1
|
Sun Y, Ren ZK, Müller-Schärer H, Callaway RM, van Kleunen M, Huang W. Increasing and fluctuating resource availability enhances invasional meltdown. Ecology 2024; 105:e4387. [PMID: 39016245 DOI: 10.1002/ecy.4387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/20/2024] [Indexed: 07/18/2024]
Abstract
Exotic plant invaders can promote others via direct or indirect facilitation, known as "invasional meltdown." Increased soil nutrients can also promote invaders by increasing their competitive impacts, but how this might affect meltdown is unknown. In a mesocosm experiment, we evaluated how eight exotic plant species and eight Eurasian native species responded individually to increasing densities of the invasive plant Conyza canadensis, while varying the supply and fluctuations of nutrients. We found that increasing density of C. canadensis intensified competitive suppression of natives but intensified facilitation of other exotics. Higher and fluctuating nutrients exacerbated the competitive effects on natives and facilitative effects on exotics. Overall, these results show a pronounced advantage of exotics over native target species with increased relative density of C. canadensis under high nutrient availability and fluctuation. We integrate these results with the observation that exotic species commonly drive increases in soil resources to suggest the Resource-driven Invasional Meltdown and Inhibition of Natives hypothesis in which biotic acceleration of resource availability promotes other exotic species over native species, leading to invasional meltdown.
Collapse
Affiliation(s)
- Yan Sun
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Zhi-Kun Ren
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Heinz Müller-Schärer
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Ragan M Callaway
- Division of Biological Sciences and Wildlife Biology, University of Montana, Missoula, Montana, USA
| | - Mark van Kleunen
- Department of Biology, University of Konstanz, Konstanz, Germany
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China
| | - Wei Huang
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
2
|
Nagy DU, Thoma AE, Al-Gharaibeh M, Callaway RM, Flory SL, Frazee LJ, Hartmann M, Hensen I, Jandová K, Khasa DP, Lekberg Y, Pal RW, Samartza I, Shah MA, Sheng M, Slate M, Stein C, Tsunoda T, Rosche C. Among-population variation in drought responses is consistent across life stages but not between native and non-native ranges. THE NEW PHYTOLOGIST 2024; 243:922-935. [PMID: 38859570 DOI: 10.1111/nph.19895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 05/25/2024] [Indexed: 06/12/2024]
Abstract
Understanding how widespread species adapt to variation in abiotic conditions across their ranges is fundamental to ecology. Insight may come from studying how among-population variation (APV) in the common garden corresponds with the environmental conditions of source populations. However, there are no such studies comparing native vs non-native populations across multiple life stages. We examined APV in the performance and functional traits of 59 Conyza canadensis populations, in response to drought, across large aridity gradients in the native (North America) and non-native (Eurasia) ranges in three experiments. Our treatment (dry vs wet) was applied at the recruitment, juvenile, and adult life stages. We found contrasting patterns of APV in drought responses between the two ranges. In the native range, plant performance was less reduced by drought in populations from xeric than mesic habitats, but such relationship was not apparent for non-native populations. These range-specific patterns were consistent across the life stages. The weak adaptive responses of non-native populations indicate that they can become highly abundant even without complete local adaptation to abiotic environments and suggest that long-established invaders may still be evolving to the abiotic environment. These findings may explain lag times in invasions and raise concern about future expansions.
Collapse
Affiliation(s)
- Dávid U Nagy
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, 06108, Germany
| | - Arpad E Thoma
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, 06108, Germany
| | - Mohammad Al-Gharaibeh
- Department of Plant Production, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Ragan M Callaway
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - S Luke Flory
- Agronomy Department, University of Florida, Gainesville, FL, 32611, USA
| | - Lauren J Frazee
- Department of Ecology, Evolution, & Natural Resources, Rutgers University, New Brunswick, NJ, 08901, USA
| | | | - Isabell Hensen
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, 06108, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
| | - Kateřina Jandová
- Institute for Environmental Studies, Faculty of Science, Charles University, Prague, CZ-12801, Czech Republic
| | - Damase P Khasa
- Centre for Forest Research and Institute for Integrative and Systems Biology, Université Laval, Quebec, QC, G1V0A6, Canada
| | - Ylva Lekberg
- MPG Ranch Missoula, Florence, MT, 59833, USA
- Department of Ecosystem and Conservation Sciences, W.A. Franke College of Forestry and Conservation, University of Montana, Missoula, MT, 59812, USA
| | - Robert W Pal
- Department of Biological Sciences, Montana Technological University, Butte, MT, 59701, USA
| | - Ioulietta Samartza
- School of Biology, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization Demeter, Thessaloniki, 57001, Greece
| | - Manzoor A Shah
- Department of Botany, University of Kashmir, Srinagar, Jammu & Kashmir, 190006, India
| | - Min Sheng
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mandy Slate
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309, USA
| | - Claudia Stein
- Department of Biology and Environmental Science, Auburn University at Montgomery, Montgomery, AL, 36124, USA
| | - Tomonori Tsunoda
- Bioscience and Biotechnology, Fukui Prefectural University, Fukui, 910-1195, Japan
| | - Christoph Rosche
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, 06108, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
| |
Collapse
|
3
|
