1
|
Chen C, Ge F, Du H, Sun Y, Sui Y, Tang S, Shen Z, Li X, Zhang H, Mei C, Xie P, Li C, Yang S, Wei H, Shi J, Zhang D, Zhao K, Yang D, Qiao Y, Luo Z, Zhang L, Khan A, Wodajo B, Wu Y, Xia R, Wu C, Liang C, Xie Q, Yu F. A comprehensive omics resource and genetic tools for functional genomics research and genetic improvement of sorghum. MOLECULAR PLANT 2025; 18:703-719. [PMID: 40055894 DOI: 10.1016/j.molp.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/05/2025] [Accepted: 03/05/2025] [Indexed: 04/04/2025]
Abstract
Sorghum, the fifth most important food crop globally, is a source of silage forage, fiber, syrup, and biofuel. Moreover, it is widely recognized as an ideal model crop for studying stress biology becaused of its ability to tolerate multiple abiotic stresses, including high salt-alkali conditions, drought, and heat. However, functional genomics studies on sorghum have been challenging, primarily due to the limited availability of genetic resources and effective genetic transformation techniques. In this study, we developed the Sorghum Genomics and Mutation Database (SGMD), aiming to advance the genetic understanding of sorghum. Our effort encompassed a telomere-to-telomere genome assembly of an inbred sorghum line, E048, yielding 729.46 Mb of sequence data representing the complete genome. Alongside the high-quality sequence data, a gene expression atlas covering 13 distinct tissues was developed. We constructed a saturated ethyl methane sulfonate mutant library comprising 13,226 independent mutants. Causal genes in chlorosis and leafy mutants from the library were easily identified by leveraging the MutMap and MutMap+ methodologies, demonstrating the powerful application of this library for identifying functional genes. To facilitate sorghum research, we performed whole-genome sequencing of 179 M2 mutant lines, resulting in 2,291,074 mutations that covered 97.54% of all genes. In addition, an Agrobacterium-mediated sorghum transformation platform was established for gene function studies. In summary, this work establishes a comprehensive platform and provides valuable resources for functional genomics investigations and genetic improvement of sorghum.
Collapse
Affiliation(s)
- Chengxuan Chen
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengyong Ge
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huilong Du
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei 071002, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanchang Sun
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yi Sui
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Sanyuan Tang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhengwei Shen
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xuefeng Li
- Cropedit Biotech Co., Ltd., Beijing 102206, China
| | - Huili Zhang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Cuo Mei
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Xie
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Li
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Sen Yang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huimin Wei
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiayang Shi
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dan Zhang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kangxu Zhao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dekai Yang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Qiao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zuyong Luo
- Cropedit Biotech Co., Ltd., Beijing 102206, China
| | - Li Zhang
- Cropedit Biotech Co., Ltd., Beijing 102206, China
| | - Aimal Khan
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baye Wodajo
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaorong Wu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ran Xia
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chuanyin Wu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chengzhi Liang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qi Xie
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Feifei Yu
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Mohanta R, Maiti P, Sharangi AB, Roy S, Hazra S, Chakraborty S, Ghorai S. Directed mutagenesis in fruit crops. 3 Biotech 2025; 15:104. [PMID: 40177007 PMCID: PMC11958931 DOI: 10.1007/s13205-025-04268-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 03/07/2025] [Indexed: 04/05/2025] Open
Abstract
Fruit crops are rich source of important vitamins, minerals, and dietary fibres. They are essential for global agriculture with respect to nutritional security. Globally, there is a rapid decline in the genetic base of fruit crops warranting breeding strategies to overcome the challenge. Applied mutagenesis has emerged as a viable approach for the focused enhancement of fruit crops utilizing precise genetic alterations to increase a variety of desirable characteristics. However, traditional mutagenesis using physical and chemical mutagens are majorly random in nature. Directed mutagenesis with advancements in genetic engineering and molecular technology allows precise manipulation of genes, which facilitates the efficient and precise knockout of target genes and the targeted insertion or modification of specific DNA sequences within the genome via homologous recombination (HR)-mediated gene replacement. This review presents an in-depth exploration of several directed mutagenesis techniques including CRISPR-Cas9, TILLING, TALEN, MutMap, and MutMap + emphasizing their transformative applications in fruit crops. It also discusses about space mutagenesis. These advanced techniques empower researchers to precisely introduce specific mutations into the genome, skilfully altering gene expression and reshaping protein function with remarkable precision. This review highlights successful examples of directed mutagenesis in a variety of fruit crops such as apples, grapes, citrus, and strawberries and elucidates the impact of directed mutagenesis on traits such as fruit size, colour, flavour, shelf-life, and resistance to diseases and environmental stresses.
Collapse
Affiliation(s)
- Rajdeep Mohanta
- Department of Agriculture, Brainware University, Barasat, Kolkata, 700125 West Bengal India
| | - Payal Maiti
- Department of Post-Harvest Management, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, 741252 West Bengal India
| | - Amit Baran Sharangi
- Department of Plantation Spices Medicinal & Aromatic Crops, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, 741252 West Bengal India
| | - Sourav Roy
- Department of Agriculture, Brainware University, Barasat, Kolkata, 700125 West Bengal India
| | - Soham Hazra
- Department of Agriculture, Brainware University, Barasat, Kolkata, 700125 West Bengal India
| | - Souvik Chakraborty
- Department of Post-Harvest Management, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, 741252 West Bengal India
| | - Subhadwip Ghorai
- Department of Agriculture, Brainware University, Barasat, Kolkata, 700125 West Bengal India
| |
Collapse
|
3
|
Pedrozo R, Osakina A, Huang Y, Nicolli CP, Wang L, Jia Y. Status on Genetic Resistance to Rice Blast Disease in the Post-Genomic Era. PLANTS (BASEL, SWITZERLAND) 2025; 14:807. [PMID: 40094775 PMCID: PMC11901910 DOI: 10.3390/plants14050807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/18/2025] [Accepted: 03/01/2025] [Indexed: 03/19/2025]
Abstract
Rice blast, caused by Magnaporthe oryzae, is a major threat to global rice production, necessitating the development of resistant cultivars through genetic improvement. Breakthroughs in rice genomics, including the complete genome sequencing of japonica and indica subspecies and the availability of various sequence-based molecular markers, have greatly advanced the genetic analysis of blast resistance. To date, approximately 122 blast-resistance genes have been identified, with 39 of these genes cloned and molecularly characterized. The application of these findings in marker-assisted selection (MAS) has significantly improved rice breeding, allowing for the efficient integration of multiple resistance genes into elite cultivars, enhancing both the durability and spectrum of resistance. Pangenomic studies, along with AI-driven tools like AlphaFold2, RoseTTAFold, and AlphaFold3, have further accelerated the identification and functional characterization of resistance genes, expediting the breeding process. Future rice blast disease management will depend on leveraging these advanced genomic and computational technologies. Emphasis should be placed on enhancing computational tools for the large-scale screening of resistance genes and utilizing gene editing technologies such as CRISPR-Cas9 for functional validation and targeted resistance enhancement and deployment. These approaches will be crucial for advancing rice blast resistance, ensuring food security, and promoting agricultural sustainability.
Collapse
Affiliation(s)
- Rodrigo Pedrozo
- USDA ARS Dale Bumpers National Rice Research Center, Stuttgart, AR 72160, USA; (R.P.); (A.O.); (Y.H.); (L.W.)
| | - Aron Osakina
- USDA ARS Dale Bumpers National Rice Research Center, Stuttgart, AR 72160, USA; (R.P.); (A.O.); (Y.H.); (L.W.)
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Yixiao Huang
- USDA ARS Dale Bumpers National Rice Research Center, Stuttgart, AR 72160, USA; (R.P.); (A.O.); (Y.H.); (L.W.)
| | - Camila Primieri Nicolli
- Entomology and Plant Pathology Department, University of Arkansas, Rice Research and Extension Center (RREC), Stuttgart, AR 72160, USA;
| | - Li Wang
- USDA ARS Dale Bumpers National Rice Research Center, Stuttgart, AR 72160, USA; (R.P.); (A.O.); (Y.H.); (L.W.)
| | - Yulin Jia
- USDA ARS Dale Bumpers National Rice Research Center, Stuttgart, AR 72160, USA; (R.P.); (A.O.); (Y.H.); (L.W.)
| |
Collapse
|
4
|
Fagundes WC, Huang YS, Häußler S, Langner T. From Lesions to Lessons: Two Decades of Filamentous Plant Pathogen Genomics. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2025; 38:187-205. [PMID: 39813026 DOI: 10.1094/mpmi-09-24-0115-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Many filamentous microorganisms, such as fungi and oomycetes, have evolved the ability to colonize plants and cause devastating crop diseases. Coevolutionary conflicts with their hosts have shaped the genomes of these plant pathogens. Over the past 20 years, genomics and genomics-enabled technologies have revealed remarkable diversity in genome size, architecture, and gene regulatory mechanisms. Technical and conceptual advances continue to provide novel insights into evolutionary dynamics, diversification of distinct genomic compartments, and facilitated molecular disease diagnostics. In this review, we discuss how genomics has advanced our understanding of genome organization and plant-pathogen coevolution and provide a perspective on future developments in the field. [Formula: see text] Copyright © 2025 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
| | - Yu-Seng Huang
- Max-Planck-Institute for Biology, 72076 Tübingen, Germany
| | - Sophia Häußler
- Max-Planck-Institute for Biology, 72076 Tübingen, Germany
| | | |
Collapse
|
5
|
Wiersma AT, Hamilton JP, Vaillancourt B, Brose J, Awale HE, Wright EM, Kelly JD, Buell CR. k-mer genome-wide association study for anthracnose and BCMV resistance in a Phaseolus vulgaris Andean Diversity Panel. THE PLANT GENOME 2024; 17:e20523. [PMID: 39397345 PMCID: PMC11628888 DOI: 10.1002/tpg2.20523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 10/15/2024]
Abstract
Access to broad genomic resources and closely linked marker-trait associations for common beans (Phaseolus vulgaris L.) can facilitate development of improved varieties with increased yield, improved market quality traits, and enhanced disease resistance. The emergence of virulent races of anthracnose (caused by Colletotrichum lindemuthianum) and bean common mosaic virus (BCMV) highlight the need for improved methods to identify and incorporate pan-genomic variation in breeding for disease resistance. We sequenced the P. vulgaris Andean Diversity Panel (ADP) and performed a genome-wide association study (GWAS) to identify associations for resistance to BCMV and eight races of anthracnose. Historical single nucleotide polymorphism (SNP)-chip and phenotypic data enabled a three-way comparison between SNP-chip, reference-based whole genome shotgun sequence (WGS)-SNP, and reference-free k-mer (short nucleotide subsequence) GWAS. Across all traits, there was excellent concordance between SNP-chip, WGS-SNP, and k-mer GWAS results-albeit at a much higher marker resolution for the WGS data sets. Significant k-mer haplotype variation revealed selection of the linked I-gene and Co-u traits in North American breeding lines and cultivars. Due to structural variation, only 9.1 to 47.3% of the significantly associated k-mers could be mapped to the reference genome. Thus, to determine the genetic context of cis-associated k-mers, we generated draft whole genome assemblies of four ADP accessions and identified an expanded local repertoire of disease resistance genes associated with resistance to anthracnose and BCMV. With access to variant data in the context of a pan-genome, high resolution mapping of agronomic traits for common bean is now feasible.
Collapse
Affiliation(s)
- Andrew T. Wiersma
- Archer Daniels Midland CompanyNew PlymouthIdahoUSA
- Department of Plant, Soil and Microbial SciencesMichigan State UniversityEast LansingMichiganUSA
- Plant Resilience InstituteMichigan State UniversityEast LansingMichiganUSA
| | - John P. Hamilton
- Department of Plant BiologyMichigan State UniversityEast LansingMichiganUSA
- Center for Applied Genetic TechnologiesUniversity of GeorgiaAthensGeorgiaUSA
- Department of Crop and Soil SciencesUniversity of GeorgiaAthensGeorgiaUSA
| | - Brieanne Vaillancourt
- Department of Plant BiologyMichigan State UniversityEast LansingMichiganUSA
- Center for Applied Genetic TechnologiesUniversity of GeorgiaAthensGeorgiaUSA
| | - Julia Brose
- Department of Plant BiologyMichigan State UniversityEast LansingMichiganUSA
- Center for Applied Genetic TechnologiesUniversity of GeorgiaAthensGeorgiaUSA
| | - Halima E. Awale
- Department of Plant, Soil and Microbial SciencesMichigan State UniversityEast LansingMichiganUSA
| | - Evan M. Wright
- Department of Plant, Soil and Microbial SciencesMichigan State UniversityEast LansingMichiganUSA
| | - James D. Kelly
- Department of Plant, Soil and Microbial SciencesMichigan State UniversityEast LansingMichiganUSA
| | - C. Robin Buell
- Plant Resilience InstituteMichigan State UniversityEast LansingMichiganUSA
- Department of Plant BiologyMichigan State UniversityEast LansingMichiganUSA
- Center for Applied Genetic TechnologiesUniversity of GeorgiaAthensGeorgiaUSA
- Department of Crop and Soil SciencesUniversity of GeorgiaAthensGeorgiaUSA
- Institute of Plant Breeding, Genetics & GenomicsUniversity of GeorgiaAthensGeorgiaUSA
- The Plant CenterUniversity of GeorgiaAthensGeorgiaUSA
| |
Collapse
|
6
|
Younas MU, Qasim M, Ahmad I, Feng Z, Iqbal R, Jiang X, Zuo S. Exploring the molecular mechanisms of rice blast resistance and advances in breeding for disease tolerance. Mol Biol Rep 2024; 51:1093. [PMID: 39460780 DOI: 10.1007/s11033-024-10031-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024]
Abstract
Rice blast, caused by the fungus Magnaporthe oryzae (syn. Pyricularia oryzae), is a major problem in rice cultivation and ranks among the most severe fungal diseases. Cloning and identifying resistance genes in rice, coupled with a comprehensive examination of the interaction between M. oryzae and rice, may provide insights into the mechanisms of rice disease resistance and facilitate the creation of new rice varieties with improved germplasm. These efforts are essential for protecting food security. This review examines the discovery of genes that confer resistance or susceptiblity to M. oryzae in rice over the last decade. It also discusses how knowledge of molecular mechanisms has been used in rice breeding and outlines key strategies for creating rice varieties resistant to this disease. The strategies discussed include gene pyramiding, molecular design breeding, editing susceptibility genes, and increasing expression of resistance genes through pathogen challenge. We address the prospects and challenges in breeding for rice blast resistance, emphasizing the need to fully exploit germplasm resources, employ cutting-edge methods to identify new resistance genes, and develop innovative breeding cultivars. Additionally, we underscore the importance of understanding the molecular basis of rice blast resistance and developing novel cultivars with broad-spectrum disease resistance.
Collapse
Affiliation(s)
- Muhammad Usama Younas
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Muhammad Qasim
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Irshad Ahmad
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Zhiming Feng
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan.
