1
|
He J, Huang R, Xie X. A gap in the recognition of two mycorrhizal factors: new insights into two LysM-type mycorrhizal receptors. FRONTIERS IN PLANT SCIENCE 2024; 15:1418699. [PMID: 39372858 PMCID: PMC11452846 DOI: 10.3389/fpls.2024.1418699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/26/2024] [Indexed: 10/08/2024]
Abstract
Arbuscular mycorrhizal (AM) fungi are crucial components of the plant microbiota and can form symbioses with 72% of land plants. Researchers have long known that AM symbioses have dramatic effects on plant performance and also provide multiple ecological services in terrestrial environments. The successful establishment of AM symbioses relies on the host plant recognition of the diffusible mycorrhizal (Myc) factors, lipo-chitooligosaccharides (LCOs) and chitooligosaccharides (COs). Among them, the short-chain COs such as CO4/5 secreted by AM fungi are the major Myc factors in COs. In this review, we summarize current advances, develop the concept of mycorrhizal biceptor complex (double receptor complexes for Myc-LCOs and CO4/5 in the same plant), and provide a perspective on the future development of mycorrhizal receptors. First, we focus on the distinct perception of two Myc factors by different host plant species, highlighting the essential role of Lysin-Motif (LysM)-type mycorrhizal receptors in perceiving them. Second, we propose the underlying molecular mechanisms by which LysM-type mycorrhizal receptors in various plants recognize both the Myc-LCOs and -COs. Finally, we explore future prospects for studies on the biceptor complex (Myc-LCO and -CO receptors) in dicots to facilitate the utilization of them in cereal crops (particularly in modern cultivated rice). In conclusion, our understanding of the precise perception processes during host plant interacting with AM fungi, where LysM-type mycorrhizal receptors act as recruiters, provides the tools to design biotechnological applications addressing agricultural challenges.
Collapse
Affiliation(s)
- Junliang He
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Renliang Huang
- National Engineering Research Center of Rice, Key Laboratory of Rice Physiology and Genetics of Jiangxi Province, Rice Research Institute, Jiangxi Academy of Agriculture Science, Nanchang, China
| | - Xianan Xie
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
2
|
Geurts R, Huisman R. Innovations in two genes kickstarted the evolution of nitrogen-fixing nodules. CURRENT OPINION IN PLANT BIOLOGY 2024; 77:102446. [PMID: 37696726 DOI: 10.1016/j.pbi.2023.102446] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 09/13/2023]
Abstract
The root nodule symbiosis between plants and nitrogen-fixing bacteria is a fascinating trait limited to several plant species. Given the agronomic potential of transferring this symbiosis to nonleguminous crops, the symbiosis has attracted researchers' attention for over a century. The origins of this symbiosis can be traced back to a single ancestor, around 110 million years ago. Recent findings have uncovered that adaptations in a receptor complex and the recruitment of the transcription factor Nodule Inception (NIN) are among the first genetic adaptations that allowed this ancestor to respond to its microsymbiont. Understanding the consequences of recruiting these genes provides insights into the start of this complex genetic trait.
Collapse
Affiliation(s)
- Rene Geurts
- Laboratory of Molecular Biology, Plant Science Group, Wageningen University Droevendaalsesteeg 1, 6708PB Wageningen, the Netherlands.
| | - Rik Huisman
- Laboratory of Molecular Biology, Plant Science Group, Wageningen University Droevendaalsesteeg 1, 6708PB Wageningen, the Netherlands.
| |
Collapse
|
3
|
Dallachiesa D, Aguilar OM, Lozano MJ. Improved detection and phylogenetic analysis of plant proteins containing LysM domains. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:NULL. [PMID: 38007819 DOI: 10.1071/fp23131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/31/2023] [Indexed: 11/28/2023]
Abstract
Plants perceive N-acetyl-d-glucosamine-containing oligosaccharides that play a role in the interaction with bacteria and fungi, through cell-surface receptors containing a tight bundle of three LysM domains in their extracellular region. However, the identification of LysM domains of receptor-like kinases (RLK)/receptor-like proteins (RLP) using sequence based methods has led to some ambiguity, as some proteins have been annotated with only one or two LysM domains. This missing annotation was likely produced by the failure of the LysM hidden Markov model (HMM) from the Pfam database to correctly identify some LysM domains in proteins of plant origin. In this work, we provide improved HMMs for LysM domain detection in plants, that were built from the structural alignment of manually curated LysM domain structures from the Protein Data Bank and AlphaFold Protein Structure Database. Furthermore, we evaluated different sets of ligand-specific HMMs that were able to correctly classify a limited set of fully characterised RLK/Ps by their ligand specificity. In contrast, the phylogenetic analysis of the extracellular region of RLK/Ps, or of their individual LysM domains, was unable to discriminate these proteins by their ligand specificity. The HMMs reported here will allow a more sensitive detection of plant proteins containing LysM domains and help improve their characterisation.
Collapse
Affiliation(s)
- Dardo Dallachiesa
- Instituto de Biotecnología y Biología Molecular (IBBM) - CONICET-CCT La Plata - Universidad Nacional de La Plata, La Plata, Argentina
| | - O Mario Aguilar
- Instituto de Biotecnología y Biología Molecular (IBBM) - CONICET-CCT La Plata - Universidad Nacional de La Plata, La Plata, Argentina
| | - Mauricio J Lozano
- Instituto de Biotecnología y Biología Molecular (IBBM) - CONICET-CCT La Plata - Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
4
|
Man J, Harrington TA, Lally K, Bartlett ME. Asymmetric Evolution of Protein Domains in the Leucine-Rich Repeat Receptor-Like Kinase Family of Plant Signaling Proteins. Mol Biol Evol 2023; 40:msad220. [PMID: 37787619 PMCID: PMC10588794 DOI: 10.1093/molbev/msad220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/29/2023] [Accepted: 09/26/2023] [Indexed: 10/04/2023] Open
Abstract
The coding sequences of developmental genes are expected to be deeply conserved, with cis-regulatory change driving the modulation of gene function. In contrast, proteins with roles in defense are expected to evolve rapidly, in molecular arms races with pathogens. However, some gene families include both developmental and defense genes. In these families, does the tempo and mode of evolution differ between genes with divergent functions, despite shared ancestry and structure? The leucine-rich repeat receptor-like kinase (LRR-RLKs) protein family includes members with roles in plant development and defense, thus providing an ideal system for answering this question. LRR-RLKs are receptors that traverse plasma membranes. LRR domains bind extracellular ligands; RLK domains initiate intracellular signaling cascades in response to ligand binding. In LRR-RLKs with roles in defense, LRR domains evolve faster than RLK domains. To determine whether this asymmetry extends to LRR-RLKs that function primarily in development, we assessed evolutionary rates and tested for selection acting on 11 subfamilies of LRR-RLKs, using deeply sampled protein trees. To assess functional evolution, we performed heterologous complementation assays in Arabidopsis thaliana (Arabidopsis). We found that the LRR domains of all tested LRR-RLK proteins evolved faster than their cognate RLK domains. All tested subfamilies of LRR-RLKs had strikingly similar patterns of molecular evolution, despite divergent functions. Heterologous transformation experiments revealed that multiple mechanisms likely contribute to the evolution of LRR-RLK function, including escape from adaptive conflict. Our results indicate specific and distinct evolutionary pressures acting on LRR versus RLK domains, despite diverse organismal roles for LRR-RLK proteins.
Collapse
Affiliation(s)
- Jarrett Man
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01002, USA
| | - T A Harrington
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01002, USA
| | - Kyra Lally
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01002, USA
| | - Madelaine E Bartlett
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01002, USA
| |
Collapse
|
5
|
Luu TB, Carles N, Bouzou L, Gibelin-Viala C, Remblière C, Gasciolli V, Bono JJ, Lefebvre B, Pauly N, Cullimore J. Analysis of the structure and function of the LYK cluster of Medicago truncatula A17 and R108. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 332:111696. [PMID: 37019339 DOI: 10.1016/j.plantsci.2023.111696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/17/2023] [Accepted: 04/01/2023] [Indexed: 05/27/2023]
Abstract
The establishment of the Legume-Rhizobia symbiosis is generally dependent on the production of rhizobial lipochitooligosaccharidic Nod factors (NFs) and their perception by plant Lysin Motif Receptor-Like Kinases (LysM-RLKs). In this study, we characterized a cluster of LysM-RLK genes implicated in strain-specific recognition in two highly divergent and widely-studied Medicago truncatula genotypes, A17 and R108. We then used reverse genetic approaches and biochemical analyses to study the function of selected genes in the clusters and the ability of their encoded proteins to bind NFs. Our study has revealed that the LYK cluster exhibits a high degree of variability among M. truncatula genotypes, which in A17 and R108 includes recent recombination events within the cluster and a transposon insertion in A17. The essential role of LYK3 in nodulation in A17 is not conserved in R108 despite similar sequences and good nodulation expression profiles. Although, LYK2, LYK5 and LYK5bis are not essential for nodulation of the two genotypes, some evidence points to accessory roles in nodulation, but not through high-affinity NF binding. This work shows that recent evolution in the LYK cluster provides a source of variation for nodulation, and potential robustness of signaling through genetic redundancy.
Collapse
Affiliation(s)
- Thi-Bich Luu
- Laboratory of Plant-Microbe-Environment Interactions (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Noémie Carles
- Laboratory of Plant-Microbe-Environment Interactions (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Louis Bouzou
- Laboratory of Plant-Microbe-Environment Interactions (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Chrystel Gibelin-Viala
- Laboratory of Plant-Microbe-Environment Interactions (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Céline Remblière
- Laboratory of Plant-Microbe-Environment Interactions (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Virginie Gasciolli
- Laboratory of Plant-Microbe-Environment Interactions (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Jean-Jacques Bono
- Laboratory of Plant-Microbe-Environment Interactions (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Benoit Lefebvre
- Laboratory of Plant-Microbe-Environment Interactions (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Nicolas Pauly
- Laboratory of Plant-Microbe-Environment Interactions (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France; Institut Sophia Agrobiotech, Université Côte d'Azur, INRAE, CNRS, Sophia Antipolis Cedex, France.
| | - Julie Cullimore
- Laboratory of Plant-Microbe-Environment Interactions (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| |
Collapse
|
6
|
Luu TB, Ourth A, Pouzet C, Pauly N, Cullimore J. A newly evolved chimeric lysin motif receptor-like kinase in Medicago truncatula spp. tricycla R108 extends its Rhizobia symbiotic partnership. THE NEW PHYTOLOGIST 2022; 235:1995-2007. [PMID: 35611584 DOI: 10.1111/nph.18270] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Rhizobial lipochitooligosaccharidic Nod factors (NFs), specified by nod genes, are the primary determinants of host specificity in the legume-Rhizobia symbiosis. We examined the nodulation ability of Medicago truncatula cv Jemalong A17 and M. truncatula ssp. tricycla R108 with the Sinorhizobium meliloti nodF/nodL mutant, which produces modified NFs. We then applied genetic and functional approaches to study the genetic basis and mechanism of nodulation of R108 by this mutant. We show that the nodF/nodL mutant can nodulate R108 but not A17. Using genomics and reverse genetics, we identified a newly evolved, chimeric LysM receptor-like kinase gene in R108, LYK2bis, which is responsible for the phenotype and can allow A17 to gain nodulation with the nodF/nodL mutant. We found that LYK2bis is involved in nodulation by mutants producing nonO-acetylated NFs and interacts with the key receptor protein NFP. Many, but not all, natural S. meliloti and S. medicae strains tested require LYK2bis for efficient nodulation of R108. Our findings reveal that a newly evolved gene in R108, LYK2bis, extends nodulation specificity to mutants producing nonO-acetylated NFs and is important for nodulation by many natural Sinorhizobia. Evolution of this gene may present an adaptive advantage to allow nodulation by a greater variety of strains.