Zuo D, Hu M, Zhou W, Lei F, Zhao J, Gu L. EcAGL enhances cadmium tolerance in transgenic Arabidopsis thaliana through inhibits cadmium transport and ethylene synthesis pathway. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107900. [PMID: 37482029 DOI: 10.1016/j.plaphy.2023.107900] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 07/25/2023]
Abstract
Cadmium (Cd) is a highly toxic heavy metal with severe impacts on plant growth and development. Although a multitude of plants have acquired strong tolerance to Cd stress, the underlying molecular mechanism has not been fully elucidated. Here, we identified a Agamous-like MADS-box gene (EcAGL) from Erigeron canadensis. The expression of EcAGL was obviously raised under Cd stress and subcellular localization indicated EcAGL was localized in the nucleus. Overexpression of EcAGL in Arabidopsis thaliana showed marked alleviation of the Cd-induced reduction; Compared to wild-type lines, the antioxidant enzymes activities were increased in EcAGL overexpressing lines under Cd stress. The roots Cd content of transgenic lines was not different with the control plants, whereas significant reduction in shoots Cd content was detected in the transgenic lines, indicating that this gene can enhance Cd tolerance by reducing Cd accumulation in Arabidopsis. Moreover, the expression levels of heavy metal ATPase (AtHMA2 and AtHMA3) and natural resistance-associated macrophage protein (AtNRAMP5) genes in the root of transgenic lines decreased under Cd stress, indicating that EcAGL likely hampered the Cd transport pathway. Gene expression profiles in shoot showed that EcAGL likely modulates the expression of 1-aminocyclopropane-1-carboxylic acid synthase gene (AtACS2), which is involved in the ethylene synthesis pathway, to strengthen the tolerance to Cd. Collectively, these results indicate that EcAGL plays a significant role in regulating Cd tolerance in E. canadensis by alleviating oxidative stress, Cd transport and affecting the ethylene biosynthesis pathway, providing new insight into the molecular mechanism underlying plant tolerance to Cd stress.
Collapse
Affiliation(s)
- Dan Zuo
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Mingyang Hu
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Wenwen Zhou
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Fangping Lei
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Jingwen Zhao
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Lei Gu
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China.
| |
Collapse
|
4
|
He C, Li Y, Li C, Wang Y, Xu Z, Zhong S, Xu Z, Yu Y, Du D, Wang C. Photosynthetic capacity of Erigeron canadensis L. may be more critical to its growth performance than photosynthetic area. Biologia (Bratisl) 2023. [DOI: 10.1007/s11756-023-01317-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
5
|
Sheng M, Rosche C, Al-Gharaibeh M, Bullington LS, Callaway RM, Clark T, Cleveland CC, Duan W, Flory SL, Khasa DP, Klironomos JN, McLeod M, Okada M, Pal RW, Shah MA, Lekberg Y. Acquisition and evolution of enhanced mutualism-an underappreciated mechanism for invasive success? THE ISME JOURNAL 2022; 16:2467-2478. [PMID: 35871251 PMCID: PMC9561174 DOI: 10.1038/s41396-022-01293-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 05/17/2023]
Abstract
Soil biota can determine plant invasiveness, yet biogeographical comparisons of microbial community composition and function across ranges are rare. We compared interactions between Conyza canadensis, a global plant invader, and arbuscular mycorrhizal (AM) fungi in 17 plant populations in each native and non-native range spanning similar climate and soil fertility gradients. We then grew seedlings in the greenhouse inoculated with AM fungi from the native range. In the field, Conyza plants were larger, more fecund, and associated with a richer community of more closely related AM fungal taxa in the non-native range. Fungal taxa that were more abundant in the non-native range also correlated positively with plant biomass, whereas taxa that were more abundant in the native range appeared parasitic. These patterns persisted when populations from both ranges were grown together in a greenhouse; non-native populations cultured a richer and more diverse AM fungal community and selected AM fungi that appeared to be more mutualistic. Our results provide experimental support for evolution toward enhanced mutualism in non-native ranges. Such novel relationships and the rapid evolution of mutualisms may contribute to the disproportionate abundance and impact of some non-native plant species.
Collapse
Affiliation(s)
- Min Sheng
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Christoph Rosche
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Halle, Germany
| | - Mohammad Al-Gharaibeh
- Department of Plant Production, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| | - Lorinda S Bullington
- MPG Ranch Missoula, Florence, MT, USA
- Department of Ecosystem and Conservation Sciences, W.A. Franke College of Forestry and Conservation, University of Montana, Missoula, MT, USA
| | - Ragan M Callaway
- Division of Biological Sciences and the Institute on Ecosystems, University of Montana, Missoula, MT, USA
| | - Taylor Clark
- St. Johns River Water Management District, Palakta, FL, USA
| | - Cory C Cleveland
- Department of Ecosystem and Conservation Sciences, W.A. Franke College of Forestry and Conservation, University of Montana, Missoula, MT, USA
| | - Wenyan Duan
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - S Luke Flory
- Agronomy Department, University of Florida, Gainesville, FL, USA
| | - Damase P Khasa
- Centre for Forest Research and Institute for Integrative and Systems Biology, Université Laval, Quebec City, QC, Canada
| | - John N Klironomos
- Department of Biology, University of British Columbia, Kelowna, BC, Canada
| | | | - Miki Okada
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Robert W Pal
- Department of Biological Sciences, Montana Technological University, Butte, MT, USA
| | - Manzoor A Shah
- Department of Botany, University of Kashmir, Srinagar, Jammu & Kashmir, India
| | - Ylva Lekberg
- MPG Ranch Missoula, Florence, MT, USA.