- Department of Life Sciences, Western Caspian University, Baku, Azerbaijan.
| | - Xiaohong Jiang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Shimin Zuo
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
7
|
Minoji K, Sakai T. A chromosome-scale genome assembly of Timorese crabgrass (Digitaria radicosa): a useful genomic resource for the Poaceae. G3 (BETHESDA, MD.) 2024; 14:jkae242. [PMID: 39387509 PMCID: PMC11631527 DOI: 10.1093/g3journal/jkae242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 10/09/2024] [Indexed: 10/15/2024]
Abstract
Timorese crabgrass (Digitaria radicosa) is a grass species commonly found in Southeast Asia and Oceania. Digitaria species have high intraspecific and interspecific genetic and phenotypic diversity, suggesting their potential usefulness as a genetic resource. However, as the only high-quality reference genome available is for a tetraploid Digitaria species, a reference genome of the diploid species D. radicosa would be a useful resource for genomic studies of Digitaria and Poaceae plants. Here, we present a chromosome-level genome assembly of D. radicosa and describe its genetic characteristics; we also illustrate its usefulness as a genomic resource for Poaceae. We constructed a 441.6 Mb draft assembly consisting of 61 contigs with an N50 contig length of 41.5 Mb, using PacBio HiFi long reads. We predicted 26,577 protein-coding genes, reaching a BUSCO score of 96.5%. To demonstrate the usefulness of the D. radicosa reference genome, we investigated the evolution of Digitaria species and the genetic diversity of Japanese Digitaria plants based on our new reference genome. We also defined the syntenic blocks between D. radicosa and 2 Poaceae crops, fonio and rice, and the diverse distribution of representative resistance genes in D. radicosa. The D. radicosa reference genome presented here should help elucidate the genetic relatedness of Digitaria species and the genetic diversity of Digitaria plants. In addition, the D. radicosa genome will be an important genomic resource for Poaceae genomics and crop breeding.
Collapse
Affiliation(s)
- Koki Minoji
- Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University, Muko, Kyoto 617-0001, Japan
| | - Toshiyuki Sakai
- Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University, Muko, Kyoto 617-0001, Japan
| |
Collapse
|
8
|
Sun L, Lai M, Ghouri F, Nawaz MA, Ali F, Baloch FS, Nadeem MA, Aasim M, Shahid MQ. Modern Plant Breeding Techniques in Crop Improvement and Genetic Diversity: From Molecular Markers and Gene Editing to Artificial Intelligence-A Critical Review. PLANTS (BASEL, SWITZERLAND) 2024; 13:2676. [PMID: 39409546 PMCID: PMC11478383 DOI: 10.3390/plants13192676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/08/2024] [Accepted: 09/22/2024] [Indexed: 10/20/2024]
Abstract
With the development of new technologies in recent years, researchers have made significant progress in crop breeding. Modern breeding differs from traditional breeding because of great changes in technical means and breeding concepts. Whereas traditional breeding initially focused on high yields, modern breeding focuses on breeding orientations based on different crops' audiences or by-products. The process of modern breeding starts from the creation of material populations, which can be constructed by natural mutagenesis, chemical mutagenesis, physical mutagenesis transfer DNA (T-DNA), Tos17 (endogenous retrotransposon), etc. Then, gene function can be mined through QTL mapping, Bulked-segregant analysis (BSA), Genome-wide association studies (GWASs), RNA interference (RNAi), and gene editing. Then, at the transcriptional, post-transcriptional, and translational levels, the functions of genes are described in terms of post-translational aspects. This article mainly discusses the application of the above modern scientific and technological methods of breeding and the advantages and limitations of crop breeding and diversity. In particular, the development of gene editing technology has contributed to modern breeding research.
Collapse
Affiliation(s)
- Lixia Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; (L.S.); (M.L.); (F.G.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Mingyu Lai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; (L.S.); (M.L.); (F.G.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Fozia Ghouri
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; (L.S.); (M.L.); (F.G.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Amjad Nawaz
- Education Scientific Center of Nanotechnology, Far Eastern Federal University, 690091 Vladivostok, Russia;
| | - Fawad Ali
- School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China;
| | - Faheem Shehzad Baloch
- Dapartment of Biotechnology, Faculty of Science, Mersin University, Mersin 33343, Türkiye;
| | - Muhammad Azhar Nadeem
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas 58140, Türkiye; (M.A.N.); (M.A.)
| | - Muhammad Aasim
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas 58140, Türkiye; (M.A.N.); (M.A.)
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; (L.S.); (M.L.); (F.G.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
9
|
Cheng X, Zhou G, Chen W, Tan L, Long Q, Cui F, Tan L, Zou G, Tan Y. Current status of molecular rice breeding for durable and broad-spectrum resistance to major diseases and insect pests. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:219. [PMID: 39254868 PMCID: PMC11387466 DOI: 10.1007/s00122-024-04729-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 08/24/2024] [Indexed: 09/11/2024]
Abstract
In the past century, there have been great achievements in identifying resistance (R) genes and quantitative trait loci (QTLs) as well as revealing the corresponding molecular mechanisms for resistance in rice to major diseases and insect pests. The introgression of R genes to develop resistant rice cultivars has become the most effective and eco-friendly method to control pathogens/insects at present. However, little attention has been paid to durable and broad-spectrum resistance, which determines the real applicability of R genes. Here, we summarize all the R genes and QTLs conferring durable and broad-spectrum resistance in rice to fungal blast, bacterial leaf blight (BLB), and the brown planthopper (BPH) in molecular breeding. We discuss the molecular mechanisms and feasible methods of improving durable and broad-spectrum resistance to blast, BLB, and BPH. We will particularly focus on pyramiding multiple R genes or QTLs as the most useful method to improve durability and broaden the disease/insect spectrum in practical breeding regardless of its uncertainty. We believe that this review provides useful information for scientists and breeders in rice breeding for multiple stress resistance in the future.
Collapse
Affiliation(s)
- Xiaoyan Cheng
- Jiangxi Tiandao Liangan Seed Industry Co., Ltd., 568 South Huancheng Rd., Yuanzhou Dist., Yichun, People's Republic of China
- National Engineering Research Center of Rice (Nanchang), Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, People's Republic of China
- College of Life Sciences and Resources and Environment, Yichun University, Yichun, People's Republic of China
| | - Guohua Zhou
- College of Life Sciences and Resources and Environment, Yichun University, Yichun, People's Republic of China
| | - Wei Chen
- Jiangxi Super-Rice Research and Development Center, Jiangxi Provincial Key Laboratory of Rice Germplasm Innovation and Breeding, Jiangxi Academy of Agricultural Sciences, National Engineering Research Center for Rice, Nanchang, People's Republic of China
| | - Lin Tan
- Jiangxi Tiandao Liangan Seed Industry Co., Ltd., 568 South Huancheng Rd., Yuanzhou Dist., Yichun, People's Republic of China
| | - Qishi Long
- Jiangxi Tiandao Liangan Seed Industry Co., Ltd., 568 South Huancheng Rd., Yuanzhou Dist., Yichun, People's Republic of China
| | - Fusheng Cui
- Yichun Academy of Sciences (Jiangxi Selenium-Rich Industry Research Institute), Yichun, People's Republic of China
| | - Lei Tan
- Jiangxi Tiandao Liangan Seed Industry Co., Ltd., 568 South Huancheng Rd., Yuanzhou Dist., Yichun, People's Republic of China
| | - Guoxing Zou
- National Engineering Research Center of Rice (Nanchang), Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, People's Republic of China.
| | - Yong Tan
- Jiangxi Tiandao Liangan Seed Industry Co., Ltd., 568 South Huancheng Rd., Yuanzhou Dist., Yichun, People's Republic of China.
- Jiangxi Super-Rice Research and Development Center, Jiangxi Provincial Key Laboratory of Rice Germplasm Innovation and Breeding, Jiangxi Academy of Agricultural Sciences, National Engineering Research Center for Rice, Nanchang, People's Republic of China.
| |
Collapse
|
10
|
Wang P, Abbas M, He J, Zhou L, Cheng H, Guo H. Advances in genome sequencing and artificially induced mutation provides new avenues for cotton breeding. FRONTIERS IN PLANT SCIENCE 2024; 15:1400201. [PMID: 39015293 PMCID: PMC11250495 DOI: 10.3389/fpls.2024.1400201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/10/2024] [Indexed: 07/18/2024]
Abstract
Cotton production faces challenges in fluctuating environmental conditions due to limited genetic variation in cultivated cotton species. To enhance the genetic diversity crucial for this primary fiber crop, it is essential to augment current germplasm resources. High-throughput sequencing has significantly impacted cotton functional genomics, enabling the creation of diverse mutant libraries and the identification of mutant functional genes and new germplasm resources. Artificial mutation, established through physical or chemical methods, stands as a highly efficient strategy to enrich cotton germplasm resources, yielding stable and high-quality raw materials. In this paper, we discuss the good foundation laid by high-throughput sequencing of cotton genome for mutant identification and functional genome, and focus on the construction methods of mutant libraries and diverse sequencing strategies based on mutants. In addition, the important functional genes identified by the cotton mutant library have greatly enriched the germplasm resources and promoted the development of functional genomes. Finally, an innovative strategy for constructing a cotton CRISPR mutant library was proposed, and the possibility of high-throughput screening of cotton mutants based on a UAV phenotyping platform was discussed. The aim of this review was to expand cotton germplasm resources, mine functional genes, and develop adaptable materials in a variety of complex environments.
Collapse
Affiliation(s)
- Peilin Wang
- Nanfan Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Sanya, Hainan, China
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mubashir Abbas
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianhan He
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Hebei Key Laboratory of Crop Genetics and Breeding, Shijiazhuang, Hebei, China
| | - Lili Zhou
- Yazhouwan National Laboratory, Sanya, Hainan, China
| | - Hongmei Cheng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huiming Guo
- Nanfan Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Sanya, Hainan, China
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
11
|
Yuan Y, Lyu B, Qi J, Liu X, Wang Y, Delaplace P, Du Y. A novel regulator of wheat tillering LT1 identified by using an upgraded BSA method, uni-BSA. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:47. [PMID: 38939116 PMCID: PMC11199477 DOI: 10.1007/s11032-024-01484-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/04/2024] [Indexed: 06/29/2024]
Abstract
Branching/tillering is a critical process for plant architecture and grain yield. However, Branching is intricately controlled by both endogenous and environmental factors. The underlying mechanisms of tillering in wheat remain poorly understood. In this study, we identified Less Tiller 1 (LT1) as a novel regulator of wheat tillering using an enhanced bulked segregant analysis (BSA) method, uni-BSA. This method effectively reduces alignment noise caused by the high repetitive sequence content in the wheat genome. Loss-of-function of LT1 results in fewer tillers due to defects in axillary meristem initiation and bud outgrowth. We mapped LT1 to a 6 Mb region on the chromosome 2D short arm and validated a nucleotide-binding (NB) domain encoding gene as LT1 using CRISPR/Cas9. Furthermore, the lower sucrose concentration in the shoot bases of lt1 might result in inadequate bud outgrowth due to disturbances in the sucrose biosynthesis pathways. Co-expression analysis suggests that LT1 controls tillering by regulating TaROX/TaLAX1, the ortholog of the Arabidopsis tiller regulator REGULATOR OF AXILLARY MERISTEM FORMATION (ROX) or the rice axillary meristem regulator LAX PANICLE1 (LAX1). This study not only offers a novel genetic resource for cultivating optimal plant architecture but also underscores the importance of our innovative BSA method. This uni-BSA method enables the swift and precise identification of pivotal genes associated with significant agronomic traits, thereby hastening gene cloning and crop breeding processes in wheat. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01484-7.
Collapse
Affiliation(s)
- Yundong Yuan
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
- Plant Sciences, Gembloux Agro-Bio Tech, University of Liège, Liège, Belgium
| | - Bo Lyu
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | - Juan Qi
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | - Xin Liu
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | - Yuanzhi Wang
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | - Pierre Delaplace
- Plant Sciences, Gembloux Agro-Bio Tech, University of Liège, Liège, Belgium
| | - Yanfang Du
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| |
Collapse
|
12
|
Jiang L, Zhang X, Zhao Y, Zhu H, Fu Q, Lu X, Huang W, Yang X, Zhou X, Wu L, Yang A, He X, Dong M, Peng Z, Yang J, Guo L, Wen J, Huang H, Xie Y, Zhu S, Li C, He X, Zhu Y, Friml J, Du Y. Phytoalexin sakuranetin attenuates endocytosis and enhances resistance to rice blast. Nat Commun 2024; 15:3437. [PMID: 38653755 DOI: 10.1038/s41467-024-47746-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
Phytoalexin sakuranetin functions in resistance against rice blast. However, the mechanisms underlying the effects of sakuranetin remains elusive. Here, we report that rice lines expressing resistance (R) genes were found to contain high levels of sakuranetin, which correlates with attenuated endocytic trafficking of plasma membrane (PM) proteins. Exogenous and endogenous sakuranetin attenuates the endocytosis of various PM proteins and the fungal effector PWL2. Moreover, accumulation of the avirulence protein AvrCO39, resulting from uptake into rice cells by Magnaporthe oryzae, was reduced following treatment with sakuranetin. Pharmacological manipulation of clathrin-mediated endocytic (CME) suggests that this pathway is targeted by sakuranetin. Indeed, attenuation of CME by sakuranetin is sufficient to convey resistance against rice blast. Our data reveals a mechanism of rice against M. oryzae by increasing sakuranetin levels and repressing the CME of pathogen effectors, which is distinct from the action of many R genes that mainly function by modulating transcription.
Collapse
Affiliation(s)
- Lihui Jiang
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
| | - Xiaoyan Zhang
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
| | - Yiting Zhao
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
- Shanxi Agricultural University/Shanxi Academy of Agricultural Sciences. The Industrial Crop Institute, Fenyang, 032200, China
| | - Haiyan Zhu
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
| | - Qijing Fu
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
| | - Xinqi Lu
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
| | - Wuying Huang
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
| | - Xinyue Yang
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
| | - Xuan Zhou
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
| | - Lixia Wu
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
| | - Ao Yang
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
| | - Xie He
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
| | - Man Dong
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
| | - Ziai Peng
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
| | - Jing Yang
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| | - Liwei Guo
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| | - Jiancheng Wen
- Rice Research Institute, Yunnan Agricultural University, Kunming, 650201, China
| | - Huichuan Huang
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| | - Yong Xie
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| | - Shusheng Zhu
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| | - Chengyun Li
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| | - Xiahong He
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China
| | - Youyong Zhu
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| | - Jiří Friml
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Yunlong Du
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China.
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China.