Collapse
Affiliation(s)
- Thi-Bich Luu
- Laboratory of Plant-Microbe Interactions and Environment (LIPME), University Toulouse III, INRAE, CNRS, 31326, Castanet-Tolosan Cedex, France
| | - Anna Ourth
- Laboratory of Plant-Microbe Interactions and Environment (LIPME), University Toulouse III, INRAE, CNRS, 31326, Castanet-Tolosan Cedex, France
| | - Cécile Pouzet
- FRAIB-TRI Imaging Platform Facilities, FR AIB, Université de Toulouse, CNRS, 31320, Castanet-Tolosan, France
| | - Nicolas Pauly
- Laboratory of Plant-Microbe Interactions and Environment (LIPME), University Toulouse III, INRAE, CNRS, 31326, Castanet-Tolosan Cedex, France
- Institut Sophia Agrobiotech, Université Côte d'Azur, INRAE, CNRS, 06903, Sophia Antipolis Cedex, France
| | - Julie Cullimore
- Laboratory of Plant-Microbe Interactions and Environment (LIPME), University Toulouse III, INRAE, CNRS, 31326, Castanet-Tolosan Cedex, France
| |
Collapse
|
7
|
Castro-Rodríguez R, Escudero V, Reguera M, Gil-Díez P, Quintana J, Prieto RI, Kumar RK, Brear E, Grillet L, Wen J, Mysore KS, Walker EL, Smith PMC, Imperial J, González-Guerrero M. Medicago truncatula Yellow Stripe-Like7 encodes a peptide transporter participating in symbiotic nitrogen fixation. PLANT, CELL & ENVIRONMENT 2021. [PMID: 33797764 DOI: 10.1101/2020.03.26.009159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Yellow Stripe-Like (YSL) proteins are a family of plant transporters that are typically involved in transition metal homeostasis. Three of the four YSL clades (I, II and IV) transport metals complexed with the non-proteinogenic amino acid nicotianamine or its derivatives. No such capability has been shown for any member of clade III, but the link between these YSLs and metal homeostasis could be masked by functional redundancy. We studied the role of the clade III YSL protein MtSYL7 in Medicago truncatula nodules. MtYSL7, which encodes a plasma membrane-bound protein, is mainly expressed in the pericycle and cortex cells of the root nodules. Yeast complementation assays revealed that MtSYL7 can transport short peptides. M. truncatula transposon insertion mutants with decreased expression of MtYSL7 had lower nitrogen fixation rates and showed reduced plant growth whether grown in symbiosis with rhizobia or not. YSL7 mutants accumulated more copper and iron in the nodules, which is likely to result from the increased expression of iron uptake and delivery genes in roots. Taken together, these data suggest that MtYSL7 plays an important role in the transition metal homeostasis of nodules and symbiotic nitrogen fixation.
Collapse
Affiliation(s)
- Rosario Castro-Rodríguez
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA). Universidad Politécnica de Madrid, Campus de Montegancedo, Madrid, Spain
| | - Viviana Escudero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA). Universidad Politécnica de Madrid, Campus de Montegancedo, Madrid, Spain
| | - María Reguera
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA). Universidad Politécnica de Madrid, Campus de Montegancedo, Madrid, Spain
| | - Patricia Gil-Díez
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA). Universidad Politécnica de Madrid, Campus de Montegancedo, Madrid, Spain
| | - Julia Quintana
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Rosa Isabel Prieto
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA). Universidad Politécnica de Madrid, Campus de Montegancedo, Madrid, Spain
| | - Rakesh K Kumar
- Department of Biology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Ella Brear
- Department of Animal, Plant, and Soil Sciences, La Trobe University, Bundoora, Australia
| | - Louis Grillet
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
| | - Jiangqi Wen
- Noble Research Institute, LLC., Ardmore, Oklahoma, USA
| | | | - Elsbeth L Walker
- Department of Biology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Penelope M C Smith
- Department of Animal, Plant, and Soil Sciences, La Trobe University, Bundoora, Australia
| | - Juan Imperial
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Manuel González-Guerrero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA). Universidad Politécnica de Madrid, Campus de Montegancedo, Madrid, Spain
- Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| |
Collapse
|
8
|
Castro-Rodríguez R, Escudero V, Reguera M, Gil-Díez P, Quintana J, Prieto RI, Kumar RK, Brear E, Grillet L, Wen J, Mysore KS, Walker EL, Smith PMC, Imperial J, González-Guerrero M. Medicago truncatula Yellow Stripe-Like7 encodes a peptide transporter participating in symbiotic nitrogen fixation. PLANT, CELL & ENVIRONMENT 2021; 44:1908-1920. [PMID: 33797764 DOI: 10.1111/pce.14059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 06/12/2023]
Abstract
Yellow Stripe-Like (YSL) proteins are a family of plant transporters that are typically involved in transition metal homeostasis. Three of the four YSL clades (I, II and IV) transport metals complexed with the non-proteinogenic amino acid nicotianamine or its derivatives. No such capability has been shown for any member of clade III, but the link between these YSLs and metal homeostasis could be masked by functional redundancy. We studied the role of the clade III YSL protein MtSYL7 in Medicago truncatula nodules. MtYSL7, which encodes a plasma membrane-bound protein, is mainly expressed in the pericycle and cortex cells of the root nodules. Yeast complementation assays revealed that MtSYL7 can transport short peptides. M. truncatula transposon insertion mutants with decreased expression of MtYSL7 had lower nitrogen fixation rates and showed reduced plant growth whether grown in symbiosis with rhizobia or not. YSL7 mutants accumulated more copper and iron in the nodules, which is likely to result from the increased expression of iron uptake and delivery genes in roots. Taken together, these data suggest that MtYSL7 plays an important role in the transition metal homeostasis of nodules and symbiotic nitrogen fixation.
Collapse
Affiliation(s)
- Rosario Castro-Rodríguez
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA). Universidad Politécnica de Madrid, Campus de Montegancedo, Madrid, Spain
| | - Viviana Escudero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA). Universidad Politécnica de Madrid, Campus de Montegancedo, Madrid, Spain
| | - María Reguera
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA). Universidad Politécnica de Madrid, Campus de Montegancedo, Madrid, Spain
| | - Patricia Gil-Díez
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA). Universidad Politécnica de Madrid, Campus de Montegancedo, Madrid, Spain
| | - Julia Quintana
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Rosa Isabel Prieto
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA). Universidad Politécnica de Madrid, Campus de Montegancedo, Madrid, Spain
| | - Rakesh K Kumar
- Department of Biology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Ella Brear
- Department of Animal, Plant, and Soil Sciences, La Trobe University, Bundoora, Australia
| | - Louis Grillet
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
| | - Jiangqi Wen
- Noble Research Institute, LLC., Ardmore, Oklahoma, USA
| | | | - Elsbeth L Walker
- Department of Biology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Penelope M C Smith
- Department of Animal, Plant, and Soil Sciences, La Trobe University, Bundoora, Australia
| | - Juan Imperial
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Manuel González-Guerrero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA). Universidad Politécnica de Madrid, Campus de Montegancedo, Madrid, Spain
- Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| |
Collapse
|
9
|
Zhao Y, Zhang R, Jiang KW, Qi J, Hu Y, Guo J, Zhu R, Zhang T, Egan AN, Yi TS, Huang CH, Ma H. Nuclear phylotranscriptomics and phylogenomics support numerous polyploidization events and hypotheses for the evolution of rhizobial nitrogen-fixing symbiosis in Fabaceae. MOLECULAR PLANT 2021; 14:748-773. [PMID: 33631421 DOI: 10.1016/j.molp.2021.02.006] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/31/2020] [Accepted: 02/19/2021] [Indexed: 05/20/2023]
Abstract
Fabaceae are the third largest angiosperm family, with 765 genera and ∼19 500 species. They are important both economically and ecologically, and global Fabaceae crops are intensively studied in part for their nitrogen-fixing ability. However, resolution of the intrasubfamilial Fabaceae phylogeny and divergence times has remained elusive, precluding a reconstruction of the evolutionary history of symbiotic nitrogen fixation in Fabaceae. Here, we report a highly resolved phylogeny using >1500 nuclear genes from newly sequenced transcriptomes and genomes of 391 species, along with other datasets, for a total of 463 legumes spanning all 6 subfamilies and 333 of 765 genera. The subfamilies are maximally supported as monophyletic. The clade comprising subfamilies Cercidoideae and Detarioideae is sister to the remaining legumes, and Duparquetioideae and Dialioideae are successive sisters to the clade of Papilionoideae and Caesalpinioideae. Molecular clock estimation revealed an early radiation of subfamilies near the K/Pg boundary, marked by mass extinction, and subsequent divergence of most tribe-level clades within ∼15 million years. Phylogenomic analyses of thousands of gene families support 28 proposed putative whole-genome duplication/whole-genome triplication events across Fabaceae, including those at the ancestors of Fabaceae and five of the subfamilies, and further analyses supported the Fabaceae ancestral polyploidy. The evolution of rhizobial nitrogen-fixing nodulation in Fabaceae was probed by ancestral character reconstruction and phylogenetic analyses of related gene families and the results support the hypotheses of one or two switch(es) to rhizobial nodulation followed by multiple losses. Collectively, these results provide a foundation for further morphological and functional evolutionary analyses across Fabaceae.
Collapse
Affiliation(s)
- Yiyong Zhao
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200433, China; Department of Biology, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Rong Zhang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road, Kunming 650201, China
| | - Kai-Wen Jiang
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming 650224, PR China; Ningbo Botanical Garden Herbarium, Ningbo 315201, PR China
| | - Ji Qi
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200433, China
| | - Yi Hu
- Department of Biology, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jing Guo
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200433, China
| | - Renbin Zhu
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, PR China
| | - Taikui Zhang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200433, China
| | - Ashley N Egan
- Department of Biology, Utah Valley University, Orem, UT 84058, USA
| | - Ting-Shuang Yi
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road, Kunming 650201, China.
| | - Chien-Hsun Huang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200433, China.
| | - Hong Ma
- Department of Biology, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
10
|
Tsiknia M, Tsikou D, Papadopoulou KK, Ehaliotis C. Multi-species relationships in legume roots: From pairwise legume-symbiont interactions to the plant - microbiome - soil continuum. FEMS Microbiol Ecol 2021; 97:5957530. [PMID: 33155054 DOI: 10.1093/femsec/fiaa222] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 11/03/2020] [Indexed: 01/02/2023] Open
Abstract
Mutualistic relationships of legume plants with, either bacteria (like rhizobia) or fungi (like arbuscular mycorrhizal fungi), have been investigated intensively, usually as bi-partite interactions. However, diverse symbiotic interactions take place simultaneously or sequentially under field conditions. Their collective, but not additive, contribution to plant growth and performance remains hard to predict, and appears to be furthermore affected by crop species and genotype, non-symbiotic microbial interactions and environmental variables. The challenge is: (i) to unravel the complex overlapping mechanisms that operate between the microbial symbionts as well as between them, their hosts and the rhizosphere (ii) to understand the dynamics of the respective mechanisms in evolutionary and ecological terms. The target for agriculture, food security and the environment, is to use this insight as a solid basis for developing new integrated technologies, practices and strategies for the efficient use of beneficial microbes in legumes and other plants. We review recent advances in our understanding of the symbiotic interactions in legumes roots brought about with the aid of molecular and bioinformatics tools. We go through single symbiont-host interactions, proceed to tripartite symbiont-host interactions, appraise interactions of symbiotic and associative microbiomes with plants in the root-rhizoplane-soil continuum of habitats and end up by examining attempts to validate community ecology principles in the legume-microbe-soil biosystem.