- Department of Ecosystem and Conservation Sciences, W.A. Franke College of Forestry and Conservation, University of Montana, Missoula, MT, USA.
| |
Collapse
|
6
|
Invasive Plant Species Distribution Is Structured by Soil and Habitat Type in the City Landscape. PLANTS 2021; 10:plants10040773. [PMID: 33920822 PMCID: PMC8071169 DOI: 10.3390/plants10040773] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 11/17/2022]
Abstract
Invasive alien species (IAS) is a global problem that largely relates to human activities and human settlements. To prevent the further spread of IAS, we first need to know their pattern of distribution, to determine which constitutes the greatest threat, and understand which habitats and migration pathways they prefer. Our research aimed to identify the main vectors and distribution pattern of IAS of plants in the city environment. We checked the relations between species distribution and such environmental factors as urban soil type and habitat type. We applied data on IAS occurrence (collected in the period 1973-2015) in 515 permanent plots with dimensions of 0.5 × 0.5 km and analyzed by direct ordination methods. In total, we recorded 66 IAS. We found a 27% variance in the IAS distribution pattern, which can be explained by statistically significant soil and habitat types. The most important for species distribution were: river and alluvial soils, forests and related rusty soils, and places of intensive human activities, including areas of urbisols and industriosols. Our results provide details that can inform local efforts for the management and control of invasive species, and they provide evidence of the different associations between natural patterns and human land use.
Collapse
|
7
|
Cheng H, Wu B, Yu Y, Wang S, Wei M, Wang C, Du D. The allelopathy of horseweed with different invasion degrees in three provinces along the Yangtze River in China. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:483-495. [PMID: 33854278 PMCID: PMC7981341 DOI: 10.1007/s12298-021-00962-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/11/2021] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
UNLABELLED The effect of allelopathy from invasive alien plants (IAPs) on native species is one of the main factors for their adaptation and diffusion. IAPs can have different degrees of invasion under natural succession and are distributed in numerous regions. Seed germination and seedling growth (SGe-SGr) play a crucial role in population recruitment. Thus, it is critical to illustrate the differences in the allelopathy caused by an IAP with different degrees of invasion in numerous regions on SGe-SGr of native species to describe the primary force behind their adaptation and diffusion. This study assessed the allelopathy of the notorious IAP horseweed (Conyza canadensis (L.) Cronq.) on SGe-SGr of the native lettuce species (Lactuca sativa L.) under different degrees of invasion (light degree of invasion and heavy degree of invasion) in three provinces (Jiangsu, Anhui, and Hubei) along the Yangtze River in China. The allelopathy of horseweed leaf extract on lettuce SGe-SGr remarkably increased with the increased degree of invasion, which may be due to the buildup of allelochemicals generated by horseweed with a heavy degree of invasion compared with a light degree of invasion. A high concentration of horseweed leaf extract resulted in noticeably stronger allelopathy on lettuce SGe-SGr compared to the extract with a low concentration. There are noticeable differences in the allelopathy of the extract of horseweed leaves from different provinces on lettuce SGe-SGr with the following order i.e. Jiangsu > Hubei > Anhui. This may be due to the high latitudes for the three sampling sites in Jiangsu compared with the latitudes for the collection sites in Hubei and Anhui. There are certain differences in the environments among the three provinces. Thus, the allelopathy of horseweed on SGe-SGr of lettuce may have a greater negative impact in Jiangsu compared to the other two provinces. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-00962-y.
Collapse
Affiliation(s)
- Huiyuan Cheng
- Institute of Environment and Ecology & School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013 China
| | - Bingde Wu
- Institute of Environment and Ecology & School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013 China
- School of Chemistry and Chemical Engineering, Zhaotong University, Zhaotong, 657000 China
| | - Youli Yu
- Institute of Environment and Ecology & School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013 China
| | - Shu Wang
- Institute of Environment and Ecology & School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013 China
| | - Mei Wei
- Institute of Environment and Ecology & School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013 China
| | - Congyan Wang
- Institute of Environment and Ecology & School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013 China
| | - Daolin Du
- Institute of Environment and Ecology & School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013 China
| |
Collapse
|
8
|
Baek Y, Bobadilla LK, Giacomini DA, Montgomery JS, Murphy BP, Tranel PJ. Evolution of Glyphosate-Resistant Weeds. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 255:93-128. [PMID: 33932185 DOI: 10.1007/398_2020_55] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Widespread adoption of glyphosate-resistant crops and concomitant reliance on glyphosate for weed control set an unprecedented stage for the evolution of herbicide-resistant weeds. There are now 48 weed species that have evolved glyphosate resistance. Diverse glyphosate-resistance mechanisms have evolved, including single, double, and triple amino acid substitutions in the target-site gene, duplication of the gene encoding the target site, and others that are rare or nonexistent for evolved resistance to other herbicides. This review summarizes these resistance mechanisms, discusses what is known about their evolution, and concludes with some of the impacts glyphosate-resistant weeds have had on weed management.