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
13
|
Zeng P, Xie T, Shen J, Liang T, Yin L, Liu K, He Y, Chen M, Tang H, Chen S, Shabala S, Zhang H, Cheng J. Potassium transporter OsHAK9 regulates seed germination under salt stress by preventing gibberellin degradation through mediating OsGA2ox7 in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:731-748. [PMID: 38482956 DOI: 10.1111/jipb.13642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 02/27/2024] [Indexed: 04/11/2024]
Abstract
Soil salinity has a major impact on rice seed germination, severely limiting rice production. Herein, a rice germination defective mutant under salt stress (gdss) was identified by using chemical mutagenesis. The GDSS gene was detected via MutMap and shown to encode potassium transporter OsHAK9. Phenotypic analysis of complementation and mutant lines demonstrated that OsHAK9 was an essential regulator responsible for seed germination under salt stress. OsHAK9 is highly expressed in germinating seed embryos. Ion contents and non-invasive micro-test technology results showed that OsHAK9 restricted K+ efflux in salt-exposed germinating seeds for the balance of K+/Na+. Disruption of OsHAK9 significantly reduced gibberellin 4 (GA4) levels, and the germination defective phenotype of oshak9a was partly rescued by exogenous GA3 treatment under salt stress. RNA sequencing (RNA-seq) and real-time quantitative polymerase chain reaction analysis demonstrated that the disruption of OsHAK9 improved the GA-deactivated gene OsGA2ox7 expression in germinating seeds under salt stress, and the expression of OsGA2ox7 was significantly inhibited by salt stress. Null mutants of OsGA2ox7 created using clustered, regularly interspaced, short palindromic repeat (CRISPR)/CRISPR-associated nuclease 9 approach displayed a dramatically increased seed germination ability under salt stress. Overall, our results highlight that OsHAK9 regulates seed germination performance under salt stress involving preventing GA degradation by mediating OsGA2ox7, which provides a novel clue about the relationship between GA and OsHAKs in rice.
Collapse
Affiliation(s)
- Peng Zeng
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, 528000, China
| | - Ting Xie
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiaxin Shen
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Taokai Liang
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, 528000, China
| | - Lu Yin
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kexin Liu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ying He
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mingming Chen
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haijuan Tang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sunlu Chen
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sergey Shabala
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, 528000, China
- School of Biological Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - Hongsheng Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinping Cheng
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
14
|
Liu X, Xu Z, Feng B, Zhou Q, Guo S, Liao S, Ou Y, Fan X, Wang T. Dissection of a novel major stable QTL on chromosome 7D for grain hardness and its breeding value estimation in bread wheat. FRONTIERS IN PLANT SCIENCE 2024; 15:1356687. [PMID: 38362452 PMCID: PMC10867189 DOI: 10.3389/fpls.2024.1356687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 01/18/2024] [Indexed: 02/17/2024]
Abstract
Grain hardness (Gh) is important for wheat processing and end-product quality. Puroindolines polymorphism explains over 60% of Gh variation and the novel genetic factors remain to be exploited. In this study, a total of 153 quantitative trait loci (QTLs), clustered into 12 genomic intervals (C1-C12), for 13 quality-related traits were identified using a recombinant inbred line population derived from the cross of Zhongkemai138 (ZKM138) and Chuanmai44 (CM44). Among them, C7 (harboring eight QTLs for different quality-related traits) and C8 (mainly harboring QGh.cib-5D.1 for Gh) were attributed to the famous genes, Rht-D1 and Pina, respectively, indicating that the correlation of involved traits was supported by the pleotropic or linked genes. Notably, a novel major stable QTL for Gh was detected in the C12, QGh.cib-7D, with ZKM138-derived allele increasing grain hardness, which was simultaneously mapped by the BSE-Seq method. The geographic pattern and transmissibility of this locus revealed that the increasing-Gh allele is highly frequently present in 85.79% of 373 worldwide wheat varieties and presented 99.31% transmissibility in 144 ZKM138-derivatives, indicating the non-negative effect on yield performance and that its indirect passive selection has happened during the actual breeding process. Thus, the contribution of this new Gh-related locus was highlighted in consideration of improving the efficiency and accuracy of the soft/hard material selection in the molecular marker-assisted process. Further, TraesCS7D02G099400, TraesCS7D02G098000, and TraesCS7D02G099500 were initially deduced to be the most potential candidate genes of QGh.cib-7D. Collectively, this study provided valuable information of elucidating the genetic architecture of Gh for wheat quality improvement.
Collapse
Affiliation(s)
- Xiaofeng Liu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- Insitute of Plant Protection, Sichuan Academy of Agricultural Science, Chengdu, China
| | - Zhibin Xu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Bo Feng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Qiang Zhou
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Shaodan Guo
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Simin Liao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuhao Ou
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoli Fan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Tao Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
15
|
Wei YY, Liang S, Zhu XM, Liu XH, Lin FC. Recent Advances in Effector Research of Magnaporthe oryzae. Biomolecules 2023; 13:1650. [PMID: 38002332 PMCID: PMC10669146 DOI: 10.3390/biom13111650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Recalcitrant rice blast disease is caused by Magnaporthe oryzae, which has a significant negative economic reverberation on crop productivity. In order to induce the disease onto the host, M. oryzae positively generates many types of small secreted proteins, here named as effectors, to manipulate the host cell for the purpose of stimulating pathogenic infection. In M. oryzae, by engaging with specific receptors on the cell surface, effectors activate signaling channels which control an array of cellular activities, such as proliferation, differentiation and apoptosis. The most recent research on effector identification, classification, function, secretion, and control mechanism has been compiled in this review. In addition, the article also discusses directions and challenges for future research into an effector in M. oryzae.
Collapse
Affiliation(s)
- Yun-Yun Wei
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China;
| | - Shuang Liang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (S.L.); (X.-M.Z.)
| | - Xue-Ming Zhu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (S.L.); (X.-M.Z.)
| | - Xiao-Hong Liu
- Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Fu-Cheng Lin
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (S.L.); (X.-M.Z.)
- Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
16
|
Wang X, Han L, Li J, Shang X, Liu Q, Li L, Zhang H. Next-generation bulked segregant analysis for Breeding 4.0. Cell Rep 2023; 42:113039. [PMID: 37651230 DOI: 10.1016/j.celrep.2023.113039] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/11/2023] [Accepted: 08/10/2023] [Indexed: 09/02/2023] Open
Abstract
Functional cloning and manipulation of genes controlling various agronomic traits are important for boosting crop production. Although bulked segregant analysis (BSA) is an efficient method for functional cloning, its low throughput cannot satisfy the current need for crop breeding and food security. Here, we review the rationale and development of conventional BSA and discuss its strengths and drawbacks. We then propose next-generation BSA (NG-BSA) integrating multiple cutting-edge technologies, including high-throughput phenotyping, biological big data, and the use of machine learning. NG-BSA increases the resolution of genetic mapping and throughput for cloning quantitative trait genes (QTGs) and optimizes candidate gene selection while providing a means to elucidate the interaction network of QTGs. The ability of NG-BSA to efficiently batch-clone QTGs makes it an important tool for dissecting molecular mechanisms underlying various traits, as well as for the improvement of Breeding 4.0 strategy, especially in targeted improvement and population improvement of crops.
Collapse
Affiliation(s)
- Xi Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Linqian Han
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Juan Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xiaoyang Shang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Qian Liu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lin Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
| | - Hongwei Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
17
|
Sun H, Yuan Z, Li F, Zhang Q, Peng T, Li J, Du Y. Mapping of qChalk1 controlling grain chalkiness in japonica rice. Mol Biol Rep 2023:10.1007/s11033-023-08537-8. [PMID: 37231212 DOI: 10.1007/s11033-023-08537-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Rice grain chalkiness is an undesirable characteristic that affects grain quality. The aim of this study was to map QTLs controlling grain chalkiness in japonica rice. METHODS AND RESULTS In this study, two japonica rice cultivars with similar grain shapes but different grain chalkiness rates were crossed and the F2 and BC1F2 populations were subjected to QTL-seq analysis to map the QTLs controlling the grain chalkiness rate. QTL-seq analysis revealed SNP index differences on chromosome 1 in both of the segregating populations. Using polymorphic markers between the two parents, QTL mapping was conducted on 213 individual plants in the BC1F2 population. QTL mapping confined a QTL controlling grain chalkiness, qChalk1, to a 1.1 Mb genomic region on chromosome 1. qChalk1 explained 19.7% of the phenotypic variation. CONCLUSION A QTL controlling grain chalkiness qChalk1 was detected in both F2 and BC1F2 segregating populations by QTL-Seq and QTL mapping methods. This result would be helpful for further cloning of the genes controlling grain chalkiness in japonica rice.
Collapse
Affiliation(s)
- Hongzheng Sun
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, People's Republic of China
| | - Zeke Yuan
- Henan Zhumadian Agricultural School, Zhumadian, 463000, People's Republic of China
| | - Fuhao Li
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, People's Republic of China
| | - Qianqian Zhang
- Xinxiang Academy of Agricultural Sciences, Xinxiang, 453004, People's Republic of China
| | - Ting Peng
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, People's Republic of China
| | - Junzhou Li
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, People's Republic of China
| | - Yanxiu Du
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, People's Republic of China.
| |
Collapse
|
18
|
Schoen A, Yadav I, Wu S, Poland J, Rawat N, Tiwari V. Identification and high-resolution mapping of a novel tiller number gene (tin6) by combining forward genetics screen and MutMap approach in bread wheat. Funct Integr Genomics 2023; 23:157. [PMID: 37171682 DOI: 10.1007/s10142-023-01084-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/02/2023] [Accepted: 05/02/2023] [Indexed: 05/13/2023]
Abstract
Wheat (Triticum aestivum) is one of the most important food crops worldwide, providing up to 20% of the caloric intake per day. Developing high-yielding wheat cultivars with tolerance against abiotic and biotic stresses is important to keep up with the increasing human population. Tiller number is one of the major yield-related traits, directly affecting the number of grains produced per plant; however, only a small number of QTL and underlining genes have been identified for this important factor. Identification of novel genetic variation underlying contrasting traits and their precise genetic mapping in wheat is considered difficult due to the complexity and size of the genome; however, advancements in genomic resources have made efficient gene localization more possible. In this study, we report the characterization of a novel tillering number gene using a mutant identified in the forward genetic screen of an ethyl methane sulfonate (EMS)-treated population of cv. "Jagger." By crossing the low tillering mutant with the Jagger wild-type plant, we generated an F2 population and used the MutMap approach to identify a novel physical interval on 11 Mb on chromosome 2DS. Using an F2 population of 442 gametes and polymorphic SNP markers, we were able to delineate the tin6 locus to a 2.1 Mb region containing 22 candidate genes.
Collapse
Affiliation(s)
- Adam Schoen
- Department of Plant Sciences and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Inderjit Yadav
- Department of Plant Sciences and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Shuangye Wu
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Jesse Poland
- King Abdullah University of Science and Technology, Tuwal, Saudi Arabia
| | - Nidhi Rawat
- Department of Plant Sciences and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Vijay Tiwari
- Department of Plant Sciences and Landscape Architecture, University of Maryland, College Park, MD, USA.
| |
Collapse
|
19
|
Vo KTX, Yi Q, Jeon JS. Engineering effector-triggered immunity in rice: Obstacles and perspectives. PLANT, CELL & ENVIRONMENT 2023; 46:1143-1156. [PMID: 36305486 DOI: 10.1111/pce.14477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Improving rice immunity is one of the most effective approaches to reduce yield loss by biotic factors, with the aim of increasing rice production by 2050 amidst limited natural resources. Triggering a fast and strong immune response to pathogens, effector-triggered immunity (ETI) has intrigued scientists to intensively study and utilize the mechanisms for engineering highly resistant plants. The conservation of ETI components and mechanisms across species enables the use of ETI components to generate broad-spectrum resistance in plants. Numerous efforts have been made to introduce new resistance (R) genes, widen the effector recognition spectrum and generate on-demand R genes. Although engineering ETI across plant species is still associated with multiple challenges, previous attempts have provided an enhanced understanding of ETI mechanisms. Here, we provide a survey of recent reports in the engineering of rice R genes. In addition, we suggest a framework for future studies of R gene-effector interactions, including genome-scale investigations in both rice and pathogens, followed by structural studies of R proteins and effectors, and potential strategies to use important ETI components to improve rice immunity.
Collapse
Affiliation(s)
- Kieu Thi Xuan Vo
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin, Korea
| | - Qi Yi
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin, Korea
| | - Jong-Seong Jeon
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin, Korea
| |
Collapse
|
20
|
Approaches to Reduce Rice Blast Disease Using Knowledge from Host Resistance and Pathogen Pathogenicity. Int J Mol Sci 2023; 24:ijms24054985. [PMID: 36902415 PMCID: PMC10003181 DOI: 10.3390/ijms24054985] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/23/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Rice is one of the staple foods for the majority of the global population that depends directly or indirectly on it. The yield of this important crop is constantly challenged by various biotic stresses. Rice blast, caused by Magnaporthe oryzae (M. oryzae), is a devastating rice disease causing severe yield losses annually and threatening rice production globally. The development of a resistant variety is one of the most effective and economical approaches to control rice blast. Researchers in the past few decades have witnessed the characterization of several qualitative resistance (R) and quantitative resistance (qR) genes to blast disease as well as several avirulence (Avr) genes from the pathogen. These provide great help for either breeders to develop a resistant variety or pathologists to monitor the dynamics of pathogenic isolates, and ultimately to control the disease. Here, we summarize the current status of the isolation of R, qR and Avr genes in the rice-M. oryzae interaction system, and review the progresses and problems of these genes utilized in practice for reducing rice blast disease. Research perspectives towards better managing blast disease by developing a broad-spectrum and durable blast resistance variety and new fungicides are also discussed.
Collapse
|
21
|
Kovi B, Sakai T, Abe A, Kanzaki E, Terauchi R, Shimizu M. Isolation of Pikps, an allele of Pik, from the aus rice cultivar Shoni. Genes Genet Syst 2023; 97:229-235. [PMID: 36624071 DOI: 10.1266/ggs.22-00002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Blast disease caused by the filamentous fungus Pyricularia oryzae (syn. Magnaporthe oryzae) is one of the most destructive diseases of rice (Oryza sativa L.) around the globe. An aus cultivar, Shoni, showed resistance against at least four Japanese P. oryzae isolates. To understand Shoni's resistance against the P. oryzae isolate Naga69-150, genetic analysis was carried out using recombinant inbred lines developed by a cross between Shoni and the japonica cultivar Hitomebore, which is susceptible to Naga69-150. The result indicated that the resistance was controlled by a single locus, which was named Pi-Shoni. A QTL analysis identified Pi-Shoni as being located in the telomeric region of chromosome 11. A candidate gene approach in the region indicated that Pi-Shoni corresponds to the previously cloned Pik locus, and we named this allele Pikps. Loss of gene function mediated by RNA interference demonstrated that a head-to-head-orientated pair of NBS-LRR receptor genes (Pikps-1 and Pikps-2) are required for the Pikps-mediated resistance. Amino acid sequence comparison showed that Pikps-1 is 99% identical to Pikp-1, while Pikps-2 is identical to Pikp-2. Pikps-1 had one amino acid substitution (Pro351Ser) in the NBS domain as compared to Pikp-1. The recognition specificity of Pikps against known AVR-Pik alleles is identical to that of Pikp.