Collapse
Affiliation(s)
- Myrto Tsiknia
- Soils and Soil Chemistry Lab, Department of Natural Resources and Agricultural Engineering, Agricultural University of Athens, Iera Odos 75 st., Athens 11855, Greece
| | - Daniela Tsikou
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Kalliope K Papadopoulou
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Constantinos Ehaliotis
- Soils and Soil Chemistry Lab, Department of Natural Resources and Agricultural Engineering, Agricultural University of Athens, Iera Odos 75 st., Athens 11855, Greece
| |
Collapse
|
11
|
Affiliation(s)
- Ton Bisseling
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, 102206 Beijing, China
- Wageningen University, Cluster Plant Developmental Biology, Laboratory of Molecular Biology, Droevendaalsesteeg 1, 6708PB Wageningen, Netherlands
| | - Rene Geurts
- Wageningen University, Cluster Plant Developmental Biology, Laboratory of Molecular Biology, Droevendaalsesteeg 1, 6708PB Wageningen, Netherlands
| |
Collapse
|
12
|
Genome-Wide Identification of the CrRLK1L Subfamily and Comparative Analysis of Its Role in the Legume-Rhizobia Symbiosis. Genes (Basel) 2020; 11:genes11070793. [PMID: 32674446 PMCID: PMC7397338 DOI: 10.3390/genes11070793] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 12/12/2022] Open
Abstract
The plant receptor-like-kinase subfamily CrRLK1L has been widely studied, and CrRLK1Ls have been described as crucial regulators in many processes in Arabidopsis thaliana (L.), Heynh. Little is known, however, about the functions of these proteins in other plant species, including potential roles in symbiotic nodulation. We performed a phylogenetic analysis of CrRLK1L subfamily receptors of 57 different plant species and identified 1050 CrRLK1L proteins, clustered into 11 clades. This analysis revealed that the CrRLK1L subfamily probably arose in plants during the transition from chlorophytes to embryophytes and has undergone several duplication events during its evolution. Among the CrRLK1Ls of legumes and A. thaliana, protein structure, gene structure, and expression patterns were highly conserved. Some legume CrRLK1L genes were active in nodules. A detailed analysis of eight nodule-expressed genes in Phaseolus vulgaris L. showed that these genes were differentially expressed in roots at different stages of the symbiotic process. These data suggest that CrRLK1Ls are both conserved and underwent diversification in a wide group of plants, and shed light on the roles of these genes in legume–rhizobia symbiosis.
Collapse
|
13
|
Huisman R, Geurts R. A Roadmap toward Engineered Nitrogen-Fixing Nodule Symbiosis. PLANT COMMUNICATIONS 2020; 1:100019. [PMID: 33404552 PMCID: PMC7748023 DOI: 10.1016/j.xplc.2019.100019] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/06/2019] [Accepted: 12/27/2019] [Indexed: 05/26/2023]
Abstract
In the late 19th century, it was discovered that legumes can establish a root nodule endosymbiosis with nitrogen-fixing rhizobia. Soon after, the question was raised whether it is possible to transfer this trait to non-leguminous crops. In the past century, an ever-increasing amount of knowledge provided unique insights into the cellular, molecular, and genetic processes controlling this endosymbiosis. In addition, recent phylogenomic studies uncovered several genes that evolved to function specifically to control nodule formation and bacterial infection. However, despite this massive body of knowledge, the long-standing objective to engineer the nitrogen-fixing nodulation trait on non-leguminous crop plants has not been achieved yet. In this review, the unsolved questions and engineering strategies toward nitrogen-fixing nodulation in non-legume plants are discussed and highlighted.
Collapse
Affiliation(s)
- Rik Huisman
- Wageningen University, Department of Plant Sciences, Laboratory of Molecular Biology, Droevendaalsesteeg 1, Wageningen 6708PB, The Netherlands
| | - Rene Geurts
- Wageningen University, Department of Plant Sciences, Laboratory of Molecular Biology, Droevendaalsesteeg 1, Wageningen 6708PB, The Netherlands
| |
Collapse
|
14
|
Girardin A, Wang T, Ding Y, Keller J, Buendia L, Gaston M, Ribeyre C, Gasciolli V, Auriac MC, Vernié T, Bendahmane A, Ried MK, Parniske M, Morel P, Vandenbussche M, Schorderet M, Reinhardt D, Delaux PM, Bono JJ, Lefebvre B. LCO Receptors Involved in Arbuscular Mycorrhiza Are Functional for Rhizobia Perception in Legumes. Curr Biol 2019; 29:4249-4259.e5. [PMID: 31813608 PMCID: PMC6926482 DOI: 10.1016/j.cub.2019.11.038] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 08/09/2019] [Accepted: 11/12/2019] [Indexed: 01/10/2023]
Abstract
Bacterial lipo-chitooligosaccharides (LCOs) are key mediators of the nitrogen-fixing root nodule symbiosis (RNS) in legumes. The isolation of LCOs from arbuscular mycorrhizal fungi suggested that LCOs are also signaling molecules in arbuscular mycorrhiza (AM). However, the corresponding plant receptors have remained uncharacterized. Here we show that petunia and tomato mutants in the LysM receptor-like kinases LYK10 are impaired in AM formation. Petunia and tomato LYK10 proteins have a high affinity for LCOs (Kd in the nM range) comparable to that previously reported for a legume LCO receptor essential for the RNS. Interestingly, the tomato and petunia LYK10 promoters, when introduced into a legume, were active in nodules similarly to the promoter of the legume orthologous gene. Moreover, tomato and petunia LYK10 coding sequences restored nodulation in legumes mutated in their orthologs. This combination of genetic and biochemical data clearly pinpoints Solanaceous LYK10 as part of an ancestral LCO perception system involved in AM establishment, which has been directly recruited during evolution of the RNS in legumes.
Collapse
Affiliation(s)
- Ariane Girardin
- LIPM, Université de Toulouse, INRA, CNRS, 31326 Castanet-Tolosan, France
| | - Tongming Wang
- LIPM, Université de Toulouse, INRA, CNRS, 31326 Castanet-Tolosan, France
| | - Yi Ding
- LIPM, Université de Toulouse, INRA, CNRS, 31326 Castanet-Tolosan, France
| | - Jean Keller
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Auzeville, BP42617, 31326 Castanet-Tolosan, France
| | - Luis Buendia
- LIPM, Université de Toulouse, INRA, CNRS, 31326 Castanet-Tolosan, France
| | - Mégane Gaston
- LIPM, Université de Toulouse, INRA, CNRS, 31326 Castanet-Tolosan, France
| | - Camille Ribeyre
- LIPM, Université de Toulouse, INRA, CNRS, 31326 Castanet-Tolosan, France
| | - Virginie Gasciolli
- LIPM, Université de Toulouse, INRA, CNRS, 31326 Castanet-Tolosan, France
| | - Marie-Christine Auriac
- LIPM, Université de Toulouse, INRA, CNRS, 31326 Castanet-Tolosan, France; Institut Fédératif de Recherche 3450, Université de Toulouse, CNRS, UPS, Plateforme Imagerie TRI-Genotoul, 31326 Castanet-Tolosan, France
| | - Tatiana Vernié
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Auzeville, BP42617, 31326 Castanet-Tolosan, France
| | | | | | - Martin Parniske
- Genetics, Faculty of Biology, University of Munich (LMU), 82152 Martinsried, Germany
| | - Patrice Morel
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342 Lyon, France
| | - Michiel Vandenbussche
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342 Lyon, France
| | - Martine Schorderet
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Didier Reinhardt
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Pierre-Marc Delaux
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Auzeville, BP42617, 31326 Castanet-Tolosan, France
| | - Jean-Jacques Bono
- LIPM, Université de Toulouse, INRA, CNRS, 31326 Castanet-Tolosan, France
| | - Benoit Lefebvre
- LIPM, Université de Toulouse, INRA, CNRS, 31326 Castanet-Tolosan, France.
| |
Collapse
|
15
|
Valdés-López O, Formey D, Isidra-Arellano MC, Reyero-Saavedra MDR, Fernandez-Göbel TF, Sánchez-Correa MDS. Argonaute Proteins: Why Are They So Important for the Legume-Rhizobia Symbiosis? FRONTIERS IN PLANT SCIENCE 2019; 10:1177. [PMID: 31632421 PMCID: PMC6785634 DOI: 10.3389/fpls.2019.01177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/28/2019] [Indexed: 05/06/2023]
Abstract
Unlike most other land plants, legumes can fulfill their nitrogen needs through the establishment of symbioses with nitrogen-fixing soil bacteria (rhizobia). Through this symbiosis, fixed nitrogen is incorporated into the food chain. Because of this ecological relevance, the genetic mechanisms underlying the establishment of the legume-rhizobia symbiosis (LRS) have been extensively studied over the past decades. During this time, different types of regulators of this symbiosis have been discovered and characterized. A growing number of studies have demonstrated the participation of different types of small RNAs, including microRNAs, in the different stages of this symbiosis. The involvement of small RNAs also indicates that Argonaute (AGO) proteins participate in the regulation of the LRS. However, despite this obvious role, the relevance of AGO proteins in the LRS has been overlooked and understudied. Here, we discuss and hypothesize the likely participation of AGO proteins in the regulation of the different steps that enable the establishment of the LRS. We also briefly review and discuss whether rhizobial symbiosis induces DNA damages in the legume host. Understanding the different levels of LRS regulation could lead to the development of improved nitrogen fixation efficiency to enhance sustainable agriculture, thereby reducing dependence on inorganic fertilizers.
Collapse
Affiliation(s)
- Oswaldo Valdés-López
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Damien Formey
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Mariel C. Isidra-Arellano
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Coyoacan, Mexico City, Mexico
| | - Maria del Rocio Reyero-Saavedra
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Tadeo F. Fernandez-Göbel
- Instituto de Fisiología y Recursos Genéticos Vegetales, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria, Córdoba, Argentina
| | - Maria del Socorro Sánchez-Correa
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| |
Collapse
|
16
|
Gibelin-Viala C, Amblard E, Puech-Pages V, Bonhomme M, Garcia M, Bascaules-Bedin A, Fliegmann J, Wen J, Mysore KS, le Signor C, Jacquet C, Gough C. The Medicago truncatula LysM receptor-like kinase LYK9 plays a dual role in immunity and the arbuscular mycorrhizal symbiosis. THE NEW PHYTOLOGIST 2019; 223:1516-1529. [PMID: 31058335 DOI: 10.1111/nph.15891] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/24/2019] [Indexed: 05/26/2023]
Abstract
Plant -specific lysin-motif receptor-like kinases (LysM-RLKs) are implicated in the perception of N-acetyl glucosamine-containing compounds, some of which are important signal molecules in plant-microbe interactions. Among these, both lipo-chitooligosaccharides (LCOs) and chitooligosaccharides (COs) are proposed as arbuscular mycorrhizal (AM) fungal symbiotic signals. COs can also activate plant defence, although there are scarce data about CO production by pathogens, especially nonfungal pathogens. We tested Medicago truncatula mutants in the LysM-RLK MtLYK9 for their abilities to interact with the AM fungus Rhizophagus irregularis and the oomycete pathogen Aphanomyces euteiches. This prompted us to analyse whether A. euteiches can produce COs. Compared with wild-type plants, Mtlyk9 mutants had fewer infection events and were less colonised by the AM fungus. By contrast, Mtlyk9 mutants were more heavily infected by A. euteiches and showed more disease symptoms. Aphanomyces euteiches was also shown to produce short COs, mainly CO II, but also CO III and CO IV, and traces of CO V, both ex planta and in planta. MtLYK9 thus has a dual role in plant immunity and the AM symbiosis, which raises questions about the functioning and the ancestral origins of such a receptor protein.