Collapse
Affiliation(s)
- Yousoon Baek
- Department of Crop Sciences, University of Illinois, Urbana, IL, USA
| | - Lucas K Bobadilla
- Department of Crop Sciences, University of Illinois, Urbana, IL, USA
| | - Darci A Giacomini
- Department of Crop Sciences, University of Illinois, Urbana, IL, USA
| | | | - Brent P Murphy
- Department of Crop Sciences, University of Illinois, Urbana, IL, USA
| | - Patrick J Tranel
- Department of Crop Sciences, University of Illinois, Urbana, IL, USA.
| |
Collapse
|
9
|
Wani GA, Shah MA, Tekeu H, Reshi ZA, Atangana AR, Khasa DP. Phenotypic Variability and Genetic Diversity of Phragmites australis in Quebec and Kashmir Reveal Contrasting Population Structure. PLANTS 2020; 9:plants9101392. [PMID: 33092113 PMCID: PMC7589717 DOI: 10.3390/plants9101392] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 11/23/2022]
Abstract
The origin of differences in traits influencing competitive success between invasive and native wild populations of alien species is subject of debate. Herbarium-based information sources from 2005 onwards about nativity and distributional range of Phragmites australis were used to survey putative native populations of the species in Quebec, and chloroplast DNA (cpDNA) PCR-RFLP analyses identified only one native population, whereas the same analyses revealed that the Kashmir populations are invasive. We compared the native population of P. australis in Quebec (QN), ten populations invasive to Quebec (QE), and five populations invasive in Kashmir, India (KE) using morphometric traits. Using nine cpDNA microsatellite loci, we also compared nine KE populations, ten QE populations, and the QN population. Phenotypic variation was observed among and within populations. Only dry mass of flowers varied across regions. Characterization of morphotypes defined three distinct haplotypes. A bimodal distribution of stem diameter (SD), internode length (IL), leaf length (LL), and leaf width (LW) suggests that a major gene may control growth traits or occurrence of co-selection. High genetic differentiation was observed between populations (RST = 0.353) and haplotypes (RST = 0.133 to 0.418), indicating limited gene flow and probable local adaptation. Principal coordinates analysis and the neighbor-joining phylogenetic tree clearly distinguished the three haplotypes. Among-populations phenotypic difference (PST) was lower than overall RST for plant height, SD, and fresh and dry mass of flowers and seeds, whereas PST estimates for LL and LW exceeded among-populations RST, suggesting divergent selection, while local adaptation might have occurred in IL, LL, and flower masses. Genetic drift probably influenced among-populations IL differences.
Collapse
Affiliation(s)
- Gowher A. Wani
- Department of Botany, University of Kashmir, Srinagar 190006, Jammu & Kashmir, India; (M.A.S.); (Z.A.R.)
- Centre for Forest Research (CEF) and Institute for Integrative and Systems Biology (IBIS), Université Laval, Québec, QC G1V0A6, Canada; (H.T.); or (A.R.A.); (D.P.K.)
- Correspondence: ; Tel.: +91-700-601-1834
| | - Manzoor A. Shah
- Department of Botany, University of Kashmir, Srinagar 190006, Jammu & Kashmir, India; (M.A.S.); (Z.A.R.)
| | - Honoré Tekeu
- Centre for Forest Research (CEF) and Institute for Integrative and Systems Biology (IBIS), Université Laval, Québec, QC G1V0A6, Canada; (H.T.); or (A.R.A.); (D.P.K.)
- Department of Plant Biology, Faculty of Science, University of Yaoundé, IPO Box 812 Yaoundé, Cameroon
| | - Zafar A. Reshi
- Department of Botany, University of Kashmir, Srinagar 190006, Jammu & Kashmir, India; (M.A.S.); (Z.A.R.)
| | - Alain R. Atangana
- Centre for Forest Research (CEF) and Institute for Integrative and Systems Biology (IBIS), Université Laval, Québec, QC G1V0A6, Canada; (H.T.); or (A.R.A.); (D.P.K.)
- World Agroforestry, West and Central Africa Region, Cocody, Angré 7ème Tranche B.P. 2823, Abidjan 08 BP 2823, Cote D’Ivoire
| | - Damase P. Khasa
- Centre for Forest Research (CEF) and Institute for Integrative and Systems Biology (IBIS), Université Laval, Québec, QC G1V0A6, Canada; (H.T.); or (A.R.A.); (D.P.K.)