Collapse
Affiliation(s)
- Basavaraj Kovi
- Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University
| | - Toshiyuki Sakai
- Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University
| | | | | | - Ryohei Terauchi
- Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University.,Iwate Biotechnology Research Center
| | | |
Collapse
|
22
|
Vegetable biology and breeding in the genomics era. SCIENCE CHINA. LIFE SCIENCES 2023; 66:226-250. [PMID: 36508122 DOI: 10.1007/s11427-022-2248-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/17/2022] [Indexed: 12/14/2022]
Abstract
Vegetable crops provide a rich source of essential nutrients for humanity and represent critical economic values to global rural societies. However, genetic studies of vegetable crops have lagged behind major food crops, such as rice, wheat and maize, thereby limiting the application of molecular breeding. In the past decades, genome sequencing technologies have been increasingly applied in genetic studies and breeding of vegetables. In this review, we recapitulate recent progress on reference genome construction, population genomics and the exploitation of multi-omics datasets in vegetable crops. These advances have enabled an in-depth understanding of their domestication and evolution, and facilitated the genetic dissection of numerous agronomic traits, which jointly expedites the exploitation of state-of-the-art biotechnologies in vegetable breeding. We further provide perspectives of further directions for vegetable genomics and indicate how the ever-increasing omics data could accelerate genetic, biological studies and breeding in vegetable crops.
Collapse
|
23
|
Sugihara Y, Abe Y, Takagi H, Abe A, Shimizu M, Ito K, Kanzaki E, Oikawa K, Kourelis J, Langner T, Win J, Białas A, Lüdke D, Contreras MP, Chuma I, Saitoh H, Kobayashi M, Zheng S, Tosa Y, Banfield MJ, Kamoun S, Terauchi R, Fujisaki K. Disentangling the complex gene interaction networks between rice and the blast fungus identifies a new pathogen effector. PLoS Biol 2023; 21:e3001945. [PMID: 36656825 PMCID: PMC9851567 DOI: 10.1371/journal.pbio.3001945] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/05/2022] [Indexed: 01/20/2023] Open
Abstract
Studies focused solely on single organisms can fail to identify the networks underlying host-pathogen gene-for-gene interactions. Here, we integrate genetic analyses of rice (Oryza sativa, host) and rice blast fungus (Magnaporthe oryzae, pathogen) and uncover a new pathogen recognition specificity of the rice nucleotide-binding domain and leucine-rich repeat protein (NLR) immune receptor Pik, which mediates resistance to M. oryzae expressing the avirulence effector gene AVR-Pik. Rice Piks-1, encoded by an allele of Pik-1, recognizes a previously unidentified effector encoded by the M. oryzae avirulence gene AVR-Mgk1, which is found on a mini-chromosome. AVR-Mgk1 has no sequence similarity to known AVR-Pik effectors and is prone to deletion from the mini-chromosome mediated by repeated Inago2 retrotransposon sequences. AVR-Mgk1 is detected by Piks-1 and by other Pik-1 alleles known to recognize AVR-Pik effectors; recognition is mediated by AVR-Mgk1 binding to the integrated heavy metal-associated (HMA) domain of Piks-1 and other Pik-1 alleles. Our findings highlight how complex gene-for-gene interaction networks can be disentangled by applying forward genetics approaches simultaneously to the host and pathogen. We demonstrate dynamic coevolution between an NLR integrated domain and multiple families of effector proteins.
Collapse
Affiliation(s)
- Yu Sugihara
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
- Crop Evolution Laboratory, Kyoto University, Mozume, Muko, Kyoto, Japan
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| | - Yoshiko Abe
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
| | - Hiroki Takagi
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
| | - Akira Abe
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
| | - Motoki Shimizu
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
| | - Kazue Ito
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
| | - Eiko Kanzaki
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
| | - Kaori Oikawa
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
| | - Jiorgos Kourelis
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| | - Thorsten Langner
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| | - Joe Win
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| | - Aleksandra Białas
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| | - Daniel Lüdke
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| | | | - Izumi Chuma
- Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | | | | | - Shuan Zheng
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
- Crop Evolution Laboratory, Kyoto University, Mozume, Muko, Kyoto, Japan
| | - Yukio Tosa
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Mark J. Banfield
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| | - Ryohei Terauchi
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
- Crop Evolution Laboratory, Kyoto University, Mozume, Muko, Kyoto, Japan
| | - Koki Fujisaki
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
| |
Collapse
|
24
|
Cheng W, Wang Z, Xu F, Lu G, Su Y, Wu Q, Wang T, Que Y, Xu L. Screening of Candidate Genes Associated with Brown Stripe Resistance in Sugarcane via BSR-seq Analysis. Int J Mol Sci 2022; 23:15500. [PMID: 36555141 PMCID: PMC9778799 DOI: 10.3390/ijms232415500] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/30/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022] Open
Abstract
Sugarcane brown stripe (SBS), caused by the fungal pathogen Helminthosporium stenospilum, is one of the most serious threats to sugarcane production. However, its outbreaks and epidemics require suitable climatic conditions, resulting in the inefficient improvement of the SBS resistance by phenotype selection. The sugarcane F1 population of SBS-resistant YT93-159 × SBS-susceptible ROC22 was used for constructing the bulks. Bulked segregant RNA-seq (BSR-seq) was then performed on the parents YT93-159 (T01) and ROC22 (T02), and the opposite bulks of 30 SBS-susceptible individuals mixed bulk (T03) and 30 SBS-resistant individuals mixed bulk (T04) collected from 287 F1 individuals. A total of 170.00 Gb of clean data containing 297,921 SNPs and 70,426 genes were obtained. Differentially expressed genes (DEGs) analysis suggested that 7787 and 5911 DEGs were identified in the parents (T01 vs. T02) and two mixed bulks (T03 vs. T04), respectively. In addition, 25,363 high-quality and credible SNPs were obtained using the genome analysis toolkit GATK for SNP calling. Subsequently, six candidate regions with a total length of 8.72 Mb, which were located in the chromosomes 4B and 7C of sugarcane wild species Saccharum spontaneum, were identified, and 279 genes associated with SBS-resistance were annotated by ED algorithm and ΔSNP-index. Furthermore, the expression profiles of candidate genes were verified by quantitative real-time PCR (qRT-PCR) analysis, and the results showed that eight genes (LRR-RLK, DHAR1, WRKY7, RLK1, BLH4, AK3, CRK34, and NDA2) and seven genes (WRKY31, CIPK2, CKA1, CDPK6, PFK4, CBL2, and PR2) of the 20 tested genes were significantly up-regulated in YT93-159 and ROC22, respectively. Finally, a potential molecular mechanism of sugarcane response to H. stenospilum infection is illustrate that the activations of ROS signaling, MAPK cascade signaling, Ca2+ signaling, ABA signaling, and the ASA-GSH cycle jointly promote the SBS resistance in sugarcane. This study provides abundant gene resources for the SBS resistance breeding in sugarcane.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Youxiong Que
- National Engineering Research Center for Sugarcane, Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liping Xu
- National Engineering Research Center for Sugarcane, Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
25
|
Lv T, Wang L, Zhang C, Liu S, Wang J, Lu S, Fang C, Kong L, Li Y, Li Y, Hou X, Liu B, Kong F, Li X. Identification of two quantitative genes controlling soybean flowering using bulked-segregant analysis and genetic mapping. FRONTIERS IN PLANT SCIENCE 2022; 13:987073. [PMID: 36531378 PMCID: PMC9749486 DOI: 10.3389/fpls.2022.987073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/24/2022] [Indexed: 06/17/2023]
Abstract
Photoperiod responsiveness is important to soybean production potential and adaptation to local environments. Varieties from temperate regions generally mature early and exhibit extremely low yield when grown under inductive short-day (SD) conditions. The long-juvenile (LJ) trait is essentially a reduction and has been introduced into soybean cultivars to improve yield in tropical environments. In this study, we used next-generation sequencing (NGS)-based bulked segregant analysis (BSA) to simultaneously map qualitative genes controlling the LJ trait in soybean. We identified two genomic regions on scaffold_32 and chromosome 18 harboring loci LJ32 and LJ18, respectively. Further, we identified LJ32 on the 228.7-kb scaffold_32 as the soybean pseudo-response-regulator gene Tof11 and LJ18 on a 301-kb region of chromosome 18 as a novel PROTEIN FLOWERING LOCUS T-RELATED gene, Glyma.18G298800. Natural variants of both genes contribute to LJ trait regulation in tropical regions. The molecular identification and functional characterization of Tof11 and LJ18 will enhance understanding of the molecular mechanisms underlying the LJ trait and provide useful genetic resources for soybean molecular breeding in tropical regions.
Collapse
Affiliation(s)
- Tianxiao Lv
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou Higher Education Mega Center, Guangzhou University, Guangzhou, China
| | - Lingshuang Wang
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou Higher Education Mega Center, Guangzhou University, Guangzhou, China
| | - Chunyu Zhang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Guangzhou, China
| | - Shu Liu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jinxing Wang
- Suihua Branch Institute, Heilongjiang Academy of Agricultural Sciences, Suihua, Heilongjiang, China
| | - Sijia Lu
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou Higher Education Mega Center, Guangzhou University, Guangzhou, China
| | - Chao Fang
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou Higher Education Mega Center, Guangzhou University, Guangzhou, China
| | - Lingping Kong
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou Higher Education Mega Center, Guangzhou University, Guangzhou, China
| | - Yunlong Li
- Suihua Branch Institute, Heilongjiang Academy of Agricultural Sciences, Suihua, Heilongjiang, China
| | - Yuge Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Guangzhou, China
| | - Xingliang Hou
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Guangzhou, China
| | - Baohui Liu
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou Higher Education Mega Center, Guangzhou University, Guangzhou, China
| | - Fanjiang Kong
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou Higher Education Mega Center, Guangzhou University, Guangzhou, China
| | - Xiaoming Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
26
|
Sun K, Li D, Xia A, Zhao H, Wen Q, Jia S, Wang J, Yang G, Zhou D, Huang C, Wang H, Chen Z, Guo T. Targeted Identification of Rice Grain-Associated Gene Allelic Variation Through Mutation Induction, Targeted Sequencing, and Whole Genome Sequencing Combined with a Mixed-Samples Strategy. RICE (NEW YORK, N.Y.) 2022; 15:57. [PMID: 36326973 PMCID: PMC9633910 DOI: 10.1186/s12284-022-00603-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The mining of new allelic variation and the induction of new genetic variability are the basis for improving breeding efficiency. RESULTS In this study, in total, 3872 heavy ion-irradiated M2 generation rice seeds and individual leaves were collected. The grain length was between 8 and 10.22 mm. The grain width was between 1.54 and 2.87 mm. The results showed that there was extensive variation in granulotype. The allelic variation in GS3 and GW5 was detected in 484 mixed samples (8:1) using targeted sequencing technology, and 12 mixed samples containing potential mutations and 15 SNPs were obtained; combined with Sanger sequencing and phenotype data, 13 key mutants and their corresponding SNPs were obtained; protein structural and functional analysis of key mutants screened out 6 allelic variants leading to altered grain shape, as well as the corresponding mutants, including long-grain mutants GS3-2 and GS3-7, short-grain mutants GS3-3 and GS3-5, wide-grain mutant GW5-1 and narrow-grain mutant GW5-4; whole genome sequencing identified new grain length gene allelic variants GS3-G1, GS3-G2 and GS3-G3. CONCLUSION Based on the above studies, we found 6 granulotype mutants and 9 granulotype-related allelic variants, which provided new functional gene loci and a material basis for molecular breeding and genotype mutation and phenotype analysis. We propose a method for targeted identification of allelic variation in rice grain type genes by combining targeted sequencing of mixed samples and whole genome sequencing. The method has the characteristics of low detection cost, short detection period, and flexible detection of traits and genes.
Collapse
Affiliation(s)
- Kai Sun
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, 510642, Guangzhou, People's Republic of China
| | - Dandan Li
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, 510642, Guangzhou, People's Republic of China
| | - Aoyun Xia
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, 510642, Guangzhou, People's Republic of China
| | - Hua Zhao
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, 510642, Guangzhou, People's Republic of China
| | - Qin Wen
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, 510642, Guangzhou, People's Republic of China
| | - Sisi Jia
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, 510642, Guangzhou, People's Republic of China
| | - Jiafeng Wang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, 510642, Guangzhou, People's Republic of China
| | - Guili Yang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, 510642, Guangzhou, People's Republic of China
| | - Danhua Zhou
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, 510642, Guangzhou, People's Republic of China
| | - Cuihong Huang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, 510642, Guangzhou, People's Republic of China
| | - Hui Wang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, 510642, Guangzhou, People's Republic of China
| | - Zhiqiang Chen
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, 510642, Guangzhou, People's Republic of China
| | - Tao Guo
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, 510642, Guangzhou, People's Republic of China.
| |
Collapse
|
27
|
De la Concepcion JC, Fujisaki K, Bentham AR, Cruz Mireles N, Sanchez de Medina Hernandez V, Shimizu M, Lawson DM, Kamoun S, Terauchi R, Banfield MJ. A blast fungus zinc-finger fold effector binds to a hydrophobic pocket in host Exo70 proteins to modulate immune recognition in rice. Proc Natl Acad Sci U S A 2022; 119:e2210559119. [PMID: 36252011 PMCID: PMC9618136 DOI: 10.1073/pnas.2210559119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022] Open
Abstract
Exocytosis plays an important role in plant-microbe interactions, in both pathogenesis and symbiosis. Exo70 proteins are integral components of the exocyst, an octameric complex that mediates tethering of vesicles to membranes in eukaryotes. Although plant Exo70s are known to be targeted by pathogen effectors, the underpinning molecular mechanisms and the impact of this interaction on infection are poorly understood. Here, we show the molecular basis of the association between the effector AVR-Pii of the blast fungus Maganaporthe oryzae and rice Exo70 alleles OsExo70F2 and OsExo70F3, which is sensed by the immune receptor pair Pii via an integrated RIN4/NOI domain. The crystal structure of AVR-Pii in complex with OsExo70F2 reveals that the effector binds to a conserved hydrophobic pocket in Exo70, defining an effector/target binding interface. Structure-guided and random mutagenesis validates the importance of AVR-Pii residues at the Exo70 binding interface to sustain protein association and disease resistance in rice when challenged with fungal strains expressing effector mutants. Furthermore, the structure of AVR-Pii defines a zinc-finger effector fold (ZiF) distinct from the MAX (Magnaporthe Avrs and ToxB-like) fold previously described for a majority of characterized M. oryzae effectors. Our data suggest that blast fungus ZiF effectors bind a conserved Exo70 interface to manipulate plant exocytosis and that these effectors are also baited by plant immune receptors, pointing to new opportunities for engineering disease resistance.