Collapse
Affiliation(s)
| | - Emilie Amblard
- Laboratoire de Recherche en Sciences Végétales, CNRS, UPS, Université de Toulouse, 31326, Castanet-Tolosan, France
| | - Virginie Puech-Pages
- Laboratoire de Recherche en Sciences Végétales, CNRS, UPS, Université de Toulouse, 31326, Castanet-Tolosan, France
| | - Maxime Bonhomme
- Laboratoire de Recherche en Sciences Végétales, CNRS, UPS, Université de Toulouse, 31326, Castanet-Tolosan, France
| | - Magali Garcia
- LIPM, INRA, CNRS, Université de Toulouse, 31326, Castanet-Tolosan, France
| | - Adeline Bascaules-Bedin
- Laboratoire de Recherche en Sciences Végétales, CNRS, UPS, Université de Toulouse, 31326, Castanet-Tolosan, France
| | - Judith Fliegmann
- LIPM, INRA, CNRS, Université de Toulouse, 31326, Castanet-Tolosan, France
| | - Jiangqi Wen
- Noble Research Institute, LLC., 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Kirankumar S Mysore
- Noble Research Institute, LLC., 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | | | - Christophe Jacquet
- Laboratoire de Recherche en Sciences Végétales, CNRS, UPS, Université de Toulouse, 31326, Castanet-Tolosan, France
| | - Clare Gough
- LIPM, INRA, CNRS, Université de Toulouse, 31326, Castanet-Tolosan, France
| |
Collapse
|
17
|
Richards S, Rose LE. The evolutionary history of LysM-RLKs (LYKs/LYRs) in wild tomatoes. BMC Evol Biol 2019; 19:141. [PMID: 31296160 PMCID: PMC6625017 DOI: 10.1186/s12862-019-1467-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 06/26/2019] [Indexed: 12/22/2022] Open
Abstract
Background The LysM receptor-like kinases (LysM-RLKs) are important to both plant defense and symbiosis. Previous studies described three clades of LysM-RLKs: LysM-I/LYKs (10+ exons per gene and containing conserved kinase residues), LysM-II/LYRs (1–5 exons per gene, lacking conserved kinase residues), and LysM-III (two exons per gene, with a kinase unlike other LysM-RLK kinases and restricted to legumes). LysM-II gene products are presumably not functional as conventional receptor kinases, but several are known to operate in complexes with other LysM-RLKs. One aim of our study was to take advantage of recently mapped wild tomato transcriptomes to evaluate the evolutionary history of LysM-RLKs within and between species. The second aim was to place these results into a broader phylogenetic context by integrating them into a sequence analysis of LysM-RLKs from other functionally well-characterized model plant species. Furthermore, we sought to assess whether the Group III LysM-RLKs were restricted to the legumes or found more broadly across Angiosperms. Results Purifying selection was found to be the prevailing form of natural selection within species at LysM-RLKs. No signatures of balancing selection were found in species-wide samples of two wild tomato species. Most genes showed a greater extent of purifying selection in their intracellular domains, with the exception of SlLYK3 which showed strong purifying selection in both the extracellular and intracellular domains in wild tomato species. The phylogenetic analysis did not reveal a clustering of microbe/functional specificity to groups of closely related proteins. We also discovered new putative LysM-III genes in a range of Rosid species, including Eucalyptus grandis. Conclusions The LysM-III genes likely originated before the divergence of E. grandis from other Rosids via a fusion of a Group II LysM triplet and a kinase from another RLK family. SlLYK3 emerges as an especially interesting candidate for further study due to the high protein sequence conservation within species, its position in a clade of LysM-RLKs with distinct LysM domains, and its close evolutionary relationship with LYK3 from Arabidopsis thaliana. Electronic supplementary material The online version of this article (10.1186/s12862-019-1467-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sarah Richards
- Institute of Population Genetics, Heinrich Heine University, Duesseldorf, Universitaetsstr. 1, 40225, Duesseldorf, Germany
| | - Laura E Rose
- Institute of Population Genetics, Heinrich Heine University, Duesseldorf, Universitaetsstr. 1, 40225, Duesseldorf, Germany. .,CEPLAS, Cluster of Excellence in Plant Sciences, Heinrich Heine University, Duesseldorf, Universitaetsstr. 1, 40225, Duesseldorf, Germany.
| |
Collapse
|
18
|
Jiang Y, Xie Q, Wang W, Yang J, Zhang X, Yu N, Zhou Y, Wang E. Medicago AP2-Domain Transcription Factor WRI5a Is a Master Regulator of Lipid Biosynthesis and Transfer during Mycorrhizal Symbiosis. MOLECULAR PLANT 2018; 11:1344-1359. [PMID: 30292683 DOI: 10.1016/j.molp.2018.09.006] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/27/2018] [Accepted: 09/27/2018] [Indexed: 05/25/2023]
Abstract
Most land plants have evolved a mutualistic symbiosis with arbuscular mycorrhiza (AM) fungi that improve nutrient acquisition from the soil. In return, up to 20% of host plant photosynthate is transferred to the mycorrhizal fungus in the form of lipids and sugar. Nutrient exchange must be regulated by both partners in order to maintain a reliable symbiotic relationship. However, the mechanisms underlying the regulation of lipid transfer from the plant to the AM fungus remain elusive. Here, we show that the Medicago truncatula AP2/EREBP transcription factor WRI5a, and likely its two homologs WRI5b/Erf1 and WRI5c, are master regulators of AM symbiosis controlling lipid transfer and periarbuscular membrane formation. We found that WRI5a binds AW-box cis-regulatory elements in the promoters of M. truncatula STR, which encodes a periarbuscular membrane-localized ABC transporter required for lipid transfer from the plant to the AM fungus, and MtPT4, which encodes a phosphate transporter required for phosphate transfer from the AM fungus to the plant. The hairy roots of the M. truncatula wri5a mutant and RNAi composite plants displayed impaired arbuscule formation, whereas overexpression of WRI5a resulted in enhanced expression of STR and MtPT4, suggesting that WRI5a regulates bidirectional symbiotic nutrient exchange. Moreover, we found that WRI5a and RAM1 (Required for Arbuscular Mycorrhization symbiosis 1), which encodes a GRAS-domain transcription factor, regulate each other at the transcriptional level, forming a positive feedback loop for regulating AM symbiosis. Collectively, our data suggest a role for WRI5a in controlling bidirectional nutrient exchange and periarbuscular membrane formation via the regulation of genes involved in the biosynthesis of fatty acids and phosphate uptake in arbuscule-containing cells.
Collapse
Affiliation(s)
- Yina Jiang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Qiujin Xie
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Wanxiao Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jun Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiaowei Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Nan Yu
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yun Zhou
- Collaborative Innovation Center of Crop Stress Biology, Henan Province; Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng 475001, China
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
19
|
Murakami E, Cheng J, Gysel K, Bozsoki Z, Kawaharada Y, Hjuler CT, Sørensen KK, Tao K, Kelly S, Venice F, Genre A, Thygesen MB, de Jong N, Vinther M, Jensen DB, Jensen KJ, Blaise M, Madsen LH, Andersen KR, Stougaard J, Radutoiu S. Epidermal LysM receptor ensures robust symbiotic signalling in Lotus japonicus. eLife 2018; 7:e33506. [PMID: 29957177 PMCID: PMC6025957 DOI: 10.7554/elife.33506] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 06/05/2018] [Indexed: 02/04/2023] Open
Abstract
Recognition of Nod factors by LysM receptors is crucial for nitrogen-fixing symbiosis in most legumes. The large families of LysM receptors in legumes suggest concerted functions, yet only NFR1 and NFR5 and their closest homologs are known to be required. Here we show that an epidermal LysM receptor (NFRe), ensures robust signalling in L. japonicus. Mutants of Nfre react to Nod factors with increased calcium spiking interval, reduced transcriptional response and fewer nodules in the presence of rhizobia. NFRe has an active kinase capable of phosphorylating NFR5, which in turn, controls NFRe downstream signalling. Our findings provide evidence for a more complex Nod factor signalling mechanism than previously anticipated. The spatio-temporal interplay between Nfre and Nfr1, and their divergent signalling through distinct kinases suggests the presence of an NFRe-mediated idling state keeping the epidermal cells of the expanding root system attuned to rhizobia.
Collapse
Affiliation(s)
- Eiichi Murakami
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | - Jeryl Cheng
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | - Kira Gysel
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | - Zoltan Bozsoki
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | | | | | | | - Ke Tao
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | - Simon Kelly
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | - Francesco Venice
- Department of Life Sciences and Systems BiologyUniversity of TorinoTorinoItaly
| | - Andrea Genre
- Department of Life Sciences and Systems BiologyUniversity of TorinoTorinoItaly
| | | | - Noor de Jong
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | - Maria Vinther
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | | | | | - Michael Blaise
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | | | | | - Jens Stougaard
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | - Simona Radutoiu
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| |
Collapse
|
20
|
Griesmann M, Chang Y, Liu X, Song Y, Haberer G, Crook MB, Billault-Penneteau B, Lauressergues D, Keller J, Imanishi L, Roswanjaya YP, Kohlen W, Pujic P, Battenberg K, Alloisio N, Liang Y, Hilhorst H, Salgado MG, Hocher V, Gherbi H, Svistoonoff S, Doyle JJ, He S, Xu Y, Xu S, Qu J, Gao Q, Fang X, Fu Y, Normand P, Berry AM, Wall LG, Ané JM, Pawlowski K, Xu X, Yang H, Spannagl M, Mayer KFX, Wong GKS, Parniske M, Delaux PM, Cheng S. Phylogenomics reveals multiple losses of nitrogen-fixing root nodule symbiosis. Science 2018; 361:science.aat1743. [DOI: 10.1126/science.aat1743] [Citation(s) in RCA: 198] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/16/2018] [Indexed: 12/20/2022]
|
21
|
Signaling through plant lectins: modulation of plant immunity and beyond. Biochem Soc Trans 2018; 46:217-233. [PMID: 29472368 DOI: 10.1042/bst20170371] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/10/2018] [Accepted: 01/13/2018] [Indexed: 12/12/2022]
Abstract
Lectins constitute an abundant group of proteins that are present throughout the plant kingdom. Only recently, genome-wide screenings have unraveled the multitude of different lectin sequences within one plant species. It appears that plants employ a plurality of lectins, though relatively few lectins have already been studied and functionally characterized. Therefore, it is very likely that the full potential of lectin genes in plants is underrated. This review summarizes the knowledge of plasma membrane-bound lectins in different biological processes (such as recognition of pathogen-derived molecules and symbiosis) and illustrates the significance of soluble intracellular lectins and how they can contribute to plant signaling. Altogether, the family of plant lectins is highly complex with an enormous diversity in biochemical properties and activities.
Collapse
|
22
|
Saijo Y, Loo EPI, Yasuda S. Pattern recognition receptors and signaling in plant-microbe interactions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:592-613. [PMID: 29266555 DOI: 10.1111/tpj.13808] [Citation(s) in RCA: 253] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 12/09/2017] [Accepted: 12/14/2017] [Indexed: 05/20/2023]
Abstract
Plants solely rely on innate immunity of each individual cell to deal with a diversity of microbes in the environment. Extracellular recognition of microbe- and host damage-associated molecular patterns leads to the first layer of inducible defenses, termed pattern-triggered immunity (PTI). In plants, pattern recognition receptors (PRRs) described to date are all membrane-associated receptor-like kinases or receptor-like proteins, reflecting the prevalence of apoplastic colonization of plant-infecting microbes. An increasing inventory of elicitor-active patterns and PRRs indicates that a large number of them are limited to a certain range of plant groups/species, pointing to dynamic and convergent evolution of pattern recognition specificities. In addition to common molecular principles of PRR signaling, recent studies have revealed substantial diversification between PRRs in their functions and regulatory mechanisms. This serves to confer robustness and plasticity to the whole PTI system in natural infections, wherein different PRRs are simultaneously engaged and faced with microbial assaults. We review the functional significance and molecular basis of PRR-mediated pathogen recognition and disease resistance, and also an emerging role for PRRs in homeostatic association with beneficial or commensal microbes.