| |
Collapse
|
10
|
Lucero JE, Seifan M, Callaway RM, Lortie CJ. Positive associations with native shrubs are intense and important for an exotic invader but not the native annual community across an aridity gradient. DIVERS DISTRIB 2020. [DOI: 10.1111/ddi.13111] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Jacob E. Lucero
- Department of Biology York University Toronto Ontario Canada
| | - Merav Seifan
- Mitrani Department of Desert Ecology Swiss Institute for Dryland Environmental and Energy Research The Jacob Blaustein Institutes for Desert Research Ben‐Gurion University of the Negev Midreshet Ben‐Gurion Israel
| | - Ragan M. Callaway
- Division of Biological Sciences and the Institute on Ecosystems University of Montana Missoula MT USA
| | | |
Collapse
|
11
|
Szabó AK, Várallyay É, Demian E, Hegyi A, Galbács ZN, Kiss J, Bálint J, Loxdale HD, Balog A. Local Aphid Species Infestation on Invasive Weeds Affects Virus Infection of Nearest Crops Under Different Management Systems - A Preliminary Study. FRONTIERS IN PLANT SCIENCE 2020; 11:684. [PMID: 32670307 PMCID: PMC7330602 DOI: 10.3389/fpls.2020.00684] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
In the present study, we conducted field surveys to detect the population density of the most important invasive weed species and their associated virus vectoring aphids in crops grown under high input field (HIF) vs. low-input field (LIF) conditions, with and without fertilizers and pesticides. The most frequent invasive weed species were annual fleabane, Erigeron annua (L.), Canadian horseweed, Erigeron canadensis (L.) and Canadian goldenrod, Solidago canadensis (L.). These species were predominantly hosts of the aphids Brachycaudus helichrysi and Aulacorthum solani under both management systems. The 13% higher coverage of E. annua under LIF conditions resulted in a 30% higher B. helichrysi abundance and ∼85% higher A. solani abundance compared with HIF conditions. To reveal the incidence of virus infection in crop plants and invasive weeds, high-throughput sequencing of small RNAs was performed. Bioinformatics analysis combined with independent validation methods revealed the presence of six viruses, but with strikingly different patterns under LIF and HIF conditions. Their presence without symptoms in invasive weeds and crop plants supports the necessity of employing new approaches to those currently employed in invasive weed management. These findings also suggest that invasive weeds could serve as hosts for local aphid species and reservoirs for plant pathogenic viruses, both under low and high input management systems. In this light, as here demonstrated, viruses transmitted by local aphid species were found to differ between the management systems; hence, the importance of B. helichrysi and A. solani as virus vectors in particular clearly needs to be re-evaluated. Altogether, we accept that the present study is a pilot one and individual virus vectoring of aphids still needs to be directly tested. Even so, it represents one of the first contributions to this particular area, and thereby paves the way for further similar applied research in the future.
Collapse
Affiliation(s)
- Attila-Károly Szabó
- Department of Horticulture, Faculty of Technical and Human Sciences, Sapientia Hungarian University of Transylvania, Târgu Mureş, Romania
- Institute of Plant Protection, Faculty of Agricultural and Environmental Sciences, Szent István University, Gödöllő, Hungary
| | - Éva Várallyay
- Molecular Plant Pathology Group, Department of Genomics, Agricultural Biotechnology Research Institute, Agricultural Research and Innovation Centre, Gödöllő, Hungary
| | - Emese Demian
- Molecular Plant Pathology Group, Department of Genomics, Agricultural Biotechnology Research Institute, Agricultural Research and Innovation Centre, Gödöllő, Hungary
| | - Anna Hegyi
- Molecular Plant Pathology Group, Department of Genomics, Agricultural Biotechnology Research Institute, Agricultural Research and Innovation Centre, Gödöllő, Hungary
| | - Zsuzsanna Nagyné Galbács
- Molecular Plant Pathology Group, Department of Genomics, Agricultural Biotechnology Research Institute, Agricultural Research and Innovation Centre, Gödöllő, Hungary
| | - József Kiss
- Institute of Plant Protection, Faculty of Agricultural and Environmental Sciences, Szent István University, Gödöllő, Hungary
| | - János Bálint
- Department of Horticulture, Faculty of Technical and Human Sciences, Sapientia Hungarian University of Transylvania, Târgu Mureş, Romania
| | - Hugh D. Loxdale
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Adalbert Balog
- Department of Horticulture, Faculty of Technical and Human Sciences, Sapientia Hungarian University of Transylvania, Târgu Mureş, Romania
| |
Collapse
|
12
|
Wei M, Wang S, Wu B, Cheng H, Wang C. Combined allelopathy of Canada goldenrod and horseweed on the seed germination and seedling growth performance of lettuce. LANDSCAPE AND ECOLOGICAL ENGINEERING 2020. [DOI: 10.1007/s11355-020-00421-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Pal RW, Maron JL, Nagy DU, Waller LP, Tosto A, Liao H, Callaway RM. What happens in Europe stays in Europe: apparent evolution by an invader does not help at home. Ecology 2020; 101:e03072. [DOI: 10.1002/ecy.3072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/16/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Robert W. Pal
- Department of Biological Sciences Montana Technological University Butte Montana 59701 USA
- Institute of Biology Faculty of Sciences University of Pecs H‐7624 Pecs Hungary
| | - John L. Maron
- Division of Biological Sciences and the Institute on Ecosystems The University of Montana Missoula Montana 59812 USA
| | - David U. Nagy
- Institute of Biology Faculty of Sciences University of Pecs H‐7624 Pecs Hungary