Collapse
Affiliation(s)
| | - Koki Fujisaki
- Division of Genomics and Breeding, Iwate Biotechnology Research Center, Iwate, 024-0003, Japan
| | - Adam R. Bentham
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich, NR4 7UH, United Kingdom
| | - Neftaly Cruz Mireles
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich, NR4 7UH, United Kingdom
- The Sainsbury Laboratory, University of East Anglia, Norwich, NR4 7UH, United Kingdom
| | | | - Motoki Shimizu
- Division of Genomics and Breeding, Iwate Biotechnology Research Center, Iwate, 024-0003, Japan
| | - David M. Lawson
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich, NR4 7UH, United Kingdom
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich, NR4 7UH, United Kingdom
| | - Ryohei Terauchi
- Division of Genomics and Breeding, Iwate Biotechnology Research Center, Iwate, 024-0003, Japan
- Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8501, Japan
| | - Mark J. Banfield
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich, NR4 7UH, United Kingdom
| |
Collapse
|
28
|
Wu Q, Su Y, Pan YB, Xu F, Zou W, Que B, Lin P, Sun T, Grisham MP, Xu L, Que Y. Genetic identification of SNP markers and candidate genes associated with sugarcane smut resistance using BSR-Seq. FRONTIERS IN PLANT SCIENCE 2022; 13:1035266. [PMID: 36311133 PMCID: PMC9608552 DOI: 10.3389/fpls.2022.1035266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/27/2022] [Indexed: 06/01/2023]
Abstract
Sugarcane smut caused by Sporisorium scitamineum is one of the most severe fungal diseases worldwide. In this study, a cross was made between a smut-resistant variety YT93-159 and a smut-susceptible variety ROC22, and 312 progenies were obtained. Two bulks of progenies were then constructed, one consisted of 27 highly smut resistant progenies and the other 24 smut susceptible progenies. Total RNAs of the progenies of each bulk, were pooled and subject to bulked segregant RNA-sequence analysis (BSR-Seq). A total of 164.44 Gb clean data containing 2,341,449 SNPs and 64,999 genes were obtained, 7,295 of which were differentially expressed genes (DEGs). These DEGs were mainly enriched in stress-related metabolic pathways, including carbon metabolism, phenylalanine metabolism, plant hormone signal transduction, glutathione metabolism, and plant-pathogen interactions. Besides, 45,946 high-quality, credible SNPs, a 1.27 Mb region at Saccharum spontaneum chromosome Chr5B (68,904,827 to 70,172,982), and 129 candidate genes were identified to be associated with smut resistance. Among them, twenty-four genes, either encoding key enzymes involved in signaling pathways or being transcription factors, were found to be very closely associated with stress resistance. RT-qPCR analysis demonstrated that they played a positive role in smut resistance. Finally, a potential molecular mechanism of sugarcane and S. scitamineum interaction is depicted that activations of MAPK cascade signaling, ROS signaling, Ca2+ signaling, and PAL metabolic pathway and initiation of the glyoxalase system jointly promote the resistance to S. scitamineum in sugarcane. This study provides potential SNP markers and candidate gene resources for smut resistance breeding in sugarcane.
Collapse
Affiliation(s)
- Qibin Wu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yachun Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yong-Bao Pan
- USDA-ARS, Southeast Area, Sugarcane Research Unit, Houma, LA, United States
| | - Fu Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenhui Zou
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Beibei Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- International College, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Peixia Lin
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tingting Sun
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Michael P. Grisham
- USDA-ARS, Southeast Area, Sugarcane Research Unit, Houma, LA, United States
| | - Liping Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
29
|
Xi Y, Cesari S, Kroj T. Insight into the structure and molecular mode of action of plant paired NLR immune receptors. Essays Biochem 2022; 66:513-526. [PMID: 35735291 PMCID: PMC9528088 DOI: 10.1042/ebc20210079] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/16/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022]
Abstract
The specific recognition of pathogen effectors by intracellular nucleotide-binding domain and leucine-rich repeat receptors (NLRs) is an important component of plant immunity. NLRs have a conserved modular architecture and can be subdivided according to their signaling domain that is mostly a coiled-coil (CC) or a Toll/Interleukin1 receptor (TIR) domain into CNLs and TNLs. Single NLR proteins are often sufficient for both effector recognition and immune activation. However, sometimes, they act in pairs, where two different NLRs are required for disease resistance. Functional studies have revealed that in these cases one NLR of the pair acts as a sensor (sNLR) and one as a helper (hNLR). The genes corresponding to such resistance protein pairs with one-to-one functional co-dependence are clustered, generally with a head-to-head orientation and shared promoter sequences. sNLRs in such functional NLR pairs have additional, non-canonical and highly diverse domains integrated in their conserved modular architecture, which are thought to act as decoys to trap effectors. Recent structure-function studies on the Arabidopsis thaliana TNL pair RRS1/RPS4 and on the rice CNL pairs RGA4/RGA5 and Pik-1/Pik-2 are unraveling how such protein pairs function together. Focusing on these model NLR pairs and other recent examples, this review highlights the distinctive features of NLR pairs and their various fascinating mode of action in pathogen effector perception. We also discuss how these findings on NLR pairs pave the way toward improved plant disease resistance.
Collapse
Affiliation(s)
- Yuxuan Xi
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Stella Cesari
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Thomas Kroj
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| |
Collapse
|
30
|
Sahu PK, Sao R, Choudhary DK, Thada A, Kumar V, Mondal S, Das BK, Jankuloski L, Sharma D. Advancement in the Breeding, Biotechnological and Genomic Tools towards Development of Durable Genetic Resistance against the Rice Blast Disease. PLANTS 2022; 11:plants11182386. [PMID: 36145787 PMCID: PMC9504543 DOI: 10.3390/plants11182386] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 01/02/2023]
Abstract
Rice production needs to be sustained in the coming decades, as the changeable climatic conditions are becoming more conducive to disease outbreaks. The majority of rice diseases cause enormous economic damage and yield instability. Among them, rice blast caused by Magnaportheoryzae is a serious fungal disease and is considered one of the major threats to world rice production. This pathogen can infect the above-ground tissues of rice plants at any growth stage and causes complete crop failure under favorable conditions. Therefore, management of blast disease is essentially required to sustain global food production. When looking at the drawback of chemical management strategy, the development of durable, resistant varieties is one of the most sustainable, economic, and environment-friendly approaches to counter the outbreaks of rice blasts. Interestingly, several blast-resistant rice cultivars have been developed with the help of breeding and biotechnological methods. In addition, 146 R genes have been identified, and 37 among them have been molecularly characterized to date. Further, more than 500 loci have been identified for blast resistance which enhances the resources for developing blast resistance through marker-assisted selection (MAS), marker-assisted backcross breeding (MABB), and genome editing tools. Apart from these, a better understanding of rice blast pathogens, the infection process of the pathogen, and the genetics of the immune response of the host plant are very important for the effective management of the blast disease. Further, high throughput phenotyping and disease screening protocols have played significant roles in easy comprehension of the mechanism of disease spread. The present review critically emphasizes the pathogenesis, pathogenomics, screening techniques, traditional and molecular breeding approaches, and transgenic and genome editing tools to develop a broad spectrum and durable resistance against blast disease in rice. The updated and comprehensive information presented in this review would be definitely helpful for the researchers, breeders, and students in the planning and execution of a resistance breeding program in rice against this pathogen.
Collapse
Affiliation(s)
- Parmeshwar K. Sahu
- Department of Genetics and Plant Breeding, Indira Gandhi Krishi Vishwavidyalaya, Raipur 492012, Chhattisgarh, India
| | - Richa Sao
- Department of Genetics and Plant Breeding, Indira Gandhi Krishi Vishwavidyalaya, Raipur 492012, Chhattisgarh, India
| | | | - Antra Thada
- Department of Genetics and Plant Breeding, Indira Gandhi Krishi Vishwavidyalaya, Raipur 492012, Chhattisgarh, India
| | - Vinay Kumar
- ICAR-National Institute of Biotic Stress Management, Baronda, Raipur 493225, Chhattisgarh, India
| | - Suvendu Mondal
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India
| | - Bikram K. Das
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India
| | - Ljupcho Jankuloski
- Plant Breeding and Genetics Section, Joint FAO/IAEA Centre, International Atomic Energy Agency, 1400 Vienna, Austria
- Correspondence: (L.J.); (D.S.); Tel.: +91-7000591137 (D.S.)
| | - Deepak Sharma
- Department of Genetics and Plant Breeding, Indira Gandhi Krishi Vishwavidyalaya, Raipur 492012, Chhattisgarh, India
- Correspondence: (L.J.); (D.S.); Tel.: +91-7000591137 (D.S.)
| |
Collapse
|
31
|
Mu Y, Gong W, Qie Y, Liu X, Li L, Sun N, Liu W, Guo J, Han R, Yu Z, Xiao L, Su F, Zhang W, Wang J, Han G, Ma P. Identification of the powdery mildew resistance gene in wheat breeding line Yannong 99102-06188 via bulked segregant exome capture sequencing. FRONTIERS IN PLANT SCIENCE 2022; 13:1005627. [PMID: 36147228 PMCID: PMC9489141 DOI: 10.3389/fpls.2022.1005627] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
Powdery mildew of wheat (Triticum aestivum), caused by Blumeria graminis f.sp. tritici (Bgt), is a destructive disease that seriously threatens the yield and quality of its host. Identifying resistance genes is the most attractive and effective strategy for developing disease-resistant cultivars and controlling this disease. In this study, a wheat breeding line Yannong 99102-06188 (YN99102), an elite derivative line from the same breeding process as the famous wheat cultivar Yannong 999, showed high resistance to powdery mildew at the whole growth stages. Genetic analysis was carried out using Bgt isolate E09 and a population of YN99102 crossed with a susceptible parent Jinhe 13-205 (JH13-205). The result indicated that a single recessive gene, tentatively designated pmYN99102, conferred seedling resistance to the Bgt isolate E09. Using bulked segregant exome capture sequencing (BSE-Seq), pmYN99102 was physically located to a ~33.7 Mb (691.0-724.7 Mb) interval on the chromosome arm 2BL, and this interval was further locked in a 1.5 cM genetic interval using molecular markers, which was aligned to a 9.0 Mb physical interval (699.2-708.2 Mb). Based on the analysis of physical location, origin, resistant spectrum, and inherited pattern, pmYN99102 differed from those of the reported powdery mildew (Pm) resistance genes on 2BL, suggesting pmYN99102 is most likely a new Pm gene/allele in the targeted interval. To transfer pmYN99102 to different genetic backgrounds using marker-assisted selection (MAS), 18 closely linked markers were tested for their availability in different genetic backgrounds for MAS, and all markers expect for YTU103-97 can be used in MAS for tracking pmYN99102 when it transferred into those susceptible cultivars.
Collapse
Affiliation(s)
- Yanjun Mu
- College of Life Sciences, Yantai University, Yantai, China
| | - Wenping Gong
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yanmin Qie
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences/Hebei Laboratory of Crop Genetic and Breeding, Shijiazhuang, China
| | - Xueqing Liu
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, China
| | - Linzhi Li
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, China
| | - Nina Sun
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, China
| | - Wei Liu
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, China
| | - Jun Guo
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Ran Han
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Ziyang Yu
- College of Life Sciences, Yantai University, Yantai, China
| | - Luning Xiao
- College of Life Sciences, Yantai University, Yantai, China
| | - Fuyu Su
- College of Life Sciences, Yantai University, Yantai, China
| | - Wenjing Zhang
- College of Life Sciences, Yantai University, Yantai, China
| | - Jiangchun Wang
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, China
| | - Guohao Han
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Pengtao Ma
- College of Life Sciences, Yantai University, Yantai, China
| |
Collapse
|
32
|
Wang X, Zhang X, Fan D, Gong J, Li S, Gao Y, Liu A, Liu L, Deng X, Shi Y, Shang H, Zhang Y, Yuan Y. AAQSP increases mapping resolution of stable QTLs through applying NGS-BSA in multiple genetic backgrounds. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3223-3235. [PMID: 35904626 DOI: 10.1007/s00122-022-04181-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
In this study, we present AAQSP as an extension of existing NGS-BSA applications for identifying stable QTLs at high resolution. GhPAP16 and GhIQD14 fine mapped on chromosome D09 of upland cotton are identified as important candidate genes for lint percentage (LP). Bulked segregant analysis combined with next generation sequencing (NGS-BSA) allows rapid identification of genome sequence differences responsible for phenotypic variation. The NGS-BSA approach applied to crops mainly depends on comparing two bulked DNA samples of individuals from an F2 population. Since some F2 individuals still maintain high heterozygosity, heterosis will exert complications in pursuing NGS-BSA in such populations. In addition, the genetic background influences the stability of gene expression in crops, so some QTLs mapped in one segregating population may not be widely applied in crop improvement. The AAQSP (Association Analysis of QTL-seq on Semi-homologous Populations) reported in our study combines the optimized scheme of constructing BSA bulks with NGS-BSA analysis in two (or more) different parental genetic backgrounds for isolating the stable QTLs. With application of AAQSP strategy and construction of a high-density linkage map, we have successfully identified a QTL significantly related to lint percentage (LP) in cultivated upland cotton, followed by map-based cloning to dissect two candidate genes, GhPAP16 and GhIQD14. This study demonstrated that AAQSP can efficiently identify stable QTLs for complex traits of interest, and thus accelerate the genetic improvement of upland cotton and other crop plants.
Collapse
Affiliation(s)
- Xiaoyu Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
- Institute of Millet Research, Shanxi Agricultural University, Changzhi, China
| | - Xiaowei Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Daoran Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Juwu Gong
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Shaoqi Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yujie Gao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Aiying Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Linjie Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiaoying Deng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yuzhen Shi
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Haihong Shang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yuanming Zhang
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China.
| | - Youlu Yuan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China.
| |
Collapse
|
33
|
Majeed A, Johar P, Raina A, Salgotra RK, Feng X, Bhat JA. Harnessing the potential of bulk segregant analysis sequencing and its related approaches in crop breeding. Front Genet 2022; 13:944501. [PMID: 36003337 PMCID: PMC9393495 DOI: 10.3389/fgene.2022.944501] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/28/2022] [Indexed: 12/26/2022] Open
Abstract
Most plant traits are governed by polygenes including both major and minor genes. Linkage mapping and positional cloning have contributed greatly to mapping genomic loci controlling important traits in crop species. However, they are low-throughput, time-consuming, and have low resolution due to which their efficiency in crop breeding is reduced. In this regard, the bulk segregant analysis sequencing (BSA-seq) and its related approaches, viz., quantitative trait locus (QTL)-seq, bulk segregant RNA-Seq (BSR)-seq, and MutMap, have emerged as efficient methods to identify the genomic loci/QTLs controlling specific traits at high resolution, accuracy, reduced time span, and in a high-throughput manner. These approaches combine BSA with next-generation sequencing (NGS) and enable the rapid identification of genetic loci for qualitative and quantitative assessments. Many previous studies have shown the successful identification of the genetic loci for different plant traits using BSA-seq and its related approaches, as discussed in the text with details. However, the efficiency and accuracy of the BSA-seq depend upon factors like sequencing depth and coverage, which enhance the sequencing cost. Recently, the rapid reduction in the cost of NGS together with the expected cost reduction of third-generation sequencing in the future has further increased the accuracy and commercial applicability of these approaches in crop improvement programs. This review article provides an overview of BSA-seq and its related approaches in crop breeding together with their merits and challenges in trait mapping.
