1
|
Zhao S, Lu R, Feng L, Zheng M, Zhang H, Yin Y, Zheng L. Functional Characterization of Pomegranate CAMTA3 in Cold Stress Responses. PLANTS (BASEL, SWITZERLAND) 2025; 14:813. [PMID: 40094823 PMCID: PMC11901912 DOI: 10.3390/plants14050813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 02/28/2025] [Accepted: 03/04/2025] [Indexed: 03/19/2025]
Abstract
Cold stress is a significant factor limiting plant growth and development. Pomegranate is particularly susceptible to low temperatures. Calmodulin-binding transcriptional activators (CAMTAs) are key regulators of cold stress tolerance in plants. In this study, we conducted a comprehensive analysis of the CAMTA family proteins across 12 species, including Punica granatum (pomegranate), using bioinformatic methods. Pomegranate CAMTA3 (PgCAMTA3) was isolated and characterized, and it demonstrated enhanced cold tolerance when expressed in Arabidopsis thaliana. Quantitative real-time PCR (qRT-PCR) analysis showed that the expression of PgCAMTA3 was up-regulated under cold and ABA treatments in pomegranates. Two A. thaliana transgenic lines, OE1 and OE2, which overexpress PgCAMTA3, were generated through genetic transformation. The overexpression of PgCAMTA3 enhanced the cold stress tolerance in transgenic A. thaliana. OE1 and OE2 exhibited higher survival rates under cold stress. Furthermore, enzymatic activity assays revealed enhanced peroxidase (POD), catalase (CAT), and superoxide dismutase (SOD) in OE lines. These antioxidant enzymatic activities collectively contribute to better cold stress tolerance by providing more effective reactive oxygen species (ROS) scavenging and cellular protection mechanisms, which was confirmed by lower levels of malondialdehyde (MDA) and ROS production. In addition, the overexpression of PgCAMTA3 led to the upregulation of the expression levels of AtCBF2, AtNCED3, and AtWRKY22, which were modulated by CAMTA3. In summary, we report the significant role of PgCAMTA3 in plant cold tolerance. Our findings provide valuable insights into the CAMATA family in plants and offer new perspectives on the molecular mechanisms underlying cold tolerance in pomegranates.
Collapse
Affiliation(s)
- Shuangshuang Zhao
- Shandong Provincial Key Laboratory of Plant Stress, Life Science College, Shandong Normal University, Jinan 250014, China; (S.Z.); (R.L.); (M.Z.); (H.Z.)
| | - Rui Lu
- Shandong Provincial Key Laboratory of Plant Stress, Life Science College, Shandong Normal University, Jinan 250014, China; (S.Z.); (R.L.); (M.Z.); (H.Z.)
| | - Lijuan Feng
- Shandong Institute of Pomology, Taian 271000, China; (L.F.); (Y.Y.)
| | - Mengyu Zheng
- Shandong Provincial Key Laboratory of Plant Stress, Life Science College, Shandong Normal University, Jinan 250014, China; (S.Z.); (R.L.); (M.Z.); (H.Z.)
| | - Han Zhang
- Shandong Provincial Key Laboratory of Plant Stress, Life Science College, Shandong Normal University, Jinan 250014, China; (S.Z.); (R.L.); (M.Z.); (H.Z.)
| | - Yanlei Yin
- Shandong Institute of Pomology, Taian 271000, China; (L.F.); (Y.Y.)
| | - Ling Zheng
- Shandong Provincial Key Laboratory of Plant Stress, Life Science College, Shandong Normal University, Jinan 250014, China; (S.Z.); (R.L.); (M.Z.); (H.Z.)
| |
Collapse
|
2
|
Su W, Deng Y, Pan X, Li A, Zhu Y, Zhang J, Lu S, Liao W. Genome-Wide Identification and Expression Analysis of the CAMTA Gene Family in Roses ( Rosa chinensis Jacq.). PLANTS (BASEL, SWITZERLAND) 2024; 14:70. [PMID: 39795330 PMCID: PMC11723114 DOI: 10.3390/plants14010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025]
Abstract
Calmodulin-binding transcription activator (CAMTA), as one of the transcription factors, is involved in performing important functions in modulating plant stress responses and development in a Ca2+/CaM-driven modus. However, genome-scale analysis of CAMTA has not been systemically investigated in roses. Rose (Rosa chinensis Jacq.) CAMTA gene family members were identified and bioinformatically analyzed to investigate their expression characteristics in plant hormonal responses. The results show that a total of five rose CAMTA genes were identified. Chromosomal localization shows that the RcCAMTA gene members were located on chromosomes 2, 4, and 7. Physicochemical property analysis shows that its CDS sequence length ranges from 500 to 1070 bp, the molecular weight ranges from 55,531.60 to 120,252.98 Da, and the isoelectric point is from 5.04 to 8.54. Phylogenetic analysis shows that rose CAMTA genes are classified into three subfamilies. Conservative motif analysis reveals the presence of motif 1, motif 3, motif 5, motif 7, and motif 10 in all the RcCAMTA genes. The cis-acting element prediction results show that the rose CAMTA gene family contains phytohormone-signaling response elements, abiotic stress responses, light responses, and other elements, most of which are hormone-signaling response elements. From the expression levels of RcCAMTA genes, the CAMTA family's genes in roses have different spatial expression patterns in different tissues. The qRT-PCR analysis showed that all five rose CAMTA genes responded to salicylic acid (SA). RcCAMTA3 was significantly induced by abscisic acid (ABA), and RcCAMTA2 was significantly induced by 1H-indole-3-acetic acid (IAA) and methyl jasmonate (MeJA). Thus, we provide a basic reference for further studies about the functions of CAMTA proteins in plants.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (W.S.); (Y.D.); (X.P.); (A.L.); (Y.Z.); (J.Z.); (S.L.)
