Lansing MI 48824-1312 USA
| | - Marc T. J. Johnson
- Department of Biology; University of Toronto at Mississauga; Mississauga ON L5L 1C6 Canada
| |
Collapse
|
28
|
Tribouillois H, Fort F, Cruz P, Charles R, Flores O, Garnier E, Justes E. A functional characterisation of a wide range of cover crop species: growth and nitrogen acquisition rates, leaf traits and ecological strategies. PLoS One 2015; 10:e0122156. [PMID: 25789485 PMCID: PMC4366015 DOI: 10.1371/journal.pone.0122156] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 02/08/2015] [Indexed: 11/18/2022] Open
Abstract
Cover crops can produce ecosystem services during the fallow period, as reducing nitrate leaching and producing green manure. Crop growth rate (CGR) and crop nitrogen acquisition rate (CNR) can be used as two indicators of the ability of cover crops to produce these services in agrosystems. We used leaf functional traits to characterise the growth strategies of 36 cover crops as an approach to assess their ability to grow and acquire N rapidly. We measured specific leaf area (SLA), leaf dry matter content (LDMC), leaf nitrogen content (LNC) and leaf area (LA) and we evaluated their relevance to characterise CGR and CNR. Cover crop species were positioned along the Leaf Economics Spectrum (LES), the SLA-LDMC plane, and the CSR triangle of plant strategies. LA was positively correlated with CGR and CNR, while LDMC was negatively correlated with CNR. All cover crops could be classified as resource-acquisitive species from their relative position on the LES and the SLA-LDMC plane. Most cover crops were located along the Competition/Ruderality axis in the CSR triangle. In particular, Brassicaceae species were classified as very competitive, which was consistent with their high CGR and CNR. Leaf functional traits, especially LA and LDMC, allowed to differentiate some cover crops strategies related to their ability to grow and acquire N. LDMC was lower and LNC was higher in cover crop than in wild species, pointing to an efficient acquisitive syndrome in the former, corresponding to the high resource availability found in agrosystems. Combining several leaf traits explained approximately half of the CGR and CNR variances, which might be considered insufficient to precisely characterise and rank cover crop species for agronomic purposes. We hypothesised that may be the consequence of domestication process, which has reduced the range of plant strategies and modified the leaf trait syndrome in cultivated species.
Collapse
Affiliation(s)
- Hélène Tribouillois
- INRA, UMR AGIR, 24 Chemin de Borde Rouge – Auzeville, CS 52627, 31326 Castanet-Tolosan Cedex, France
| | - Florian Fort
- INRA, UMR AGIR, 24 Chemin de Borde Rouge – Auzeville, CS 52627, 31326 Castanet-Tolosan Cedex, France
| | - Pablo Cruz
- INRA, UMR AGIR, 24 Chemin de Borde Rouge – Auzeville, CS 52627, 31326 Castanet-Tolosan Cedex, France
| | - Raphaël Charles
- Agroscope, Institute of Plant Production Sciences, 50 Route de Duillier, CP 1012, CH-1260 Nyon 1, Switzerland
| | - Olivier Flores
- Université de la Réunion/CIRAD, UMR—Peuplements Végétaux et Bioagresseurs en Milieu Tropical, 97410 Saint Pierre, France
| | - Eric Garnier
- Centre d’Ecologie Fonctionnelle et Evolutive (UMR 5175), CNRS - Université de Montpellier - Université Paul-Valéry Montpellier – EPHE, 1919, route de Mende, 34293 Montpellier Cedex 5, France
| | - Eric Justes
- INRA, UMR AGIR, 24 Chemin de Borde Rouge – Auzeville, CS 52627, 31326 Castanet-Tolosan Cedex, France
- * E-mail:
| |
Collapse
|
29
|
Soliveres S, Smit C, Maestre FT. Moving forward on facilitation research: response to changing environments and effects on the diversity, functioning and evolution of plant communities. Biol Rev Camb Philos Soc 2015; 90:297-313. [PMID: 24774563 PMCID: PMC4407973 DOI: 10.1111/brv.12110] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 04/02/2014] [Accepted: 04/04/2014] [Indexed: 12/22/2022]
Abstract
Once seen as anomalous, facilitative interactions among plants and their importance for community structure and functioning are now widely recognized. The growing body of modelling, descriptive and experimental studies on facilitation covers a wide variety of terrestrial and aquatic systems throughout the globe. However, the lack of a general body of theory linking facilitation among different types of organisms and biomes and their responses to environmental changes prevents further advances in our knowledge regarding the evolutionary and ecological implications of facilitation in plant communities. Moreover, insights gathered from alternative lines of inquiry may substantially improve our understanding of facilitation, but these have been largely neglected thus far. Despite over 15 years of research and debate on this topic, there is no consensus on the degree to which plant-plant interactions change predictably along environmental gradients (i.e. the stress-gradient hypothesis), and this hinders our ability to predict how plant-plant interactions may affect the response of plant communities to ongoing global environmental change. The existing controversies regarding the response of plant-plant interactions across environmental gradients can be reconciled when clearly considering and determining the species-specificity of the response, the functional or individual stress type, and the scale of interest (pairwise interactions or community-level response). Here, we introduce a theoretical framework to do this, supported by multiple lines of empirical evidence. We also discuss current gaps in our knowledge regarding how plant-plant interactions change along environmental gradients. These include the existence of thresholds in the amount of species-specific stress that a benefactor can alleviate, the linearity or non-linearity of the response of pairwise interactions across distance from the ecological optimum of the beneficiary, and the need to explore further how frequent interactions among multiple species are and how they change across different environments. We review the latest advances in these topics and provide new approaches to fill current gaps in our knowledge. We also apply our theoretical framework to advance our knowledge on the evolutionary aspects of plant facilitation, and the relative importance of facilitation, in comparison with other ecological processes, for maintaining ecosystem structure, functioning and dynamics. We build links between these topics and related fields, such as ecological restoration, woody encroachment, invasion ecology, ecological modelling and biodiversity-ecosystem-functioning relationships. By identifying commonalities and insights from alternative lines of research, we further advance our understanding of facilitation and provide testable hypotheses regarding the role of (positive) biotic interactions in the maintenance of biodiversity and the response of ecological communities to ongoing environmental changes.