Collapse
Affiliation(s)
- Aasim Majeed
- School of Agricultural Biotechnology, Punjab Agriculture University (PAU), Ludhiana, India
| | - Prerna Johar
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, India
| | - Aamir Raina
- Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - R. K. Salgotra
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, India
| | | | - Javaid Akhter Bhat
- Zhejiang Lab, Hangzhou, China
- International Genome Center, Jiangsu University, Zhenjiang, China
| |
Collapse
|
34
|
Zhao F, Tian S, Wu Q, Li Z, Ye L, Zhuang Y, Wang M, Xie Y, Zou S, Teng W, Tong Y, Tang D, Mahato AK, Benhamed M, Liu Z, Zhang Y. Utility of Triti-Map for bulk-segregated mapping of causal genes and regulatory elements in Triticeae. PLANT COMMUNICATIONS 2022; 3:100304. [PMID: 35605195 PMCID: PMC9284283 DOI: 10.1016/j.xplc.2022.100304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 01/13/2022] [Accepted: 02/13/2022] [Indexed: 06/15/2023]
Abstract
Triticeae species, including wheat, barley, and rye, are critical for global food security. Mapping agronomically important genes is crucial for elucidating molecular mechanisms and improving crops. However, Triticeae includes many wild relatives with desirable agronomic traits, and frequent introgressions occurred during Triticeae evolution and domestication. Thus, Triticeae genomes are generally large and complex, making the localization of genes or functional elements that control agronomic traits challenging. Here, we developed Triti-Map, which contains a suite of user-friendly computational packages specifically designed and optimized to overcome the obstacles of gene mapping in Triticeae, as well as a web interface integrating multi-omics data from Triticeae for the efficient mining of genes or functional elements that control particular traits. The Triti-Map pipeline accepts both DNA and RNA bulk-segregated sequencing data as well as traditional QTL data as inputs for locating genes and elucidating their functions. We illustrate the usage of Triti-Map with a combination of bulk-segregated ChIP-seq data to detect a wheat disease-resistance gene with its promoter sequence that is absent from the reference genome and clarify its evolutionary process. We hope that Triti-Map will facilitate gene isolation and accelerate Triticeae breeding.
Collapse
Affiliation(s)
- Fei Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Shilong Tian
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Qiuhong Wu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Zijuan Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Luhuan Ye
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yili Zhuang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Meiyue Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yilin Xie
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Shenghao Zou
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002 China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002 China
| | - Wan Teng
- University of the Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yiping Tong
- University of the Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Dingzhong Tang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002 China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002 China
| | - Ajay Kumar Mahato
- Laboratory of Genome Informatics (LGI) In-charge Bioinformatics Wing-A, First Floor Center for DNA Fingerprinting and Diagnostics Inner Ring Road, Uppal, Hyderabad 500039, India
| | - Moussa Benhamed
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Univ Evry, Orsay 91405, France
| | - Zhiyong Liu
- University of the Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yijing Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China.
| |
Collapse
|
35
|
A genetically linked pair of NLR immune receptors shows contrasting patterns of evolution. Proc Natl Acad Sci U S A 2022; 119:e2116896119. [PMID: 35771942 PMCID: PMC9271155 DOI: 10.1073/pnas.2116896119] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Throughout their evolution, plant nucleotide-binding leucine-rich-repeat receptors (NLRs) have acquired widely divergent unconventional integrated domains that enhance their ability to detect pathogen effectors. However, the functional dynamics that drive the evolution of NLRs with integrated domains (NLR-IDs) remain poorly understood. Here, we reconstructed the evolutionary history of an NLR locus prone to unconventional domain integration and experimentally tested hypotheses about the evolution of NLR-IDs. We show that the rice (Oryza sativa) NLR Pias recognizes the effector AVR-Pias of the blast fungal pathogen Magnaporthe oryzae. Pias consists of a functionally specialized NLR pair, the helper Pias-1 and the sensor Pias-2, that is allelic to the previously characterized Pia pair of NLRs: the helper RGA4 and the sensor RGA5. Remarkably, Pias-2 carries a C-terminal DUF761 domain at a similar position to the heavy metal-associated (HMA) domain of RGA5. Phylogenomic analysis showed that Pias-2/RGA5 sensor NLRs have undergone recurrent genomic recombination within the genus Oryza, resulting in up to six sequence-divergent domain integrations. Allelic NLRs with divergent functions have been maintained transspecies in different Oryza lineages to detect sequence-divergent pathogen effectors. By contrast, Pias-1 has retained its NLR helper activity throughout evolution and is capable of functioning together with the divergent sensor-NLR RGA5 to respond to AVR-Pia. These results suggest that opposite selective forces have driven the evolution of paired NLRs: highly dynamic domain integration events maintained by balancing selection for sensor NLRs, in sharp contrast to purifying selection and functional conservation of immune signaling for helper NLRs.
Collapse
|
36
|
Hussain B, Akpınar BA, Alaux M, Algharib AM, Sehgal D, Ali Z, Aradottir GI, Batley J, Bellec A, Bentley AR, Cagirici HB, Cattivelli L, Choulet F, Cockram J, Desiderio F, Devaux P, Dogramaci M, Dorado G, Dreisigacker S, Edwards D, El-Hassouni K, Eversole K, Fahima T, Figueroa M, Gálvez S, Gill KS, Govta L, Gul A, Hensel G, Hernandez P, Crespo-Herrera LA, Ibrahim A, Kilian B, Korzun V, Krugman T, Li Y, Liu S, Mahmoud AF, Morgounov A, Muslu T, Naseer F, Ordon F, Paux E, Perovic D, Reddy GVP, Reif JC, Reynolds M, Roychowdhury R, Rudd J, Sen TZ, Sukumaran S, Ozdemir BS, Tiwari VK, Ullah N, Unver T, Yazar S, Appels R, Budak H. Capturing Wheat Phenotypes at the Genome Level. FRONTIERS IN PLANT SCIENCE 2022; 13:851079. [PMID: 35860541 PMCID: PMC9289626 DOI: 10.3389/fpls.2022.851079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Recent technological advances in next-generation sequencing (NGS) technologies have dramatically reduced the cost of DNA sequencing, allowing species with large and complex genomes to be sequenced. Although bread wheat (Triticum aestivum L.) is one of the world's most important food crops, efficient exploitation of molecular marker-assisted breeding approaches has lagged behind that achieved in other crop species, due to its large polyploid genome. However, an international public-private effort spanning 9 years reported over 65% draft genome of bread wheat in 2014, and finally, after more than a decade culminated in the release of a gold-standard, fully annotated reference wheat-genome assembly in 2018. Shortly thereafter, in 2020, the genome of assemblies of additional 15 global wheat accessions was released. As a result, wheat has now entered into the pan-genomic era, where basic resources can be efficiently exploited. Wheat genotyping with a few hundred markers has been replaced by genotyping arrays, capable of characterizing hundreds of wheat lines, using thousands of markers, providing fast, relatively inexpensive, and reliable data for exploitation in wheat breeding. These advances have opened up new opportunities for marker-assisted selection (MAS) and genomic selection (GS) in wheat. Herein, we review the advances and perspectives in wheat genetics and genomics, with a focus on key traits, including grain yield, yield-related traits, end-use quality, and resistance to biotic and abiotic stresses. We also focus on reported candidate genes cloned and linked to traits of interest. Furthermore, we report on the improvement in the aforementioned quantitative traits, through the use of (i) clustered regularly interspaced short-palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9)-mediated gene-editing and (ii) positional cloning methods, and of genomic selection. Finally, we examine the utilization of genomics for the next-generation wheat breeding, providing a practical example of using in silico bioinformatics tools that are based on the wheat reference-genome sequence.
Collapse
Affiliation(s)
- Babar Hussain
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
- Department of Biotechnology, Faculty of Life Sciences, University of Central Punjab, Lahore, Pakistan
| | | | - Michael Alaux
- Université Paris-Saclay, INRAE, URGI, Versailles, France
| | - Ahmed M. Algharib
- Department of Environment and Bio-Agriculture, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Deepmala Sehgal
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Zulfiqar Ali
- Institute of Plant Breeding and Biotechnology, MNS University of Agriculture, Multan, Pakistan
| | - Gudbjorg I. Aradottir
- Department of Pathology, The National Institute of Agricultural Botany, Cambridge, United Kingdom
| | - Jacqueline Batley
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA, Australia
| | - Arnaud Bellec
- French Plant Genomic Resource Center, INRAE-CNRGV, Castanet Tolosan, France
| | - Alison R. Bentley
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Halise B. Cagirici
- Crop Improvement and Genetics Research, USDA, Agricultural Research Service, Albany, CA, United States
| | - Luigi Cattivelli
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, Fiorenzuola d’Arda, Italy
| | - Fred Choulet
- French National Research Institute for Agriculture, Food and the Environment, INRAE, GDEC, Clermont-Ferrand, France
| | - James Cockram
- The John Bingham Laboratory, The National Institute of Agricultural Botany, Cambridge, United Kingdom
| | - Francesca Desiderio
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, Fiorenzuola d’Arda, Italy
| | - Pierre Devaux
- Research & Innovation, Florimond Desprez Group, Cappelle-en-Pévèle, France
| | - Munevver Dogramaci
- USDA, Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, ND, United States
| | - Gabriel Dorado
- Department of Bioquímica y Biología Molecular, Campus Rabanales C6-1-E17, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Córdoba, Córdoba, Spain
| | | | - David Edwards
- University of Western Australia, Perth, WA, Australia
| | - Khaoula El-Hassouni
- State Plant Breeding Institute, The University of Hohenheim, Stuttgart, Germany
| | - Kellye Eversole
- International Wheat Genome Sequencing Consortium (IWGSC), Bethesda, MD, United States
| | - Tzion Fahima
- Institute of Evolution and Department of Environmental and Evolutionary Biology, University of Haifa, Haifa, Israel
| | - Melania Figueroa
- Commonwealth Scientific and Industrial Research Organization, Agriculture and Food, Canberra, ACT, Australia
| | - Sergio Gálvez
- Department of Languages and Computer Science, ETSI Informática, Campus de Teatinos, Universidad de Málaga, Andalucía Tech, Málaga, Spain
| | - Kulvinder S. Gill
- Department of Crop Science, Washington State University, Pullman, WA, United States
| | - Liubov Govta
- Institute of Evolution and Department of Environmental and Evolutionary Biology, University of Haifa, Haifa, Israel
| | - Alvina Gul
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Goetz Hensel
- Center of Plant Genome Engineering, Heinrich-Heine-Universität, Düsseldorf, Germany
- Division of Molecular Biology, Centre of Region Haná for Biotechnological and Agriculture Research, Czech Advanced Technology and Research Institute, Palacký University, Olomouc, Czechia
| | - Pilar Hernandez
- Institute for Sustainable Agriculture (IAS-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
| | | | - Amir Ibrahim
- Crop and Soil Science, Texas A&M University, College Station, TX, United States
| | | | | | - Tamar Krugman
- Institute of Evolution and Department of Environmental and Evolutionary Biology, University of Haifa, Haifa, Israel
| | - Yinghui Li
- Institute of Evolution and Department of Environmental and Evolutionary Biology, University of Haifa, Haifa, Israel
| | - Shuyu Liu
- Crop and Soil Science, Texas A&M University, College Station, TX, United States
| | - Amer F. Mahmoud
- Department of Plant Pathology, Faculty of Agriculture, Assiut University, Assiut, Egypt
| | - Alexey Morgounov
- Food and Agriculture Organization of the United Nations, Riyadh, Saudi Arabia
| | - Tugdem Muslu
- Molecular Biology, Genetics and Bioengineering, Sabanci University, Istanbul, Turkey
| | - Faiza Naseer
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Frank Ordon
- Institute for Resistance Research and Stress Tolerance, Julius Kühn Institute, Quedlinburg, Germany
| | - Etienne Paux
- French National Research Institute for Agriculture, Food and the Environment, INRAE, GDEC, Clermont-Ferrand, France
| | - Dragan Perovic
- Institute for Resistance Research and Stress Tolerance, Julius Kühn Institute, Quedlinburg, Germany
| | - Gadi V. P. Reddy
- USDA-Agricultural Research Service, Southern Insect Management Research Unit, Stoneville, MS, United States
| | - Jochen Christoph Reif
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Matthew Reynolds
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Rajib Roychowdhury
- Institute of Evolution and Department of Environmental and Evolutionary Biology, University of Haifa, Haifa, Israel
| | - Jackie Rudd
- Crop and Soil Science, Texas A&M University, College Station, TX, United States
| | - Taner Z. Sen
- Crop Improvement and Genetics Research, USDA, Agricultural Research Service, Albany, CA, United States
| | | | | | | | - Naimat Ullah
- Institute of Biological Sciences (IBS), Gomal University, D. I. Khan, Pakistan
| | - Turgay Unver
- Ficus Biotechnology, Ostim Teknopark, Ankara, Turkey
| | - Selami Yazar
- General Directorate of Research, Ministry of Agriculture, Ankara, Turkey
| | | | - Hikmet Budak
- Montana BioAgriculture, Inc., Missoula, MT, United States
| |
Collapse
|
37
|
Huang X, Zeng X, Cai M, Zhao D. The MSI1 member OsRBAP1 gene, identified by a modified MutMap method, is required for rice height and spikelet fertility. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 320:111201. [PMID: 35643623 DOI: 10.1016/j.plantsci.2022.111201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/24/2022] [Accepted: 01/29/2022] [Indexed: 05/10/2023]
Abstract
To explore the molecular mechanisms underlying plant height regulation, we isolated and characterized a stably inherited semi-dwarf mutant bgsd-2 from the ethane methyl sulfonate (EMS) mutant progeny of 'Ping Tang Wild-type (PTWT)', a rice (Oryza sativa ssp. japonica) landrace in Guizhou. Transcriptome sequencing and qRT-PCR analyses showed that a number of cellulose and lignin-related genes involved in cell wall biogenesis were substantially downregulated in bgsd-2. MutMap-based cloning revealed the occurrence of a single amino acid substitution in the LOC_Os01g51300 gene, belonging to the MSI1 (multicopy suppressor of IRA1) member OsRBAP1. The bgsd-2 mutation occurred in the 3rd exon of OsRBAP1, resulting in a nonsense mutation of a codon shift from glycine (G) to glutamic acid (E) at residue 65. Protein localization analysis uncovered that the OsRBAP1 gene encodes a nuclear-localized protein and that the mutation in bgsd-2 may affect the stability of the OsRBAP1 protein. The CRISPR/Cas9 system was used to switch off OsRBAP1 in PTWT to obtain the knockout mutant osrbap1, which exhibited a severe reduction in height and fertility. Cytological observations suggest that the dwarfism of osrabp1 may be caused by reduced cell size and numbers, and that male sterility may be due to abnormal microspore development. Transcriptome analysis revealed that OsRBAP1 defects can repress the expression of numerous essential genes, which regulate multiple developmental processes in plants. Altogether, our results suggest that OsRBAP1 plays an important role in the regulation of rice height and spikelet fertility.