| | - Lauren P. Waller
- Division of Biological Sciences and the Institute on Ecosystems The University of Montana Missoula Montana 59812 USA
| | - Ambra Tosto
- Centre for Crop System Analysis Wageningen University 6708 PB Wageningen The Netherlands
| | - Huixuan Liao
- School of Life Sciences Sun Yat‐sen University Guangzhou 510006 China
| | - Ragan M. Callaway
- Division of Biological Sciences and the Institute on Ecosystems The University of Montana Missoula Montana 59812 USA
| |
Collapse
|
14
|
Decreased mycorrhizal colonization of Conyza canadensis (L.) Cronquist in invaded range does not affect fungal abundance in native plants. Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-020-00446-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Lolis LA, Alves DC, Fan S, Lv T, Yang L, Li Y, Liu C, Yu D, Thomaz SM. Negative correlations between native macrophyte diversity and water hyacinth abundance are stronger in its introduced than in its native range. DIVERS DISTRIB 2020. [DOI: 10.1111/ddi.13014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Lucas Assumpção Lolis
- Programa de Pós‐Graduação em Ecologia de Ambientes Aquáticos Continentais Universidade Estadual de Maringá Maringá Brazil
| | - Diego Corrêa Alves
- Departamento de Estatística Universidade Estadual de Maringá Maringá Brazil
| | - Shufeng Fan
- The National Field Station of Freshwater Ecosystem of Liangzi Lake College of Life Science Wuhan University Wuhan China
- College of Ecology Wuhan University Wuhan China
| | - Tian Lv
- The National Field Station of Freshwater Ecosystem of Liangzi Lake College of Life Science Wuhan University Wuhan China
- College of Ecology Wuhan University Wuhan China
| | - Lei Yang
- The National Field Station of Freshwater Ecosystem of Liangzi Lake College of Life Science Wuhan University Wuhan China
- College of Ecology Wuhan University Wuhan China
| | - Yang Li
- The National Field Station of Freshwater Ecosystem of Liangzi Lake College of Life Science Wuhan University Wuhan China
- College of Ecology Wuhan University Wuhan China
| | - Chunhua Liu
- The National Field Station of Freshwater Ecosystem of Liangzi Lake College of Life Science Wuhan University Wuhan China
- College of Ecology Wuhan University Wuhan China
| | - Dan Yu
- The National Field Station of Freshwater Ecosystem of Liangzi Lake College of Life Science Wuhan University Wuhan China
- College of Ecology Wuhan University Wuhan China
| | - Sidinei Magela Thomaz
- Programa de Pós‐Graduação em Ecologia de Ambientes Aquáticos Continentais Universidade Estadual de Maringá Maringá Brazil
| |
Collapse
|
16
|
Climate outweighs native vs. nonnative range‐effects for genetics and common garden performance of a cosmopolitan weed. ECOL MONOGR 2019. [DOI: 10.1002/ecm.1386] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
17
|
Wu B, Zhang H, Jiang K, Zhou J, Wang C. Erigeron canadensis
affects the taxonomic and functional diversity of plant communities in two climate zones in the North of China. Ecol Res 2019. [DOI: 10.1111/1440-1703.12024] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Bingde Wu
- Institute of Environment and Ecology, Academy of Environmental Health and Ecological Security & School of the Environment and Safety Engineering Jiangsu University Zhenjiang China
| | - Huanshi Zhang
- Institute of Biochemical and Microbial Applications Nanjing Institute for Comprehensive Utilization of Wild Plants Nanjing China
| | - Kun Jiang
- Institute of Environment and Ecology, Academy of Environmental Health and Ecological Security & School of the Environment and Safety Engineering Jiangsu University Zhenjiang China
| | - Jiawei Zhou
- Institute of Environment and Ecology, Academy of Environmental Health and Ecological Security & School of the Environment and Safety Engineering Jiangsu University Zhenjiang China
- School of the Environment Nanjing University Nanjing China
| | - Congyan Wang
- Institute of Environment and Ecology, Academy of Environmental Health and Ecological Security & School of the Environment and Safety Engineering Jiangsu University Zhenjiang China
- State Key Laboratory of Soil and Sustainable Agriculture Institute of Soil Science, Chinese Academy of Sciences Nanjing China
| |
Collapse
|
18
|
Szabó AK, Kiss J, Bálint J, Kőszeghi S, Loxdale HD, Balog A. Low and high input agricultural fields have different effects on pest aphid abundance via different invasive alien weed species. NEOBIOTA 2019. [DOI: 10.3897/neobiota.43.31553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We conducted field surveys to detect the population density of the most important invasive weed species and their associated virus vectoring aphids in crops grown under high input field (HIF) vs low-input field (LIF) conditions, with and without fertilizers and pesticides. The most frequent invasive weed species were Stenactisannua, Erigeroncanadensis and Solidagocanadensis. These species were hosts predominantly for the aphids Brachycaudushelichrysi and Aulacorthumsolani in both management systems. The 13% higher coverage of S.annua under LIF conditions resulted in a 30% higher B.helichrysi abundance and ~85% higher A.solani abundance compared with HIF conditions. Host plant quality was assessed by measuring peroxidase enzyme activity. There was a significantly increased POD activity at 10 μmol min−1 mg protein−1 unit in S.annua under LIF conditions, suggesting a higher stress by aphids under this management regime. The high colonization intensity of B.helichrysi on maize, potato and alfalfa crops were detected from both S.annua and E.canadensis. We conclude that new and faster methods need to be used to prevent colonization of such virus vectoring aphids and their host plants, even under low input regimes.