Collapse
Affiliation(s)
- Yusuke Saijo
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Eliza Po-Iian Loo
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Shigetaka Yasuda
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| |
Collapse
|
23
|
Gough C, Cottret L, Lefebvre B, Bono JJ. Evolutionary History of Plant LysM Receptor Proteins Related to Root Endosymbiosis. FRONTIERS IN PLANT SCIENCE 2018; 9:923. [PMID: 30022986 PMCID: PMC6039847 DOI: 10.3389/fpls.2018.00923] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 06/11/2018] [Indexed: 05/03/2023]
Abstract
LysM receptor-like kinases (LysM-RLKs), which are specific to plants, can control establishment of both the arbuscular mycorrhizal (AM) and the rhizobium-legume (RL) symbioses in response to signal molecules produced, respectively, by the fungal and bacterial symbiotic partners. While most studies on these proteins have been performed in legume species, there are also important findings that demonstrate the roles of LysM-RLKs in controlling symbiosis in non-legume plants. Phylogenomic studies, which have revealed the presence or absence of certain LysM-RLKs among different plant species, have provided insight into the evolutionary mechanisms underlying both the acquisition and the loss of symbiotic properties. The role of a key nodulation LysM-RLK, NFP/NFR5, in legume plants has thus probably been co-opted from an ancestral role in the AM symbiosis, and has been lost in most plant species that have lost the ability to establish the AM or the RL symbiosis. Another LysM-RLK, LYK3/NFR1, that controls the RL symbiosis probably became neo-functionalised following two rounds of gene duplication. Evidence suggests that a third LysM-RLK, LYR3/LYS12, is also implicated in perceiving microbial symbiotic signals, and this protein could have roles in symbiosis and/or plant immunity in different plant species. By focusing on these three LysM-RLKs that are widespread in plants we review their evolutionary history and what this can tell us about the evolution of both the RL and the AM symbioses.
Collapse
|
24
|
Buendia L, Girardin A, Wang T, Cottret L, Lefebvre B. LysM Receptor-Like Kinase and LysM Receptor-Like Protein Families: An Update on Phylogeny and Functional Characterization. FRONTIERS IN PLANT SCIENCE 2018; 9:1531. [PMID: 30405668 PMCID: PMC6207691 DOI: 10.3389/fpls.2018.01531] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/28/2018] [Indexed: 05/18/2023]
Abstract
Members of plant specific families of receptor-like kinases (RLKs) and receptor-like proteins (RLPs), containing 3 extracellular LysMs have been shown to directly bind and/or to be involved in perception of lipo-chitooligosaccharides (LCO), chitooligosaccharides (CO), and peptidoglycan (PGN), three types of GlcNAc-containing molecules produced by microorganisms. These receptors are involved in microorganism perception by plants and can activate different plant responses leading either to symbiosis establishment or to defense responses against pathogens. LysM-RLK/Ps belong to multigenic families. Here, we provide a phylogeny of these families in eight plant species, including dicotyledons and monocotyledons, and we discuss known or putative biological roles of the members in each of the identified phylogenetic groups. We also report and discuss known biochemical properties of the LysM-RLK/Ps.
Collapse
|
25
|
Liao D, Sun X, Wang N, Song F, Liang Y. Tomato LysM Receptor-Like Kinase SlLYK12 Is Involved in Arbuscular Mycorrhizal Symbiosis. FRONTIERS IN PLANT SCIENCE 2018; 9:1004. [PMID: 30050553 PMCID: PMC6050466 DOI: 10.3389/fpls.2018.01004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 06/20/2018] [Indexed: 05/09/2023]
Abstract
Arbuscular mycorrhiza (AM) is a widespread symbiotic relationship between plants and fungi (Glomeromycota), which improves the supply of water and nutrients to host plants. AM symbiosis is set in motion by fungal chitooligosaccharides and lipochitooligosaccharides, which are perceived by plant-specific LysM-type receptor kinases (LYK). In rice this involves OsCERK1, a LYK also essential for chitin triggered innate immunity. In contrast in legumes, the CERK1 homologous gene experienced duplication events resulting in subfunctionalization. However, it remains unknown whether this subfunctionalization is legume-specific, or has occurred also in other dicot plant species. We identified four CERK1 homologs in tomato (SlLYK1, SlLYK11, SlLYK12, and SlLYK13) and investigated their roles in chitin signaling and AM symbiosis. We found that knockdown of SlLYK12 in tomato significantly reduced AM colonization, whereas chitin-induced responses were unaffected. In contrast, knockdown of SlLYK1 resulted in reduced responses to chitin, but did not alter responses to AM fungi. Moreover, ectopic overexpression of SlLYK1 and SlLYK13 in Nicotiana benthamiana induced cell death, whereas SlLYK12 overexpression did not. Based on our results and comparison with rice OsCERK1, we hypothesize that OsCERK1 orthologs in tomato underwent gene duplication, leading to the subfunctionalization of immunity and symbiosis.
Collapse
|
26
|
Bozsoki Z, Cheng J, Feng F, Gysel K, Vinther M, Andersen KR, Oldroyd G, Blaise M, Radutoiu S, Stougaard J. Receptor-mediated chitin perception in legume roots is functionally separable from Nod factor perception. Proc Natl Acad Sci U S A 2017; 114:E8118-E8127. [PMID: 28874587 PMCID: PMC5617283 DOI: 10.1073/pnas.1706795114] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The ability of root cells to distinguish mutualistic microbes from pathogens is crucial for plants that allow symbiotic microorganisms to infect and colonize their internal root tissues. Here we show that Lotus japonicus and Medicago truncatula possess very similar LysM pattern-recognition receptors, LjLYS6/MtLYK9 and MtLYR4, enabling root cells to separate the perception of chitin oligomeric microbe-associated molecular patterns from the perception of lipochitin oligosaccharide by the LjNFR1/MtLYK3 and LjNFR5/MtNFP receptors triggering symbiosis. Inactivation of chitin-receptor genes in Ljlys6, Mtlyk9, and Mtlyr4 mutants eliminates early reactive oxygen species responses and induction of defense-response genes in roots. Ljlys6, Mtlyk9, and Mtlyr4 mutants were also more susceptible to fungal and bacterial pathogens, while infection and colonization by rhizobia and arbuscular mycorrhizal fungi was maintained. Biochemical binding studies with purified LjLYS6 ectodomains further showed that at least six GlcNAc moieties (CO6) are required for optimal binding efficiency. The 2.3-Å crystal structure of the LjLYS6 ectodomain reveals three LysM βααβ motifs similar to other LysM proteins and a conserved chitin-binding site. These results show that distinct receptor sets in legume roots respond to chitin and lipochitin oligosaccharides found in the heterogeneous mixture of chitinaceous compounds originating from soil microbes. This establishes a foundation for genetic and biochemical dissection of the perception and the downstream responses separating defense from symbiosis in the roots of the 80-90% of land plants able to develop rhizobial and/or mycorrhizal endosymbiosis.
Collapse
Affiliation(s)
- Zoltan Bozsoki
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, University of Aarhus, DK-8000 Aarhus, Denmark
| | - Jeryl Cheng
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, University of Aarhus, DK-8000 Aarhus, Denmark
| | - Feng Feng
- John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Kira Gysel
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, University of Aarhus, DK-8000 Aarhus, Denmark
| | - Maria Vinther
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, University of Aarhus, DK-8000 Aarhus, Denmark
| | - Kasper R Andersen
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, University of Aarhus, DK-8000 Aarhus, Denmark
| | | | - Mickael Blaise
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, University of Aarhus, DK-8000 Aarhus, Denmark
| | - Simona Radutoiu
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, University of Aarhus, DK-8000 Aarhus, Denmark
| | - Jens Stougaard
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, University of Aarhus, DK-8000 Aarhus, Denmark;
| |
Collapse
|
27
|
Wang W, Shi J, Xie Q, Jiang Y, Yu N, Wang E. Nutrient Exchange and Regulation in Arbuscular Mycorrhizal Symbiosis. MOLECULAR PLANT 2017; 10:1147-1158. [PMID: 28782719 DOI: 10.1016/j.molp.2017.07.012] [Citation(s) in RCA: 208] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 07/29/2017] [Accepted: 07/31/2017] [Indexed: 05/19/2023]
Abstract
Most land plants form symbiotic associations with arbuscular mycorrhizal (AM) fungi. These are the most common and widespread terrestrial plant symbioses, which have a global impact on plant mineral nutrition. The establishment of AM symbiosis involves recognition of the two partners and bidirectional transport of different mineral and carbon nutrients through the symbiotic interfaces within the host root cells. Intriguingly, recent discoveries have highlighted that lipids are transferred from the plant host to AM fungus as a major carbon source. In this review, we discuss the transporter-mediated transfer of carbon, nitrogen, phosphate, potassium and sulfate, and present hypotheses pertaining to the potential regulatory mechanisms of nutrient exchange in AM symbiosis. Current challenges and future perspectives on AM symbiosis research are also discussed.
Collapse
Affiliation(s)
- Wanxiao Wang
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China; National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jincai Shi
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qiujin Xie
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yina Jiang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Nan Yu
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
28
|
Plant signalling in symbiosis and immunity. Nature 2017; 543:328-336. [PMID: 28300100 DOI: 10.1038/nature22009] [Citation(s) in RCA: 426] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 01/13/2017] [Indexed: 12/12/2022]
Abstract
Plants encounter a myriad of microorganisms, particularly at the root-soil interface, that can invade with detrimental or beneficial outcomes. Prevalent beneficial associations between plants and microorganisms include those that promote plant growth by facilitating the acquisition of limiting nutrients such as nitrogen and phosphorus. But while promoting such symbiotic relationships, plants must restrict the formation of pathogenic associations. Achieving this balance requires the perception of potential invading microorganisms through the signals that they produce, followed by the activation of either symbiotic responses that promote microbial colonization or immune responses that limit it.
Collapse
|
29
|
Dani V, Priouzeau F, Mertz M, Mondin M, Pagnotta S, Lacas-Gervais S, Davy SK, Sabourault C. Expression patterns of sterol transporters NPC1 and NPC2 in the cnidarian-dinoflagellate symbiosis. Cell Microbiol 2017; 19. [DOI: 10.1111/cmi.12753] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 05/16/2017] [Accepted: 05/18/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Vincent Dani
- Institut de Biologie Valrose (iBV); Université Côte d'Azur; Nice France
- UMR7138, Equipe Symbiose Marine; Université Côte d'Azur; Nice France
| | - Fabrice Priouzeau
- Institut de Biologie Valrose (iBV); Université Côte d'Azur; Nice France
- UMR7138, Equipe Symbiose Marine; Université Côte d'Azur; Nice France
| | - Marjolijn Mertz
- Institut de Biologie Valrose (iBV); Université Côte d'Azur; Nice France
| | - Magali Mondin
- Institut de Biologie Valrose (iBV); Université Côte d'Azur; Nice France
| | - Sophie Pagnotta
- Centre Commun de Microscopie Appliquée; Université Côte d'Azur; Nice France
| | | | - Simon K. Davy
- School of Biological Sciences; Victoria University of Wellington; Wellington New Zealand
| | - Cécile Sabourault
- Institut de Biologie Valrose (iBV); Université Côte d'Azur; Nice France
- UMR7138, Equipe Symbiose Marine; Université Côte d'Azur; Nice France
| |
Collapse
|
30
|
Taylor A, Qiu YL. Evolutionary History of Subtilases in Land Plants and Their Involvement in Symbiotic Interactions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:489-501. [PMID: 28353400 DOI: 10.1094/mpmi-10-16-0218-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Subtilases, a family of proteases involved in a variety of developmental processes in land plants, are also involved in both mutualistic symbiosis and host-pathogen interactions in different angiosperm lineages. We examined the evolutionary history of subtilase genes across land plants through a phylogenetic analysis integrating amino acid sequence data from full genomes, transcriptomes, and characterized subtilases of 341 species of diverse green algae and land plants along with subtilases from 12 species of other eukaryotes, archaea, and bacteria. Our analysis reconstructs the subtilase gene phylogeny and identifies 11 new gene lineages, six of which have no previously characterized members. Two large, previously unnamed, subtilase gene lineages that diverged before the origin of angiosperms accounted for the majority of subtilases shown to be associated with symbiotic interactions. These lineages expanded through both whole-genome and tandem duplication, with differential neofunctionalization and subfunctionalization creating paralogs associated with different symbioses, including nodulation with nitrogen-fixing bacteria, arbuscular mycorrhizae, and pathogenesis in different plant clades. This study demonstrates for the first time that a key gene family involved in plant-microbe interactions proliferated in size and functional diversity before the explosive radiation of angiosperms.