Collapse
Affiliation(s)
- Xiaozhen Huang
- College of Tea Sciences, Guizhou University, 550025, Guiyang, China; The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Regions (Ministry of Education), Guizhou University, Guiyang, 550025, China
| | - Xiaofang Zeng
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Regions (Ministry of Education), Guizhou University, Guiyang, 550025, China
| | - Mingling Cai
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Regions (Ministry of Education), Guizhou University, Guiyang, 550025, China
| | - Degang Zhao
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Regions (Ministry of Education), Guizhou University, Guiyang, 550025, China; Academy of Agricultural Sciences, Guiyang, 550006, China.
| |
Collapse
|
38
|
Ghosh S, Zhang S, Azam M, Agyenim-Boateng KG, Qi J, Feng Y, Li Y, Li J, Li B, Sun J. Identification of Genomic Loci and Candidate Genes Related to Seed Tocopherol Content in Soybean. PLANTS (BASEL, SWITZERLAND) 2022; 11:1703. [PMID: 35807655 PMCID: PMC9269242 DOI: 10.3390/plants11131703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Soybean seeds are primary sources of natural tocopherols used by the food and pharmaceutical industries, owing to their beneficial impacts on human health. Selection for higher tocopherol contents in seeds along with other desirable traits is an important goal in soybean breeding. In order to identify the genomic loci and candidate genes controlling tocopherol content in soybean seeds, the bulked-segregant analysis technique was performed using a natural population of soybean consisting of 1525 accessions. We constructed the bulked-segregant analysis based on 98 soybean accessions that showed extreme phenotypic variation for the target trait, consisting of 49 accessions with extremely-high and 49 accessions with extremely-low tocopherol content. A total of 144 variant sites and 109 predicted genes related to tocopherol content were identified, in which a total of 83 genes were annotated by the gene ontology functions. Furthermore, 13 enriched terms (p < 0.05) were detected, with four of them found to be highly enriched: response to lipid, response to abscisic acid, transition metal ion transmembrane transporter activity, and double-stranded DNA binding. Especially, six candidate genes were detected at 41.8−41.9 Mb genomic hotspots on chromosome 5 based on ANNOtate VARiation analysis. Among the genes, only Glyma.05G243400 carried a non-synonymous mutation that encodes a “translation elongation factor EF1A or initiation factor IF2gamma family protein” was identified. The haplotype analysis confirmed that Glyma.05G243400 exhibited highly significant variations in terms of tocopherol content across multiple experimental locations, suggesting that it can be the key candidate gene regulating soybean seed tocopherols. The present findings provide novel gene resources related to seed tocopherols for further validation by genome editing, functional characterization, and genetic improvement targeting enhanced tocopherol composition in soybean molecular breeding.
Collapse
Affiliation(s)
- Suprio Ghosh
- The National Engineering Research Center of Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China; (S.G.); (S.Z.); (M.A.); (K.G.A.-B.); (J.Q.); (Y.F.); (Y.L.); (J.L.)
- Bangladesh Agricultural Research Institute, Gazipur 1701, Bangladesh
| | - Shengrui Zhang
- The National Engineering Research Center of Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China; (S.G.); (S.Z.); (M.A.); (K.G.A.-B.); (J.Q.); (Y.F.); (Y.L.); (J.L.)
| | - Muhammad Azam
- The National Engineering Research Center of Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China; (S.G.); (S.Z.); (M.A.); (K.G.A.-B.); (J.Q.); (Y.F.); (Y.L.); (J.L.)
| | - Kwadwo Gyapong Agyenim-Boateng
- The National Engineering Research Center of Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China; (S.G.); (S.Z.); (M.A.); (K.G.A.-B.); (J.Q.); (Y.F.); (Y.L.); (J.L.)
| | - Jie Qi
- The National Engineering Research Center of Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China; (S.G.); (S.Z.); (M.A.); (K.G.A.-B.); (J.Q.); (Y.F.); (Y.L.); (J.L.)
| | - Yue Feng
- The National Engineering Research Center of Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China; (S.G.); (S.Z.); (M.A.); (K.G.A.-B.); (J.Q.); (Y.F.); (Y.L.); (J.L.)
| | - Yecheng Li
- The National Engineering Research Center of Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China; (S.G.); (S.Z.); (M.A.); (K.G.A.-B.); (J.Q.); (Y.F.); (Y.L.); (J.L.)
| | - Jing Li
- The National Engineering Research Center of Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China; (S.G.); (S.Z.); (M.A.); (K.G.A.-B.); (J.Q.); (Y.F.); (Y.L.); (J.L.)
| | - Bin Li
- The National Engineering Research Center of Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China; (S.G.); (S.Z.); (M.A.); (K.G.A.-B.); (J.Q.); (Y.F.); (Y.L.); (J.L.)
| | - Junming Sun
- The National Engineering Research Center of Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China; (S.G.); (S.Z.); (M.A.); (K.G.A.-B.); (J.Q.); (Y.F.); (Y.L.); (J.L.)
| |
Collapse
|
39
|
Understanding the Dynamics of Blast Resistance in Rice-Magnaporthe oryzae Interactions. J Fungi (Basel) 2022; 8:jof8060584. [PMID: 35736067 PMCID: PMC9224618 DOI: 10.3390/jof8060584] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/03/2022] [Accepted: 05/10/2022] [Indexed: 01/09/2023] Open
Abstract
Rice is a global food grain crop for more than one-third of the human population and a source for food and nutritional security. Rice production is subjected to various stresses; blast disease caused by Magnaporthe oryzae is one of the major biotic stresses that has the potential to destroy total crop under severe conditions. In the present review, we discuss the importance of rice and blast disease in the present and future global context, genomics and molecular biology of blast pathogen and rice, and the molecular interplay between rice–M. oryzae interaction governed by different gene interaction models. We also elaborated in detail on M. oryzae effector and Avr genes, and the role of noncoding RNAs in disease development. Further, rice blast resistance QTLs; resistance (R) genes; and alleles identified, cloned, and characterized are discussed. We also discuss the utilization of QTLs and R genes for blast resistance through conventional breeding and transgenic approaches. Finally, we review the demonstrated examples and potential applications of the latest genome-editing tools in understanding and managing blast disease in rice.
Collapse
|
40
|
Li P, Li G, Zhang YW, Zuo JF, Liu JY, Zhang YM. A combinatorial strategy to identify various types of QTLs for quantitative traits using extreme phenotype individuals in an F 2 population. PLANT COMMUNICATIONS 2022; 3:100319. [PMID: 35576159 PMCID: PMC9251438 DOI: 10.1016/j.xplc.2022.100319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 03/07/2022] [Accepted: 03/22/2022] [Indexed: 06/09/2023]
Abstract
Theoretical and applied studies demonstrate the difficulty of detecting extremely over-dominant and small-effect genes for quantitative traits via bulked segregant analysis (BSA) in an F2 population. To address this issue, we proposed an integrated strategy for mapping various types of quantitative trait loci (QTLs) for quantitative traits via a combination of BSA and whole-genome sequencing. In this strategy, the numbers of read counts of marker alleles in two extreme pools were used to predict the numbers of read counts of marker genotypes. These observed and predicted numbers were used to construct a new statistic, Gw, for detecting quantitative trait genes (QTGs), and the method was named dQTG-seq1. This method was significantly better than existing BSA methods. If the goal was to identify extremely over-dominant and small-effect genes, another reserved DNA/RNA sample from each extreme phenotype F2 plant was sequenced, and the observed numbers of marker alleles and genotypes were used to calculate Gw to detect QTGs; this method was named dQTG-seq2. In simulated and real rice dataset analyses, dQTG-seq2 could identify many more extremely over-dominant and small-effect genes than BSA and QTL mapping methods. dQTG-seq2 may be extended to other heterogeneous mapping populations. The significance threshold of Gw in this study was determined by permutation experiments. In addition, a handbook for the R software dQTG.seq, which is available at https://cran.r-project.org/web/packages/dQTG.seq/index.html, has been provided in the supplemental materials for the users' convenience. This study provides a new strategy for identifying all types of QTLs for quantitative traits in an F2 population.
Collapse
Affiliation(s)
- Pei Li
- Crop Information Center, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Guo Li
- Crop Information Center, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ya-Wen Zhang
- Crop Information Center, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jian-Fang Zuo
- Crop Information Center, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jin-Yang Liu
- Crop Information Center, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yuan-Ming Zhang
- Crop Information Center, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
41
|
Dai L, Li P, Li Q, Leng Y, Zeng D, Qian Q. Integrated Multi-Omics Perspective to Strengthen the Understanding of Salt Tolerance in Rice. Int J Mol Sci 2022; 23:ijms23095236. [PMID: 35563627 PMCID: PMC9105537 DOI: 10.3390/ijms23095236] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 11/29/2022] Open
Abstract
Salt stress is one of the major constraints to rice cultivation worldwide. Thus, the development of salt-tolerant rice cultivars becomes a hotspot of current rice breeding. Achieving this goal depends in part on understanding how rice responds to salt stress and uncovering the molecular mechanism underlying this trait. Over the past decade, great efforts have been made to understand the mechanism of salt tolerance in rice through genomics, transcriptomics, proteomics, metabolomics, and epigenetics. However, there are few reviews on this aspect. Therefore, we review the research progress of omics related to salt tolerance in rice and discuss how these advances will promote the innovations of salt-tolerant rice breeding. In the future, we expect that the integration of multi-omics salt tolerance data can accelerate the solution of the response mechanism of rice to salt stress, and lay a molecular foundation for precise breeding of salt tolerance.
Collapse
Affiliation(s)
- Liping Dai
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (L.D.); (P.L.); (Q.L.); (D.Z.)
| | - Peiyuan Li
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (L.D.); (P.L.); (Q.L.); (D.Z.)
| | - Qing Li
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (L.D.); (P.L.); (Q.L.); (D.Z.)
| | - Yujia Leng
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Correspondence: (Y.L.); (Q.Q.)
| | - Dali Zeng
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (L.D.); (P.L.); (Q.L.); (D.Z.)
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A & F University, Hangzhou 311300, China
| | - Qian Qian
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (L.D.); (P.L.); (Q.L.); (D.Z.)
- Correspondence: (Y.L.); (Q.Q.)
| |
Collapse
|
42
|
Arsenault‐Labrecque G, Santhanam P, Asselin Y, Cinget B, Lebreton A, Labbé C, Belzile F, Gijzen M, Bélanger RR. RXLR effector gene Avr3a from Phytophthora sojae is recognized by Rps8 in soybean. MOLECULAR PLANT PATHOLOGY 2022; 23:693-706. [PMID: 35150190 PMCID: PMC8995065 DOI: 10.1111/mpp.13190] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
The use of resistance genes in elite soybean cultivars is one of the most widely used methods to manage Phytophthora sojae. This method relies on effector-triggered immunity, where a Resistant to P. sojae (Rps) gene product from the plant recognizes a specific effector from the pathogen, encoded by an avirulence (Avr) gene. Many Avr genes from P. sojae have been identified in the last decade, allowing a better exploitation of this type of resistance. The objective of the present study was to identify the Avr gene triggering immunity derived from the soybean resistance gene Rps8. The analysis of a segregating F2 progeny coupled with a genotyping-by-sequencing approach led to the identification of a putative Avr8 locus. The investigation of this locus using whole-genome sequencing data from 31 isolates of P. sojae identified Avr3a as the likely candidate for Avr8. Long-read sequencing also revealed that P. sojae isolates can carry up to five copies of the Avr3a gene, compared to the four previously reported. Haplotype and transcriptional analyses showed that amino acid changes and absence of Avr3a transcripts from P. sojae isolates caused changes in virulence towards Rps8. Functional analyses using CRISPR/Cas9 knockout and constitutive expression demonstrated that Rps8 interacted with Avr3a. We also showed that a specific allele of Avr3a is recognized by Rps3a but not Rps8. While Rps3a and Rps8 have been previously described as closely linked, this is the first report of a clear distinction hitherto undefined between these two resistance genes.
Collapse
Affiliation(s)
| | | | - Yanick Asselin
- Department of PhytologyUniversité LavalQuébecQuébecCanada
| | | | | | - Caroline Labbé
- Department of PhytologyUniversité LavalQuébecQuébecCanada
| | | | - Mark Gijzen
- Agriculture and Agri‐Food CanadaLondonOntarioCanada
| | | |
Collapse
|
43
|
Wang C, Han B. Twenty years of rice genomics research: From sequencing and functional genomics to quantitative genomics. MOLECULAR PLANT 2022; 15:593-619. [PMID: 35331914 DOI: 10.1016/j.molp.2022.03.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/04/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Since the completion of the rice genome sequencing project in 2005, we have entered the era of rice genomics, which is still in its ascendancy. Rice genomics studies can be classified into three stages: structural genomics, functional genomics, and quantitative genomics. Structural genomics refers primarily to genome sequencing for the construction of a complete map of rice genome sequence. This is fundamental for rice genetics and molecular biology research. Functional genomics aims to decode the functions of rice genes. Quantitative genomics is large-scale sequence- and statistics-based research to define the quantitative traits and genetic features of rice populations. Rice genomics has been a transformative influence on rice biological research and contributes significantly to rice breeding, making rice a good model plant for studying crop sciences.
Collapse
Affiliation(s)
- Changsheng Wang
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200233, China.
| | - Bin Han
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200233, China.
| |
Collapse
|
44
|
Li Z, Xu Y. Bulk segregation analysis in the NGS era: a review of its teenage years. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1355-1374. [PMID: 34931728 DOI: 10.1111/tpj.15646] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/27/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Bulk segregation analysis (BSA) utilizes a strategy of pooling individuals with extreme phenotypes to conduct economical and rapidly linked marker screening or quantitative trait locus (QTL) mapping. With the development of next-generation sequencing (NGS) technology in the past 10 years, BSA methods and technical systems have been gradually developed and improved. At the same time, the ever-decreasing costs of sequencing accelerate NGS-based BSA application in different species, including eukaryotic yeast, grain crops, economic crops, horticultural crops, trees, aquatic animals, and insects. This paper provides a landscape of BSA methods and reviews the BSA development process in the past decade, including the sequencing method for BSA, different populations, different mapping algorithms, associated region threshold determination, and factors affecting BSA mapping. Finally, we summarize related strategies in QTL fine mapping combining BSA.