Collapse
|
19
|
de Souza TAF, de Andrade LA, Freitas H, da Silva Sandim A. Biological Invasion Influences the Outcome of Plant-Soil Feedback in the Invasive Plant Species from the Brazilian Semi-arid. MICROBIAL ECOLOGY 2018; 76:102-112. [PMID: 28560606 DOI: 10.1007/s00248-017-0999-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 05/19/2017] [Indexed: 06/07/2023]
Abstract
Plant-soil feedback is recognized as the mutual interaction between plants and soil microorganisms, but its role on the biological invasion of the Brazilian tropical seasonal dry forest by invasive plants still remains unclear. Here, we analyzed and compared the arbuscular mycorrhizal fungi (AMF) communities and soil characteristics from the root zone of invasive and native plants, and tested how these AMF communities affect the development of four invasive plant species (Cryptostegia madagascariensis, Parkinsonia aculeata, Prosopis juliflora, and Sesbania virgata). Our field sampling revealed that AMF diversity and frequency of the Order Diversisporales were positively correlated with the root zone of the native plants, whereas AMF dominance and frequency of the Order Glomerales were positively correlated with the root zone of invasive plants. We grew the invasive plants in soil inoculated with AMF species from the root zone of invasive (I changed) and native (I unaltered) plant species. We also performed a third treatment with sterilized soil inoculum (control). We examined the effects of these three AMF inoculums on plant dry biomass, root colonization, plant phosphorous concentration, and plant responsiveness to mycorrhizas. We found that I unaltered and I changed promoted the growth of all invasive plants and led to a higher plant dry biomass, mycorrhizal colonization, and P uptake than control, but I changed showed better results on these variables than I unaltered. For plant responsiveness to mycorrhizas and fungal inoculum effect on plant P concentration, we found positive feedback between changed-AMF community (I changed) and three of the studied invasive plants: C. madagascariensis, P. aculeata, and S. virgata.
Collapse
Affiliation(s)
- Tancredo Augusto Feitosa de Souza
- Agrarian Science Center, Department of Soils and Rural Engineering, Federal University of Paraíba, Areia, Paraíba, 58397-000, Brazil.
| | - Leonaldo Alves de Andrade
- Agrarian Science Center, Department of Soils and Rural Engineering, Federal University of Paraíba, Areia, Paraíba, 58397-000, Brazil
| | - Helena Freitas
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal
| | - Aline da Silva Sandim
- College of Agricultural Sciences, Department of Soil and Environmental Resources, University of São Paulo, Sao Paulo, Brazil
| |
Collapse
|
20
|
Brewer JS, Souza FM, Callaway RM, Durigan G. Impact of invasive slash pine (Pinus elliottii) on groundcover vegetation at home and abroad. Biol Invasions 2018. [DOI: 10.1007/s10530-018-1734-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
21
|
Rosche C, Hensen I, Lachmuth S. Local pre-adaptation to disturbance and inbreeding-environment interactions affect colonisation abilities of diploid and tetraploid Centaurea stoebe. PLANT BIOLOGY (STUTTGART, GERMANY) 2018; 20:75-84. [PMID: 28921779 DOI: 10.1111/plb.12628] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 09/13/2017] [Indexed: 05/28/2023]
Abstract
Primary colonisation in invasive ranges most commonly occurs in disturbed habitats, where anthropogenic disturbance may cause physical damage to plants. The tolerance to such damage may differ between cytotypes and among populations as a result of differing population histories (adaptive differentiation between ruderal verus natural habitats). Moreover, founder populations often experience inbreeding depression, the effects of which may increase through physical damage due to inbreeding-environment interactions. We aimed to understand how such colonisation processes differ between diploid and tetraploid Centaurea stoebe populations, with a view to understanding why only tetraploids are invasive. We conducted a clipping experiment (frequency: zero, once or twice in the growing season) on inbred versus outbred offspring originating from 37 C. stoebe populations of varying cytotype, range and habitat type (natural versus ruderal). Aboveground biomass was harvested at the end of the vegetation period, while re-sprouting success was recorded in the following spring. Clipping reduced re-sprouting success and biomass, which was significantly more pronounced in natural than in ruderal populations. Inbreeding depression was not detected under benign conditions, but became increasingly apparent in biomass when plants were clipped. The effects of clipping and inbreeding did not differ between cytotypes. Adaptive differentiation in disturbance tolerance was higher among populations than between cytotypes, which highlights the potential of pre-adaptation in ruderal populations during early colonisation on anthropogenically disturbed sites. While the consequences of inbreeding increased through clipping-mediated stress, they were comparable between cytotypes, and consequently do not contribute to understanding the cytotype shift in the invasive range.