Collapse
Affiliation(s)
- Alexander Taylor
- University of Michigan, Department of Ecology and Evolutionary Biology, Ann Arbor, MI, U.S.A
| | - Yin-Long Qiu
- University of Michigan, Department of Ecology and Evolutionary Biology, Ann Arbor, MI, U.S.A
| |
Collapse
|
31
|
Yano K, Aoki S, Liu M, Umehara Y, Suganuma N, Iwasaki W, Sato S, Soyano T, Kouchi H, Kawaguchi M. Function and evolution of a Lotus japonicus AP2/ERF family transcription factor that is required for development of infection threads. DNA Res 2017; 24:193-203. [PMID: 28028038 PMCID: PMC5397602 DOI: 10.1093/dnares/dsw052] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 10/25/2016] [Indexed: 01/05/2023] Open
Abstract
Legume-rhizobium symbiosis is achieved by two major events evolutionarily acquired: root hair infection and organogenesis. Infection thread (IT) development is a distinct element for rhizobial infection. Through ITs, rhizobia are efficiently transported from infection foci on root hairs to dividing meristematic cortical cells. To unveil this process, we performed genetic screening using Lotus japonicus MG-20 and isolated symbiotic mutant lines affecting nodulation, root hair morphology, and IT development. Map-based cloning identified an AP2/ERF transcription factor gene orthologous to Medicago truncatula ERN1. LjERN1 was activated in response to rhizobial infection and depended on CYCLOPS and NSP2. Legumes conserve an ERN1 homolog, ERN2, that functions redundantly with ERN1 in M. truncatula. Phylogenetic analysis showed that the lineages of ERN1 and ERN2 genes originated from a gene duplication event in the common ancestor of legume plants. However, genomic analysis suggested the lack of ERN2 gene in the L. japonicus genome, consistent with Ljern1 mutants exhibited a root hair phenotype that is observed in ern1/ern2 double mutants in M. truncatula. Molecular evolutionary analysis suggested that the nonsynonymous/synonymous rate ratios of legume ERN1 genes was almost identical to that of non-legume plants, whereas the ERN2 genes experienced a relaxed selective constraint.
Collapse
Affiliation(s)
- Koji Yano
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan
- Division of Symbiotic Systems, National Institute for Basic Biology, National Institute for Natural Sciences, Okazaki 444-8585, Japan
| | - Seishiro Aoki
- Department of General Systems Studies, Graduate School of Arts and Sciences, the University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Meng Liu
- Division of Symbiotic Systems, National Institute for Basic Biology, National Institute for Natural Sciences, Okazaki 444-8585, Japan
- Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8585, Japan and
| | - Yosuke Umehara
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan
| | - Norio Suganuma
- Department of Life Science, Aichi University of Education, Kariya, Aichi 448–8542, Japan
| | - Wataru Iwasaki
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Shusei Sato
- Kazusa DNA Research Institute, Kisarazu, Chiba 292–0812, Japan
- Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai 980-8577, Japan
| | - Takashi Soyano
- Division of Symbiotic Systems, National Institute for Basic Biology, National Institute for Natural Sciences, Okazaki 444-8585, Japan
- Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8585, Japan and
| | - Hiroshi Kouchi
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan
| | - Masayoshi Kawaguchi
- Division of Symbiotic Systems, National Institute for Basic Biology, National Institute for Natural Sciences, Okazaki 444-8585, Japan
- Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8585, Japan and
| |
Collapse
|
32
|
Sulima AS, Zhukov VA, Afonin AA, Zhernakov AI, Tikhonovich IA, Lutova LA. Selection Signatures in the First Exon of Paralogous Receptor Kinase Genes from the Sym2 Region of the Pisum sativum L. Genome. FRONTIERS IN PLANT SCIENCE 2017; 8:1957. [PMID: 29184566 PMCID: PMC5694491 DOI: 10.3389/fpls.2017.01957] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 10/30/2017] [Indexed: 05/06/2023]
Abstract
During the initial step of the symbiosis between legumes (Fabaceae) and nitrogen-fixing bacteria (rhizobia), the bacterial signal molecule known as the Nod factor (nodulation factor) is recognized by plant LysM motif-containing receptor-like kinases (LysM-RLKs). The fifth chromosome of barrel medic (Medicago truncatula Gaertn.) contains a cluster of paralogous LysM-RLK genes, one of which is known to participate in symbiosis. In the syntenic region of the pea (Pisum sativum L.) genome, three genes have been identified: PsK1 and PsSym37, two symbiosis-related LysM-RLK genes with known sequences, and the unsequenced PsSym2 gene which presumably encodes a LysM-RLK and is associated with increased selectivity to certain Nod factors. In this work, we identified a new gene encoding a LysM-RLK, designated as PsLykX, within the Sym2 genomic region. We sequenced the first exons (corresponding to the protein receptor domain) of PsSym37, PsK1, and PsLykX from a large set of pea genotypes of diverse origin. The nucleotide diversity of these fragments was estimated and groups of haplotypes for each gene were revealed. Footprints of selection pressure were detected via comparative analyses of SNP distribution across the first exons of these genes and their homologs MtLYK2, MtLYK3, and MtLYK4 from M. truncatula retrieved from the Medicago Hapmap project. Despite the remarkable similarity among all the studied genes, they exhibited contrasting selection signatures, possibly pointing to diversification of their functions. Signatures of balancing selection were found in LysM1-encoding parts of PsSym37 and PsK1, suggesting that the diversity of these parts may be important for pea LysM-RLKs. The first exons of PsSym37 and PsK1 displayed signatures of purifying selection, as well as MtLYK2 of M. truncatula. Evidence of positive selection affecting primarily LysM domains was found in all three investigated M. truncatula genes, as well as in the pea gene PsLykX. The data suggested that PsLykX is a promising candidate for PsSym2, which has remained elusive for more than 30 years.
Collapse
Affiliation(s)
- Anton S. Sulima
- All-Russia Research Institute for Agricultural Microbiology, Saint-Petersburg, Russia
| | - Vladimir A. Zhukov
- All-Russia Research Institute for Agricultural Microbiology, Saint-Petersburg, Russia
- *Correspondence: Vladimir A. Zhukov
| | - Alexey A. Afonin
- All-Russia Research Institute for Agricultural Microbiology, Saint-Petersburg, Russia
| | | | - Igor A. Tikhonovich
- All-Russia Research Institute for Agricultural Microbiology, Saint-Petersburg, Russia
- Department of Genetics and Biotechnology, Faculty of Biology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Ludmila A. Lutova
- Department of Genetics and Biotechnology, Faculty of Biology, Saint-Petersburg State University, Saint-Petersburg, Russia
| |
Collapse
|
33
|
Miyata K, Hayafune M, Kobae Y, Kaku H, Nishizawa Y, Masuda Y, Shibuya N, Nakagawa T. Evaluation of the Role of the LysM Receptor-Like Kinase, OsNFR5/OsRLK2 for AM Symbiosis in Rice. PLANT & CELL PHYSIOLOGY 2016; 57:2283-2290. [PMID: 27519312 DOI: 10.1093/pcp/pcw144] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 08/05/2016] [Indexed: 05/19/2023]
Abstract
In legume-specific rhizobial symbiosis, host plants perceive rhizobial signal molecules, Nod factors, by a pair of LysM receptor-like kinases, NFR1/LYK3 and NFR5/NFP, and activate symbiotic responses through the downstream signaling components also required for arbuscular mycorrhizal (AM) symbiosis. Recently, the rice NFR1/LYK3 ortholog, OsCERK1, was shown to play crucial roles for AM symbiosis. On the other hand, the roles of the NFR5/NFP ortholog in rice have not been elucidated, while it has been shown that NFR5/NFP orthologs, Parasponia PaNFR5 and tomato SlRLK10, engage in AM symbiosis. OsCERK1 also triggers immune responses in combination with a receptor partner, OsCEBiP, against fungal or bacterial infection, thus regulating opposite responses against symbiotic and pathogenic microbes. However, it has not been elucidated how OsCERK1 switches these opposite functions. Here, we analyzed the function of the rice NFR5/NFP ortholog, OsNFR5/OsRLK2, as a possible candidate of the OsCERK1 partner for symbiotic signaling. Inoculation of AM fungi induced the expression of OsNFR5 in the rice root, and the chimeric receptor consisting of the extracellular domain of LjNFR5 and the intracellular domain of OsNFR5 complemented the Ljnfr5 mutant for rhizobial symbiosis, indicating that the intracellular kinase domain of OsNFR5 could activate symbiotic signaling in Lotus japonicus. Although these data suggested the possible involvement of OsNFR5 in AM symbiosis, osnfr5 knockout mutants were colonized by AM fungi similar to the wild-type rice. These observations suggested several possibilities including the presence of functionally redundant genes other than OsNFR5 or involvement of novel ligands, which do not require OsNFR5 for recognition.
Collapse
Affiliation(s)
- Kana Miyata
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa, 214-8571 Japan
| | - Masahiro Hayafune
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa, 214-8571 Japan
| | - Yoshihiro Kobae
- National Agriculture and Food Research Organization (NARO), Hokkaido Agricultural Research Center, Agro-environmental Research Division 1, Hitsujigaoka, Toyohira, Sapporo, Hokkaido 062-8555 Japan
| | - Hanae Kaku
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa, 214-8571 Japan
| | - Yoko Nishizawa
- Division of Plant and Microbial Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, 305-8602 Japan
| | - Yoshiki Masuda
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa, 214-8571 Japan
| | - Naoto Shibuya
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa, 214-8571 Japan
| | - Tomomi Nakagawa
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa, 214-8571 Japan
- Division of Symbiotic Systems, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602 Japan
| |
Collapse
|
34
|
Geurts R, Xiao TT, Reinhold-Hurek B. What Does It Take to Evolve A Nitrogen-Fixing Endosymbiosis? TRENDS IN PLANT SCIENCE 2016; 21:199-208. [PMID: 26850795 DOI: 10.1016/j.tplants.2016.01.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/07/2016] [Accepted: 01/08/2016] [Indexed: 05/08/2023]
Abstract
Plant rhizo- and phyllospheres are exposed to a plethora of nitrogen-fixing bacteria, providing opportunities for the establishment of symbiotic associations. Nitrogen-fixing endosymbioses are most profitable and have evolved more than ten times in the angiosperms. This suggests that the evolutionary trajectory towards endosymbiosis is not complex. Here, we argue that microbe-induced cell divisions are a prerequisite for the entrance of diazotrophic prokaryotes into living plant cells. For rhizobia and Frankia bacteria, this is achieved by adapting the readout of the common symbiosis signalling pathway, such that cell divisions are induced. The common symbiosis signalling pathway is conserved in the plant kingdom and is required to establish an endosymbiosis with mycorrhizal fungi. We also discuss the adaptations that may have occurred that allowed nitrogen-fixing root nodule endosymbiosis.
Collapse
Affiliation(s)
- Rene Geurts
- Wageningen University, Department of Plant Science, Laboratory of Molecular Biology, Droevendaalsesteeg 1, 6708PB, The Netherlands.
| | - Ting Ting Xiao
- Wageningen University, Department of Plant Science, Laboratory of Molecular Biology, Droevendaalsesteeg 1, 6708PB, The Netherlands
| | - Barbara Reinhold-Hurek
- Department of Microbe-Plant Interaction, Faculty 2, University of Bremen, PO Box 33 04 40, 28334 Bremen, Germany.
| |
Collapse
|
35
|
Huisman R, Bouwmeester K, Brattinga M, Govers F, Bisseling T, Limpens E. Haustorium Formation in Medicago truncatula Roots Infected by Phytophthora palmivora Does Not Involve the Common Endosymbiotic Program Shared by Arbuscular Mycorrhizal Fungi and Rhizobia. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:1271-80. [PMID: 26313411 DOI: 10.1094/mpmi-06-15-0130-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In biotrophic plant-microbe interactions, microbes infect living plant cells, in which they are hosted in a novel membrane compartment, the host-microbe interface. To create a host-microbe interface, arbuscular mycorrhizal (AM) fungi and rhizobia make use of the same endosymbiotic program. It is a long-standing hypothesis that pathogens make use of plant proteins that are dedicated to mutualistic symbiosis to infect plants and form haustoria. In this report, we developed a Phytophthora palmivora pathosystem to study haustorium formation in Medicago truncatula roots. We show that P. palmivora does not require host genes that are essential for symbiotic infection and host-microbe interface formation to infect Medicago roots and form haustoria. Based on these findings, we conclude that P. palmivora does not hijack the ancient intracellular accommodation program used by symbiotic microbes to form a biotrophic host-microbe interface.