Collapse
Affiliation(s)
- Zhiqiang Li
- Adsen Biotechnology Co., Ltd., Urumchi, 830022, China
| | - Yuhui Xu
- Adsen Biotechnology Co., Ltd., Urumchi, 830022, China
| |
Collapse
|
45
|
Singh R, Kumar K, Bharadwaj C, Verma PK. Broadening the horizon of crop research: a decade of advancements in plant molecular genetics to divulge phenotype governing genes. PLANTA 2022; 255:46. [PMID: 35076815 DOI: 10.1007/s00425-022-03827-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
Advancements in sequencing, genotyping, and computational technologies during the last decade (2011-2020) enabled new forward-genetic approaches, which subdue the impediments of precise gene mapping in varied crops. The modern crop improvement programs rely heavily on two major steps-trait-associated QTL/gene/marker's identification and molecular breeding. Thus, it is vital for basic and translational crop research to identify genomic regions that govern the phenotype of interest. Until the advent of next-generation sequencing, the forward-genetic techniques were laborious and time-consuming. Over the last 10 years, advancements in the area of genome assembly, genotyping, large-scale data analysis, and statistical algorithms have led faster identification of genomic variations regulating the complex agronomic traits and pathogen resistance. In this review, we describe the latest developments in genome sequencing and genotyping along with a comprehensive evaluation of the last 10-year headways in forward-genetic techniques that have shifted the focus of plant research from model plants to diverse crops. We have classified the available molecular genetic methods under bulk-segregant analysis-based (QTL-seq, GradedPool-Seq, QTG-Seq, Exome QTL-seq, and RapMap), target sequence enrichment-based (RenSeq, AgRenSeq, and TACCA), and mutation-based groups (MutMap, NIKS algorithm, MutRenSeq, MutChromSeq), alongside improvements in classical mapping and genome-wide association analyses. Newer methods for outcrossing, heterozygous, and polyploid plant genetics have also been discussed. The use of k-mers has enriched the nature of genetic variants which can be utilized to identify the phenotype-causing genes, independent of reference genomes. We envisage that the recent methods discussed herein will expand the repertoire of useful alleles and help in developing high-yielding and climate-resilient crops.
Collapse
Affiliation(s)
- Ritu Singh
- Plant Immunity Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Kamal Kumar
- Plant Immunity Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Chellapilla Bharadwaj
- Division of Genetics, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, 110020, India
| | - Praveen Kumar Verma
- Plant Immunity Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
- Plant Immunity Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
46
|
Shaw RK, Shen Y, Wang J, Sheng X, Zhao Z, Yu H, Gu H. Advances in Multi-Omics Approaches for Molecular Breeding of Black Rot Resistance in Brassica oleracea L. FRONTIERS IN PLANT SCIENCE 2021; 12:742553. [PMID: 34938304 PMCID: PMC8687090 DOI: 10.3389/fpls.2021.742553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/20/2021] [Indexed: 06/14/2023]
Abstract
Brassica oleracea is one of the most important species of the Brassicaceae family encompassing several economically important vegetables produced and consumed worldwide. But its sustainability is challenged by a range of pathogens, among which black rot, caused by Xanthomonas campestris pv. campestris (Xcc), is the most serious and destructive seed borne bacterial disease, causing huge yield losses. Host-plant resistance could act as the most effective and efficient solution to curb black rot disease for sustainable production of B. oleracea. Recently, 'omics' technologies have emerged as promising tools to understand the host-pathogen interactions, thereby gaining a deeper insight into the resistance mechanisms. In this review, we have summarized the recent achievements made in the emerging omics technologies to tackle the black rot challenge in B. oleracea. With an integrated approach of the omics technologies such as genomics, proteomics, transcriptomics, and metabolomics, it would allow better understanding of the complex molecular mechanisms underlying black rot resistance. Due to the availability of sequencing data, genomics and transcriptomics have progressed as expected for black rot resistance, however, other omics approaches like proteomics and metabolomics are lagging behind, necessitating a holistic and targeted approach to address the complex questions of Xcc-Brassica interactions. Genomic studies revealed that the black rot resistance is a complex trait and is mostly controlled by quantitative trait locus (QTL) with minor effects. Transcriptomic analysis divulged the genes related to photosynthesis, glucosinolate biosynthesis and catabolism, phenylpropanoid biosynthesis pathway, ROS scavenging, calcium signalling, hormonal synthesis and signalling pathway are being differentially expressed upon Xcc infection. Comparative proteomic analysis in relation to susceptible and/or resistance interactions with Xcc identified the involvement of proteins related to photosynthesis, protein biosynthesis, processing and degradation, energy metabolism, innate immunity, redox homeostasis, and defence response and signalling pathways in Xcc-Brassica interaction. Specifically, most of the studies focused on the regulation of the photosynthesis-related proteins as a resistance response in both early and later stages of infection. Metabolomic studies suggested that glucosinolates (GSLs), especially aliphatic and indolic GSLs, its subsequent hydrolysis products, and defensive metabolites synthesized by jasmonic acid (JA)-mediated phenylpropanoid biosynthesis pathway are involved in disease resistance mechanisms against Xcc in Brassica species. Multi-omics analysis showed that JA signalling pathway is regulating resistance against hemibiotrophic pathogen like Xcc. So, the bonhomie between omics technologies and plant breeding is going to trigger major breakthroughs in the field of crop improvement by developing superior cultivars with broad-spectrum resistance. If multi-omics tools are implemented at the right scale, we may be able to achieve the maximum benefits from the minimum. In this review, we have also discussed the challenges, future prospects, and the way forward in the application of omics technologies to accelerate the breeding of B. oleracea for disease resistance. A deeper insight about the current knowledge on omics can offer promising results in the breeding of high-quality disease-resistant crops.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Honghui Gu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
47
|
Wang J, Mao L, Zeng Z, Yu X, Lian J, Feng J, Yang W, An J, Wu H, Zhang M, Liu L. Genetic mapping high protein content QTL from soybean 'Nanxiadou 25' and candidate gene analysis. BMC PLANT BIOLOGY 2021; 21:388. [PMID: 34416870 PMCID: PMC8377855 DOI: 10.1186/s12870-021-03176-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 08/13/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Soybean is a globally important legume crop that provides a primary source of high-quality vegetable protein and oil. Seed protein content (SPC) is a valuable quality trait controlled by multiple genes in soybean. RESULTS In this study, we performed quantitative trait loci (QTL) mapping, QTL-seq, and RNA sequencing (RNA-seq) to reveal the genes controlling protein content in the soybean by using the high protein content variety Nanxiadou 25. A total of 50 QTL for SPC distributed on 14 chromosomes except chromosomes 4, 12, 14, 17, 18, and 19 were identified by QTL mapping using 178 recombinant inbred lines (RILs). Among these QTL, the major QTL qSPC_20-1 and qSPC_20-2 on chromosome 20 were repeatedly detected across six tested environments, corresponding to the location of the major QTL detected using whole-genome sequencing-based QTL-seq. 329 candidate DEGs were obtained within the QTL region of qSPC_20-1 and qSPC_20-2 via gene expression profile analysis. Nine of which were associated with SPC, potentially representing candidate genes. Clone sequencing results showed that different single nucleotide polymorphisms (SNPs) and indels between high and low protein genotypes in Glyma.20G088000 and Glyma.16G066600 may be the cause of changes in this trait. CONCLUSIONS These results provide the basis for research on candidate genes and marker-assisted selection (MAS) in soybean breeding for seed protein content.
Collapse
Affiliation(s)
- Jia Wang
- Nanchong Academy of Agricultural Sciences, Nanchong, 637000, Sichuan, China.
- Southwest University, Chongqing, 400715, China.
| | - Lin Mao
- Southwest University, Chongqing, 400715, China
| | - Zhaoqiong Zeng
- Nanchong Academy of Agricultural Sciences, Nanchong, 637000, Sichuan, China
| | - Xiaobo Yu
- Nanchong Academy of Agricultural Sciences, Nanchong, 637000, Sichuan, China
| | - Jianqiu Lian
- Nanchong Academy of Agricultural Sciences, Nanchong, 637000, Sichuan, China
| | - Jun Feng
- Nanchong Academy of Agricultural Sciences, Nanchong, 637000, Sichuan, China
| | - Wenying Yang
- Nanchong Academy of Agricultural Sciences, Nanchong, 637000, Sichuan, China
| | - Jiangang An
- Nanchong Academy of Agricultural Sciences, Nanchong, 637000, Sichuan, China
| | - Haiying Wu
- Nanchong Academy of Agricultural Sciences, Nanchong, 637000, Sichuan, China
| | - Mingrong Zhang
- Nanchong Academy of Agricultural Sciences, Nanchong, 637000, Sichuan, China.
| | - Liezhao Liu
- Southwest University, Chongqing, 400715, China.
| |
Collapse
|
48
|
Yu L, Nie Y, Jiao J, Jian L, Zhao J. The Sequencing-Based Mapping Method for Effectively Cloning Plant Mutated Genes. Int J Mol Sci 2021; 22:ijms22126224. [PMID: 34207582 PMCID: PMC8226582 DOI: 10.3390/ijms22126224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/03/2021] [Accepted: 06/05/2021] [Indexed: 11/23/2022] Open
Abstract
A forward genetic approach is a powerful tool for identifying the genes underlying the phenotypes of interest. However, the conventional map-based cloning method is lengthy, requires a large mapping population and confirmation of many candidate genes in a broad genetic region to clone the causal variant. The whole-genome sequencing method clones the variants with a certain failure probability for multiple reasons, especially for heterozygotes, and could not be used to clone the mutation of epigenetic modifications. Here, we applied the highly complementary characteristics of these two methods and developed a sequencing-based mapping method (SBM) for identifying the location of plant variants effectively with a small population and low cost, which is very user-friendly for most popular laboratories. This method used the whole-genome sequencing data of two pooled populations to screen out enough markers. These markers were used to identify and narrow the candidate region by analyzing the marker-indexes and recombinants. Finally, the possible mutational sites were identified using the whole-genome sequencing data and verified in individual mutants. To elaborate the new method, we displayed the cloned processes in one Arabidopsis heterozygous mutant and two rice homozygous mutants. Thus, the sequencing-based mapping method could clone effectively different types of plant mutations and was a powerful tool for studying the functions of plant genes in the species with known genomic sequences.
Collapse
|
49
|
Hayashi S, Kuramata M, Abe T, Yamaguchi N, Takagi H, Tanikawa H, Iino M, Sugimoto K, Ishikawa S. Deficiency in alcohol dehydrogenase 2 reduces arsenic in rice grains by suppressing silicate transporters. PLANT PHYSIOLOGY 2021; 186:611-623. [PMID: 33620496 PMCID: PMC8154085 DOI: 10.1093/plphys/kiab086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/02/2021] [Indexed: 05/14/2023]
Abstract
Paddy fields are anaerobic and facilitate arsenite (As(III)) elution from the soil. Paddy-field rice accumulates arsenic (As) in its grains because silicate transporters actively assimilate As(III) during the reproductive stage. Reducing the As level in rice grains is an important challenge for agriculture. Using a forward genetic approach, we isolated a rice (Oryza sativa) mutant, low arsenic line 3 (las3), whose As levels were decreased in aerial tissues, including grains. The low-As phenotype was not observed in young plants before heading (emergence of the panicle). Genetic analyses revealed that a deficiency in alcohol dehydrogenase (ADH) 2 by mutation is responsible for the phenotype. Among the three rice ADH paralogues, ADH2 was the most efficiently produced in root tissue under anaerobic conditions. In wild-type (WT), silicon and As concentrations in aerial tissues increased with growth. However, the increase was suppressed in las3 during the reproductive stage. Accordingly, the gene expression of two silicate transporters, Lsi1 and Lsi2, was increased in WT around the time of heading, whereas the increase was suppressed in las3. These results indicate that the low-As phenotype in las3 is due to silicate transporter suppression. Measurement of intracellular pH by 31P-nuclear magnetic resonance revealed intracellular acidification of las3 roots under hypoxia, suggesting that silicate transporter suppression in las3 might arise from an intracellular pH decrease, which is known to be facilitated by a deficiency in ADH activity under anaerobic conditions. This study provides valuable insight into reducing As levels in rice grains.
Collapse
Affiliation(s)
- Shimpei Hayashi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, 305-8604, Japan
| | - Masato Kuramata
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization, Tsukuba, 305-8604, Japan
| | - Tadashi Abe
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization, Tsukuba, 305-8604, Japan
| | - Noriko Yamaguchi
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization, Tsukuba, 305-8604, Japan
| | - Hiroki Takagi
- Ishikawa Prefectural University, Ishikawa 921-8836, Japan
| | - Hachidai Tanikawa
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization, Tsukuba, 305-8604, Japan
| | - Manaka Iino
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization, Tsukuba, 305-8604, Japan
| | - Kazuhiko Sugimoto
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, 305-8518, Japan
| | - Satoru Ishikawa
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization, Tsukuba, 305-8604, Japan
- Author for communication:
| |
Collapse
|
50
|
Mores A, Borrelli GM, Laidò G, Petruzzino G, Pecchioni N, Amoroso LGM, Desiderio F, Mazzucotelli E, Mastrangelo AM, Marone D. Genomic Approaches to Identify Molecular Bases of Crop Resistance to Diseases and to Develop Future Breeding Strategies. Int J Mol Sci 2021; 22:5423. [PMID: 34063853 PMCID: PMC8196592 DOI: 10.3390/ijms22115423] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/30/2021] [Accepted: 05/15/2021] [Indexed: 12/16/2022] Open
Abstract
Plant diseases are responsible for substantial crop losses each year and affect food security and agricultural sustainability. The improvement of crop resistance to pathogens through breeding represents an environmentally sound method for managing disease and minimizing these losses. The challenge is to breed varieties with a stable and broad-spectrum resistance. Different approaches, from markers to recent genomic and 'post-genomic era' technologies, will be reviewed in order to contribute to a better understanding of the complexity of host-pathogen interactions and genes, including those with small phenotypic effects and mechanisms that underlie resistance. An efficient combination of these approaches is herein proposed as the basis to develop a successful breeding strategy to obtain resistant crop varieties that yield higher in increasing disease scenarios.
Collapse
Affiliation(s)
- Antonia Mores
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy; (A.M.); (G.M.B.); (G.L.); (G.P.); (N.P.); (A.M.M.)
| | - Grazia Maria Borrelli
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy; (A.M.); (G.M.B.); (G.L.); (G.P.); (N.P.); (A.M.M.)
| | - Giovanni Laidò
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy; (A.M.); (G.M.B.); (G.L.); (G.P.); (N.P.); (A.M.M.)
| | - Giuseppe Petruzzino
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy; (A.M.); (G.M.B.); (G.L.); (G.P.); (N.P.); (A.M.M.)
| | - Nicola Pecchioni
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy; (A.M.); (G.M.B.); (G.L.); (G.P.); (N.P.); (A.M.M.)
| | | | - Francesca Desiderio
- Council for Agricultural Research and Economics, Genomics and Bioinformatics Research Center, Via San Protaso 302, 29017 Fiorenzuola d’Arda, Italy; (F.D.); (E.M.)
| | - Elisabetta Mazzucotelli
- Council for Agricultural Research and Economics, Genomics and Bioinformatics Research Center, Via San Protaso 302, 29017 Fiorenzuola d’Arda, Italy; (F.D.); (E.M.)
| | - Anna Maria Mastrangelo
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy; (A.M.); (G.M.B.); (G.L.); (G.P.); (N.P.); (A.M.M.)
| | - Daniela Marone
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy; (A.M.); (G.M.B.); (G.L.); (G.P.); (N.P.); (A.M.M.)
| |
Collapse
|