Collapse
Affiliation(s)
- C Rosche
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, Germany
- UfU - Independent Institute for Environmental Issues, Berlin, Germany
| | - I Hensen
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - S Lachmuth
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Plant Biology, University of Vermont, Burlington, VT, USA
| |
Collapse
|
22
|
Wu H, Carrillo J, Ding J. Species diversity and environmental determinants of aquatic and terrestrial communities invaded by Alternanthera philoxeroides. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 581-582:666-675. [PMID: 28069304 DOI: 10.1016/j.scitotenv.2016.12.177] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/07/2016] [Accepted: 12/28/2016] [Indexed: 05/13/2023]
Abstract
The impact of invasive species on native biodiversity varies across environments, with invasion effects of amphibious plant species across terrestrial and aquatic systems especially poorly understood. In this study, we established 29 terrestrial plots and 23 aquatic plots which were invaded by the alien plant alligator weed, Alternanthera philoxeroides in Southern China. We measured α-species diversity (Shannon-Wiener and Simpson index), species richness and evenness, species cover and the importance value (a comprehensive index of cover, height and abundance) of A. philoxeroides in invaded communities in both aquatic and terrestrial habitats. We recorded seven environmental factors (longitude, latitude, elevation above sea level, temperature, precipitation, ammonia and nitrate) across habitats. We then used Redundancy Analysis (RDA) to determine which factors best explain A. philoxeroides invasion in either environment type. We found that terrestrial habitats had greater species diversity (Shannon index) than aquatic habitats, and the biotic resistance of aquatic plant communities to the A. philoxeroides invasion was weaker than terrestrial plant communities. Accumulated ammonia improved some indices of species diversity (Shannon-Weiner, Simpson) and evenness, but decreased species cover of A. philoxeroides in both aquatic and terrestrial environments. Precipitation increased species richness in terrestrial habitats but decreased richness in aquatic habitats. Precipitation increased A. philoxeroides cover in both environment types, while elevated nitrate increased A. philoxeroides cover in terrestrial habitats only. In aquatic habitats, species richness increased but A. philoxeroides cover decreased with increasing longitude. Our study indicates that increased precipitation may accelerate A. philoxeroides spread across aquatic and terrestrial habitats, while reducing nitrate inputs could inhibit terrestrial A. philoxeroides invasion. Aquatic communities appear to be more vulnerable to invasion by A. philoxeroides than terrestrial communities, likely due to low native species diversity. We need to intensify invasion assessment of water ecosystems in lower longitudinal regions of China and elsewhere where diversity is low.
Collapse
Affiliation(s)
- Hao Wu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juli Carrillo
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Jianqing Ding
- School of Life Science, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
23
|
González-Torralva F, Brown AP, Chivasa S. Comparative proteomic analysis of horseweed (Conyza canadensis) biotypes identifies candidate proteins for glyphosate resistance. Sci Rep 2017; 7:42565. [PMID: 28198407 PMCID: PMC5309786 DOI: 10.1038/srep42565] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 01/10/2017] [Indexed: 12/31/2022] Open
Abstract
Emergence of glyphosate-resistant horseweed (Conyza canadensis) biotypes is an example of how unrelenting use of a single mode of action herbicide in agricultural weed control drives genetic adaptation in targeted species. While in other weeds glyphosate resistance arose from target site mutation or target gene amplification, the resistance mechanism in horseweed uses neither of these, being instead linked to reduced herbicide uptake and/or translocation. The molecular components underpinning horseweed glyphosate-resistance remain unknown. Here, we used an in vitro leaf disc system for comparative analysis of proteins extracted from control and glyphosate-treated tissues of glyphosate-resistant and glyphosate-susceptible biotypes. Analysis of shikimic acid accumulation, ABC-transporter gene expression, and cell death were used to select a suitable glyphosate concentration and sampling time for enriching proteins pivotal to glyphosate resistance. Protein gel analysis and mass spectrometry identified mainly chloroplast proteins differentially expressed between the biotypes before and after glyphosate treatment. Chloroplasts are the organelles in which the shikimate pathway, which is targeted by glyphosate, is located. Calvin cycle enzymes and proteins of unknown function were among the proteins identified. Our study provides candidate proteins that could be pivotal in engendering resistance and implicates chloroplasts as the primary sites driving glyphosate-resistance in horseweed.
Collapse
Affiliation(s)
| | - Adrian P. Brown
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, United Kingdom
| | - Stephen Chivasa
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, United Kingdom
| |
Collapse
|
24
|
Rosche C, Durka W, Hensen I, Mráz P, Hartmann M, Müller-Schärer H, Lachmuth S. The population genetics of the fundamental cytotype-shift in invasive Centaurea stoebe s.l.: genetic diversity, genetic differentiation and small-scale genetic structure differ between cytotypes but not between ranges. Biol Invasions 2016. [DOI: 10.1007/s10530-016-1133-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Taylor KT, Maxwell BD, Pauchard A, Nuñez MA, Rew LJ. Native versus non-native invasions: similarities and differences in the biodiversity impacts ofPinus contortain introduced and native ranges. DIVERS DISTRIB 2016. [DOI: 10.1111/ddi.12419] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- Kimberley T. Taylor
- Land Resources and Environmental Sciences Department; Montana State University; Bozeman MT 59717 USA
| | - Bruce D. Maxwell
- Land Resources and Environmental Sciences Department; Montana State University; Bozeman MT 59717 USA
| | - Aníbal Pauchard
- Facultad de Ciencias Forestales; Universidad de Concepción; Institute of Ecology and Biodiversity (IEB); Casilla 160-C Concepción Chile
| | - Martin A. Nuñez
- Grupo de Ecologia de Invasiones; INIBIOMA; CONICET; Universidad Nacional del Comahue; Quintral 1250 San Carlos de Bariloche CP 8400 Argentina
| | - Lisa J. Rew
- Land Resources and Environmental Sciences Department; Montana State University; Bozeman MT 59717 USA
| |
Collapse
|
26
|
Aschehoug ET, Callaway RM. Diversity Increases Indirect Interactions, Attenuates the Intensity of Competition, and Promotes Coexistence. Am Nat 2015; 186:452-9. [DOI: 10.1086/682901] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|