Collapse
Affiliation(s)
- Santiago Soliveres
- Área de Biodiversidad y Conservación, Departamento de Biología y Geología, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, Calle Tulipán s/n, 28933 Móstoles, Spain
| | - Christian Smit
- Community and Conservation Ecology group, Centre for Evolutionary and Ecological Studies, University of Groningen, P.O. Box 11103, Nijenborg 7, 9700 CC Groningen, the Netherland
| | - Fernando T. Maestre
- Área de Biodiversidad y Conservación, Departamento de Biología y Geología, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, Calle Tulipán s/n, 28933 Móstoles, Spain
| |
Collapse
|
30
|
Turcotte MM, Turley NE, Johnson MTJ. The impact of domestication on resistance to two generalist herbivores across 29 independent domestication events. THE NEW PHYTOLOGIST 2014; 204:671-681. [PMID: 25039644 DOI: 10.1111/nph.12935] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 06/09/2014] [Indexed: 05/09/2023]
Abstract
The domestication of crops is among the most important innovations in human history. Here, we test the hypothesis that cultivation and artificial selection for increased productivity of crops reduced plant defenses against herbivores. We compared the performance of two economically important generalist herbivores - the leaf-chewing beet armyworm (Spodoptera exigua) and the phloem-feeding green peach aphid (Myzus persicae) - across 29 crop species and their closely related wild relatives. We also measured putative morphological and chemical defensive traits and correlated them with herbivore performance. We show that, on average, domestication significantly reduced resistance to S. exigua, but not M. persicae, and that most independent domestication events did not cause differences in resistance to either herbivore. In addition, we found that multiple plant traits predicted resistance to S. exigua and M. persicae, and that domestication frequently altered the strength and direction of correlations between these traits and herbivore performance. Our results show that domestication can alter plant defenses, but does not cause strong allocation tradeoffs as predicted by plant defense theory. These results have important implications for understanding the evolutionary ecology of species interactions and for the search for potential resistance traits to be targeted in crop breeding.
Collapse
Affiliation(s)
- Martin M Turcotte
- Department of Biology, University of Toronto-Mississauga, Mississauga, ON, L5L 1C6, Canada
| | - Nash E Turley
- Department of Biology, University of Toronto-Mississauga, Mississauga, ON, L5L 1C6, Canada
| | - Marc T J Johnson
- Department of Biology, University of Toronto-Mississauga, Mississauga, ON, L5L 1C6, Canada
| |
Collapse
|
31
|
Membrane lipid remodelling of Meconopsis racemosa after its introduction into lowlands from an alpine environment. PLoS One 2014; 9:e106614. [PMID: 25184635 PMCID: PMC4153668 DOI: 10.1371/journal.pone.0106614] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 08/05/2014] [Indexed: 11/22/2022] Open
Abstract
Membrane lipids, which determine the integrity and fluidity of membranes, are sensitive to environmental changes. The influence of stresses, such as cold and phosphorus deficiency, on lipid metabolism is well established. However, little is known about how plant lipid profiles change in response to environmental changes during introduction, especially when plants are transferred from extreme conditions to moderate ones. Using a lipidomics approach, we profiled the changes in glycerolipid molecules upon the introduction of the alpine ornamental species Meconopsis racemosa from the alpine region of Northwest Yunnan to the lowlands of Kunming, China. We found that the ratios of digalactosyldiacylglycerol/monogalactosyldiacylglycerol (DGDG/MGDG) and phosphatidylcholine/phosphatidylethanolamine (PC/PE) remained unchanged. Introduction of M. racemosa from an alpine environment to a lowland environment results in two major effects. The first is a decline in the level of plastidic lipids, especially galactolipids. The second, which concerns a decrease of the double-bond index (DBI) and could make the membrane more gel-like, is a response to high temperatures. Changes in the lipidome after M. racemosa was introduced to a lowland environment were the reverse of those that occur when plants are exposed to phosphorus deficiency or cold stress.
Collapse
|
32
|
Opportunities and Constraints of Promoting New Tree Crops—Lessons Learned from Jatropha. SUSTAINABILITY 2014. [DOI: 10.3390/su6063213] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
33
|
Cornwell WK, Cornelissen JHC. A broader perspective on plant domestication and nutrient and carbon cycling. THE NEW PHYTOLOGIST 2013; 198:331-333. [PMID: 23510185 DOI: 10.1111/nph.12219] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Affiliation(s)
- William K Cornwell
- Systems Ecology, Department of Ecological Science, Faculty of Earth and Life Sciences, VU University, Amsterdam, the Netherlands
| | - Johannes H C Cornelissen
- Systems Ecology, Department of Ecological Science, Faculty of Earth and Life Sciences, VU University, Amsterdam, the Netherlands
| |
Collapse
|