Collapse
Affiliation(s)
- Rik Huisman
- 1 Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Klaas Bouwmeester
- 2 Department of Plant Sciences, Laboratory of Phytopathology, Wageningen University
- 3 Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, PO Box 800.56 3508 TB, Utrecht, The Netherlands
| | - Marijke Brattinga
- 1 Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Francine Govers
- 2 Department of Plant Sciences, Laboratory of Phytopathology, Wageningen University
| | - Ton Bisseling
- 1 Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Erik Limpens
- 1 Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| |
Collapse
|
36
|
Nakagawa T, Imaizumi-Anraku H. Rice arbuscular mycorrhiza as a tool to study the molecular mechanisms of fungal symbiosis and a potential target to increase productivity. RICE (NEW YORK, N.Y.) 2015; 8:32. [PMID: 26516078 PMCID: PMC4626465 DOI: 10.1186/s12284-015-0067-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 10/22/2015] [Indexed: 05/08/2023]
Abstract
Rice (Oryza sativa L.) is a monocot model crop for cereal molecular biology. Following the emergence of molecular genetics of arbuscular mycorrhizal (AM) symbiosis in model legumes in the 1990s, studies on rice genetic resources have considerably contributed to our understanding of the molecular mechanisms and evolution of root intracellular symbioses.In this review, we trace the history of these studies and suggest the potential utility of AM symbiosis for improvement in rice productivity.
Collapse
Affiliation(s)
- Tomomi Nakagawa
- Division of Symbiotic Systems, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
| | - Haruko Imaizumi-Anraku
- Division of Plant Sicences, National Institute of Agrobiological Sciences, 2-1-2 Kannon-dai, Tsukuba, Ibaraki, 305-8602, Japan.
| |
Collapse
|
37
|
Carmona D, Fitzpatrick CR, Johnson MTJ. Fifty years of co-evolution and beyond: integrating co-evolution from molecules to species. Mol Ecol 2015; 24:5315-29. [PMID: 26394718 DOI: 10.1111/mec.13389] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 09/02/2015] [Accepted: 09/11/2015] [Indexed: 02/04/2023]
Abstract
Fifty years after Ehrlich and Raven's seminal paper, the idea of co-evolution continues to grow as a key concept in our understanding of organic evolution. This concept has not only provided a compelling synthesis between evolutionary biology and community ecology, but has also inspired research that extends beyond its original scope. In this article, we identify unresolved questions about the co-evolutionary process and advocate for the integration of co-evolutionary research from molecular to interspecific interactions. We address two basic questions: (i) What is co-evolution and how common is it? (ii) What is the unit of co-evolution? Both questions aim to explore the heart of the co-evolutionary process. Despite the claim that co-evolution is ubiquitous, we argue that there is in fact little evidence to support the view that reciprocal natural selection and coadaptation are common in nature. We also challenge the traditional view that co-evolution only occurs between traits of interacting species. Co-evolution has the potential to explain evolutionary processes and patterns that result from intra- and intermolecular biochemical interactions within cells, intergenomic interactions (e.g. nuclear-cytoplasmic) within species, as well as intergenomic interactions mediated by phenotypic traits between species. Research that bridges across these levels of organization will help to advance our understanding of the importance of the co-evolutionary processes in shaping the diversity of life on Earth.
Collapse
Affiliation(s)
- Diego Carmona
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
| | - Connor R Fitzpatrick
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
| | - Marc T J Johnson
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
| |
Collapse
|
38
|
Fliegmann J, Bono JJ. Lipo-chitooligosaccharidic nodulation factors and their perception by plant receptors. Glycoconj J 2015; 32:455-64. [PMID: 26233756 DOI: 10.1007/s10719-015-9609-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 06/15/2015] [Accepted: 07/01/2015] [Indexed: 02/03/2023]
Abstract
Lipo-chitooligosaccharides produced by nitrogen-fixing rhizobia are signaling molecules involved in the establishment of an important agronomical and ecological symbiosis with plants. These compounds, known as Nod factors, are biologically active on plant roots at very low concentrations indicating that they are perceived by specific receptors. This article summarizes the main strategies developed for the syntheses of bioactive Nod factors and their derivatives in order to better understand their mode of perception. Different Nod factor receptors and LCO-binding proteins identified by genetic or biochemical approaches are also presented, indicating perception mechanisms that seem to be more complicated than expected, probably involving multi-component receptor complexes.
Collapse
Affiliation(s)
- Judith Fliegmann
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, 31326, Castanet-Tolosan, France.,CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, 31326, Castanet-Tolosan, France
| | - Jean-Jacques Bono
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, 31326, Castanet-Tolosan, France. .,CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, 31326, Castanet-Tolosan, France.
| |
Collapse
|
39
|
Granqvist E, Sun J, Op den Camp R, Pujic P, Hill L, Normand P, Morris RJ, Downie JA, Geurts R, Oldroyd GED. Bacterial-induced calcium oscillations are common to nitrogen-fixing associations of nodulating legumes and nonlegumes. THE NEW PHYTOLOGIST 2015; 207:551-8. [PMID: 26010117 PMCID: PMC4736677 DOI: 10.1111/nph.13464] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 03/25/2015] [Indexed: 05/03/2023]
Abstract
Plants that form root-nodule symbioses are within a monophyletic 'nitrogen-fixing' clade and associated signalling processes are shared with the arbuscular mycorrhizal symbiosis. Central to symbiotic signalling are nuclear-associated oscillations in calcium ions (Ca(2+) ), occurring in the root hairs of several legume species in response to the rhizobial Nod factor signal. In this study we expanded the species analysed for activation of Ca(2+) oscillations, including nonleguminous species within the nitrogen-fixing clade. We showed that Ca(2+) oscillations are a common feature of legumes in their association with rhizobia, while Cercis, a non-nodulating legume, does not show Ca(2+) oscillations in response to Nod factors from Sinorhizobium fredii NGR234. Parasponia andersonii, a nonlegume that can associate with rhizobia, showed Nod factor-induced calcium oscillations to S. fredii NGR234 Nod factors, but its non-nodulating sister species, Trema tomentosa, did not. Also within the nitrogen-fixing clade are actinorhizal species that associate with Frankia bacteria and we showed that Alnus glutinosa induces Ca(2+) oscillations in root hairs in response to exudates from Frankia alni, but not to S. fredii NGR234 Nod factors. We conclude that the ability to mount Ca(2+) oscillations in response to symbiotic bacteria is a common feature of nodulating species within the nitrogen-fixing clade.
Collapse
Affiliation(s)
| | - Jongho Sun
- John Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Rik Op den Camp
- Department of Plant ScienceLaboratory of Molecular BiologyWageningen UniversityDroevendaalsesteeg 16708PBWageningenthe Netherlands
| | - Petar Pujic
- Ecologie MicrobienneCentre National de la Recherche Scientifique UMR 5557Université Lyon IUniversité LyonVilleurbanneFrance
| | - Lionel Hill
- John Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Philippe Normand
- Ecologie MicrobienneCentre National de la Recherche Scientifique UMR 5557Université Lyon IUniversité LyonVilleurbanneFrance
| | | | | | - Rene Geurts
- Department of Plant ScienceLaboratory of Molecular BiologyWageningen UniversityDroevendaalsesteeg 16708PBWageningenthe Netherlands
| | | |
Collapse
|
40
|
Gobbato E. Recent developments in arbuscular mycorrhizal signaling. CURRENT OPINION IN PLANT BIOLOGY 2015; 26:1-7. [PMID: 26043435 DOI: 10.1016/j.pbi.2015.05.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/28/2015] [Accepted: 05/11/2015] [Indexed: 05/03/2023]
Abstract
Plants can establish root endosymbioses with both arbuscular mycorrhizal fungi and rhizobial bacteria to improve their nutrition. Our understanding of the molecular events underlying the establishment of these symbioses has significantly advanced in the last few years. Here I highlight major recent findings in the field of endosymbiosis signaling. Despite the identification of new signaling components and the definition, or in some cases better re-definition of the molecular functions of previously known players, major questions still remain that need to be addressed. Most notably the mechanisms defining signaling specificities within either symbiosis remain unclear.
Collapse
Affiliation(s)
- Enrico Gobbato
- Department of Plant Science, University of Cambridge, CB2 3EA Cambridge, United Kingdom.
| |
Collapse
|
41
|
Shinya T, Nakagawa T, Kaku H, Shibuya N. Chitin-mediated plant-fungal interactions: catching, hiding and handshaking. CURRENT OPINION IN PLANT BIOLOGY 2015; 26:64-71. [PMID: 26116978 DOI: 10.1016/j.pbi.2015.05.032] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/10/2015] [Accepted: 05/30/2015] [Indexed: 05/03/2023]
Abstract
Plants can detect infecting fungi through the perception of chitin oligosaccharides by lysin motif receptors such as CEBiP and CERK1. A major function of CERK1 seems to be as a signaling molecule in the receptor complex formed with ligand-binding molecules and to activate downstream defense signaling. Fungal pathogens, however, have developed counter strategies to escape from the chitin-mediated detection by using effectors and/or changing their cell walls. Common structural features between chitin and Nod-/Myc-factors and corresponding receptors have suggested the close relationships between the chitin-mediated immunity and rhizobial/arbuscular mycorrhizal symbiosis. The recent discovery of the dual function of OsCERK1 in both plant immunity and mycorrhizal symbiosis sheds new light on the evolutionary relationships between defense and symbiotic systems in plants.
Collapse
Affiliation(s)
- Tomonori Shinya
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | - Tomomi Nakagawa
- Department of Life Sciences, School of Agriculture, Meiji University, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Hanae Kaku
- Department of Life Sciences, School of Agriculture, Meiji University, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Naoto Shibuya
- Department of Life Sciences, School of Agriculture, Meiji University, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan.
| |
Collapse
|
42
|
Limpens E, van Zeijl A, Geurts R. Lipochitooligosaccharides modulate plant host immunity to enable endosymbioses. ANNUAL REVIEW OF PHYTOPATHOLOGY 2015; 53:311-34. [PMID: 26047562 DOI: 10.1146/annurev-phyto-080614-120149] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Symbiotic nitrogen-fixing rhizobium bacteria and arbuscular mycorrhizal fungi use lipochitooligosaccharide (LCO) signals to communicate with potential host plants. Upon a compatible match, an intimate relation is established during which the microsymbiont is allowed to enter root (-derived) cells. Plants perceive microbial LCO molecules by specific LysM-domain-containing receptor-like kinases. These do not only activate a common symbiosis signaling pathway that is shared in both symbioses but also modulate innate immune responses. Recent studies revealed that symbiotic LCO receptors are closely related to chitin innate immune receptors, and some of these receptors even function in symbiosis as well as immunity. This raises questions about how plants manage to translate structurally very similar microbial signals into different outputs. Here, we describe the current view on chitin and LCO perception in innate immunity and endosymbiosis and question how LCOs might modulate the immune system. Furthermore, we discuss what it takes to become an endosymbiont.
Collapse
Affiliation(s)
- Erik Limpens
- Laboratory of Molecular Biology, Department of Plant Science, Wageningen University, 6708PB Wageningen, The Netherlands;
| | | | | |
Collapse
|
43
|
Zhang X, Dong W, Sun J, Feng F, Deng Y, He Z, Oldroyd GED, Wang E. The receptor kinase CERK1 has dual functions in symbiosis and immunity signalling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:258-67. [PMID: 25399831 DOI: 10.1111/tpj.12723] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/02/2014] [Accepted: 11/06/2014] [Indexed: 05/03/2023]
Abstract
The establishment of symbiotic interactions between mycorrhizal fungi, rhizobial bacteria and their legume hosts involves a common symbiosis signalling pathway. This signalling pathway is activated by Nod factors produced by rhizobia and these are recognised by the Nod factor receptors NFR1/LYK3 and NFR5/NFP. Mycorrhizal fungi produce lipochitooligosaccharides (LCOs) similar to Nod factors, as well as short-chain chitin oligomers (CO4/5), implying commonalities in signalling during mycorrhizal and rhizobial associations. Here we show that NFR1/LYK3, but not NFR5/NFP, is required for the establishment of the mycorrhizal interaction in legumes. NFR1/LYK3 is necessary for the recognition of mycorrhizal fungi and the activation of the symbiosis signalling pathway leading to induction of calcium oscillations and gene expression. Chitin oligosaccharides also act as microbe associated molecular patterns that promote plant immunity via similar LysM receptor-like kinases. CERK1 in rice has the highest homology to NFR1 and we show that this gene is also necessary for the establishment of the mycorrhizal interaction as well as for resistance to the rice blast fungus. Our results demonstrate that NFR1/LYK3/OsCERK1 represents a common receptor for chitooligosaccharide-based signals produced by mycorrhizal fungi, rhizobial bacteria (in legumes) and fungal pathogens. It would appear that mycorrhizal recognition has been conserved in multiple receptors across plant species, but additional diversification in certain plant species has defined other signals that this class of receptors can perceive.
Collapse
Affiliation(s)
- Xiaowei Zhang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Bucher M, Hause B, Krajinski F, Küster H. Through the doors of perception to function in arbuscular mycorrhizal symbioses. THE NEW PHYTOLOGIST 2014; 204:833-40. [PMID: 25414918 DOI: 10.1111/nph.12862] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The formation of an arbuscular mycorrhizal (AM) symbiosis is initiated by the bidirectional exchange of diffusible molecules. While strigolactone hormones, secreted from plant roots,stimulate hyphal branching and fungal metabolism, fungal short-chain chitin oligomers as well assulfated and nonsulfated lipochitooligosaccharides (s/nsMyc-LCOs) elicit pre-symbiosis responses in the host. Fungal LCO signals are structurally related to rhizobial Nod-factor LCOs. Genome-wide expression studies demonstrated that defined sets of genes were induced by Nod-, sMyc- and nsMyc-LCOs, indicating LCO-specific perception in the pre-symbiosis phase. During hyphopodium formation and the subsequent root colonization, cross-talk between plant roots and AM fungi also involves phytohormones. Notably, gibberellins control arbuscule formation via DELLA proteins, which themselves serve as positive regulators of arbuscule formation. The establishment of arbuscules is accompanied by a substantial transcriptional and post-transcriptional reprogramming of host roots, ultimately defining the unique protein composition of arbuscule-containing cells. Based on cellular expression profiles, key check points of AM development as well as candidate genes encoding transcriptional regulators and regulatory microRNAs were identified. Detailed functional analyses of promoters specified short motifs sufficient for cell-autonomous gene regulation in cells harboring arbuscules, and suggested simultaneous, multi-level regulation of the mycorrhizal phosphate uptake pathway by integrating AM symbiosis and phosphate starvation response signaling.
Collapse
Affiliation(s)
- Marcel Bucher
- Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, D-50931 Cologne, Germany
| | | | | | | |
Collapse
|
45
|
Antolín-Llovera M, Petutsching EK, Ried MK, Lipka V, Nürnberger T, Robatzek S, Parniske M. Knowing your friends and foes--plant receptor-like kinases as initiators of symbiosis or defence. THE NEW PHYTOLOGIST 2014; 204:791-802. [PMID: 25367611 DOI: 10.1111/nph.13117] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 09/17/2014] [Indexed: 05/19/2023]
Abstract
The decision between defence and symbiosis signalling in plants involves alternative and modular plasma membrane-localized receptor complexes. A critical step in their activation is ligand-induced homo- or hetero-oligomerization of leucine-rich repeat (LRR)- and/or lysin motif (LysM) receptor-like kinases (RLKs). In defence signalling, receptor complexes form upon binding of pathogen-associated molecular patterns (PAMPs), including the bacterial flagellin-derived peptide flg22, or chitin. Similar mechanisms are likely to operate during the perception of microbial symbiont-derived (lipo)-chitooligosaccharides. The structurally related chitin-oligomer ligands chitooctaose and chitotetraose trigger defence and symbiosis signalling, respectively, and their discrimination involves closely related, if not identical, LysM-RLKs. This illustrates the demand for and the challenges imposed on decision mechanisms that ensure appropriate signal initiation. Appropriate signalling critically depends on abundance and localization of RLKs at the cell surface. This is regulated by internalization, which also provides a mechanism for the removal of activated signalling RLKs. Abundance of the malectin-like domain (MLD)-LRR-RLK Symbiosis Receptor-like Kinase (SYMRK) is additionally controlled by cleavage of its modular ectodomain, which generates a truncated and rapidly degraded RLK fragment. This review explores LRR- and LysM-mediated signalling, the involvement of MLD-LRR-RLKs in symbiosis and defence, and the role of endocytosis in RLK function.
Collapse
|
46
|
Miyata K, Kozaki T, Kouzai Y, Ozawa K, Ishii K, Asamizu E, Okabe Y, Umehara Y, Miyamoto A, Kobae Y, Akiyama K, Kaku H, Nishizawa Y, Shibuya N, Nakagawa T. The bifunctional plant receptor, OsCERK1, regulates both chitin-triggered immunity and arbuscular mycorrhizal symbiosis in rice. PLANT & CELL PHYSIOLOGY 2014; 55:1864-72. [PMID: 25231970 DOI: 10.1093/pcp/pcu129] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Plants are constantly exposed to threats from pathogenic microbes and thus developed an innate immune system to protect themselves. On the other hand, many plants also have the ability to establish endosymbiosis with beneficial microbes such as arbuscular mycorrhizal (AM) fungi or rhizobial bacteria, which improves the growth of host plants. How plants evolved these systems managing such opposite plant-microbe interactions is unclear. We show here that knockout (KO) mutants of OsCERK1, a rice receptor kinase essential for chitin signaling, were impaired not only for chitin-triggered defense responses but also for AM symbiosis, indicating the bifunctionality of OsCERK1 in defense and symbiosis. On the other hand, a KO mutant of OsCEBiP, which forms a receptor complex with OsCERK1 and is essential for chitin-triggered immunity, established mycorrhizal symbiosis normally. Therefore, OsCERK1 but not chitin-triggered immunity is required for AM symbiosis. Furthermore, experiments with chimeric receptors showed that the kinase domains of OsCERK1 and homologs from non-leguminous, mycorrhizal plants could trigger nodulation signaling in legume-rhizobium interactions as the kinase domain of Nod factor receptor1 (NFR1), which is essential for triggering the nodulation program in leguminous plants, did. Because leguminous plants are believed to have developed the rhizobial symbiosis on the basis of AM symbiosis, our results suggest that the symbiotic function of ancestral CERK1 in AM symbiosis enabled the molecular evolution to leguminous NFR1 and resulted in the establishment of legume-rhizobia symbiosis. These results also suggest that OsCERK1 and homologs serve as a molecular switch that activates defense or symbiotic responses depending on the infecting microbes.
Collapse
Affiliation(s)
- Kana Miyata
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa, 214-8571 Japan These authors contributed equally to this work
| | - Toshinori Kozaki
- Tokyo University of Agriculture & Technology, Fuchu, Tokyo, 183-8509 Japan These authors contributed equally to this work
| | - Yusuke Kouzai
- Genetically Modified Organism Research Center, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, 305-8602 Japan
| | - Kenjirou Ozawa
- Genetically Modified Organism Research Center, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, 305-8602 Japan
| | - Kazuo Ishii
- Tokyo University of Agriculture & Technology, Fuchu, Tokyo, 183-8509 Japan
| | - Erika Asamizu
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572 Japan
| | - Yoshihiro Okabe
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572 Japan
| | - Yosuke Umehara
- Genetically Modified Organism Research Center, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, 305-8602 Japan
| | - Ayano Miyamoto
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa, 214-8571 Japan
| | - Yoshihiro Kobae
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Kohki Akiyama
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531 Japan
| | - Hanae Kaku
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa, 214-8571 Japan
| | - Yoko Nishizawa
- Genetically Modified Organism Research Center, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, 305-8602 Japan
| | - Naoto Shibuya
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa, 214-8571 Japan
| | - Tomomi Nakagawa
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa, 214-8571 Japan
| |
Collapse
|
47
|
Liang Y, Tóth K, Cao Y, Tanaka K, Espinoza C, Stacey G. Lipochitooligosaccharide recognition: an ancient story. THE NEW PHYTOLOGIST 2014; 204:289-96. [PMID: 25453133 DOI: 10.1111/nph.12898] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Chitin is the second most abundant polysaccharide in nature, found in crustacean shells, insect exoskeletons and fungal cell walls. The action of chitin and chitin derivatives on plants has become a very interesting story of late. Chitin is a b1-4-linked polymer of N-acetyl-Dglucosamine(GlcNAc). In this unmodified form, chitooligosaccharides (degree of polymerization(dp) = 6–8)) are strong inducers of plant innate immunity. By contrast, when these chitooligosaccharides are acylated (so-called lipochitooligosaccharides, LCOs) and further modified, they can act as Nod factors, the key signaling molecules that play an important role in the initiation of the legume–rhizobium symbiosis. In a similar form, these molecules can also act as Myc factors, the key signaling molecules involved in the arbuscular mycorrhizal (AM)symbiosis. It has been proposed that Nod factor perception might have evolved from the more ancient AM symbiosis. Increasing evidence now suggests that LCO perception might have evolved from plant innate immunity signaling. In this review, we will discuss the evolutionary origin of symbiotic LCO recognition.
Collapse
Affiliation(s)
- Yan Liang
- Divisions of Plant Science and Biochemistry, National Center for Soybean Biotechnology, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | | | | | | | | | | |
Collapse
|
48
|
A single evolutionary innovation drives the deep evolution of symbiotic N2-fixation in angiosperms. Nat Commun 2014; 5:4087. [PMID: 24912610 PMCID: PMC4059933 DOI: 10.1038/ncomms5087] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 05/09/2014] [Indexed: 01/16/2023] Open
Abstract
Symbiotic associations occur in every habitat on earth, but we know very little about their evolutionary histories. Current models of trait evolution cannot adequately reconstruct the deep history of symbiotic innovation, because they assume homogenous evolutionary processes across millions of years. Here we use a recently developed, heterogeneous and quantitative phylogenetic framework to study the origin of the symbiosis between angiosperms and nitrogen-fixing (N2) bacterial symbionts housed in nodules. We compile the largest database of global nodulating plant species and reconstruct the symbiosis’ evolution. We identify a single, cryptic evolutionary innovation driving symbiotic N2-fixation evolution, followed by multiple gains and losses of the symbiosis, and the subsequent emergence of ‘stable fixers’ (clades extremely unlikely to lose the symbiosis). Originating over 100 MYA, this innovation suggests deep homology in symbiotic N2-fixation. Identifying cryptic innovations on the tree of life is key to understanding the evolution of complex traits, including symbiotic partnerships. Symbiotic associations are widespread, yet their evolutionary histories remain poorly understood. Here, Werner et. al. show a single evolutionary innovation driving symbiotic nitrogen fixation, followed by multiple gains and losses of the symbiosis and the emergence of groups with stable nitrogen fixers.
Collapse
|