| |
Collapse
|
3
|
Wang S, Ge S, Liu X, Cheng L, Li R, Liu Y, Cai Y, Meng S, Tan C, Jiang CZ, Qi M, Li T, Xu T. A regulatory network involving calmodulin controls phytosulfokine peptide processing during drought-induced flower abscission. THE PLANT CELL 2024; 37:koaf013. [PMID: 39792565 PMCID: PMC11760522 DOI: 10.1093/plcell/koaf013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 12/04/2024] [Accepted: 01/09/2024] [Indexed: 01/12/2025]
Abstract
Drought stress substantially decreases crop yields by causing flowers and fruits to detach prematurely. However, the molecular mechanisms modulating organ abscission under drought stress remain unclear. Here, we show that expression of CALMODULIN2 (CaM2) is specifically and sharply increased in the pedicel abscission zone in response to drought and plays a positive role in drought-induced flower drop in tomato (Solanum lycopersicum). Due to partial functional redundancy with SlCaM6, we generated the Slcam2 Slcam6 double mutant, which showed minimal flower drop under drought. SlCaM2 and SlCaM6 interacted with the transcription factor signal responsive 3L (SlSR3L), with the 3 proteins operating in the same pathway, based on genetic data. We identified Protease inhibitor26 (SlPI26) as a target gene of SlSR3L by DNA affinity purification sequencing and transcriptome analysis. SlPI26 specifically inhibited the activity of the phytaspase SlPhyt2, hence preventing the generation of active phytosulfokine peptide and negatively regulating drought-induced flower drop. SlCaM2 and SlCaM6 enhanced the repression of SlPI26 expression by SlSR3L, promoting drought-induced flower drop. In addition, the nonphototropic hypocotyl3 (SlNPH3)-Cullin3 (SlCUL3) complex, which relies on auxin, interacted with SlSR3L to induce its degradation. However, under drought conditions, SlNPH3-SlCUL3 function is compromised due to lower auxin concentration. These results uncover a regulatory network that precisely controls floral drop in response to drought stress.
Collapse
Affiliation(s)
- Sai Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agriculture University, Shenyang, 110866, China
| | - Siqi Ge
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agriculture University, Shenyang, 110866, China
| | - Xianfeng Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agriculture University, Shenyang, 110866, China
| | - Lina Cheng
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agriculture University, Shenyang, 110866, China
| | - Ruizhen Li
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agriculture University, Shenyang, 110866, China
| | - Yang Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agriculture University, Shenyang, 110866, China
| | - Yue Cai
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agriculture University, Shenyang, 110866, China
| | - Sida Meng
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agriculture University, Shenyang, 110866, China
| | - Changhua Tan
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agriculture University, Shenyang, 110866, China
| | - Cai-Zhong Jiang
- United States Department of Agriculture Agricultural Research Service, Crops Pathology and Genetic Research Unit, Davis, Califonia 95616, USA
- Department of Plant Sciences, University of California at Davis, Califonia 95616, USA
| | - Mingfang Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agriculture University, Shenyang, 110866, China
| | - Tianlai Li
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agriculture University, Shenyang, 110866, China
| | - Tao Xu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agriculture University, Shenyang, 110866, China
| |
Collapse
|
4
|
Li J, Yang P, Fu H, Li J, Wang Y, Zhu K, Yu J, Li J. Transcriptome analysis reveals key regulatory networks and genes involved in the acquisition of cold stress memory in pepper seedlings. BMC PLANT BIOLOGY 2024; 24:959. [PMID: 39396950 PMCID: PMC11479542 DOI: 10.1186/s12870-024-05660-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024]
Abstract
Temperature is an important limiting factor in the counter-seasonal cultivation of pepper. Currently, there are no studies on transcriptomic analysis of 'cold stress memory' in pepper. In this study, in order to understand the mechanism of 'cold stress memory' in pepper (Capsicum annuum L.), seedlings were subjected to the following treatments: normal temperature treatment (P0), the first cold treatment for 3 days (P3), the recovery temperature treatment for 3 days (R3), and another cold treatment for 3 days (RP3). The results showed that P3 plants wilted the most, RP3 the second and R3 the least. Leaf reactive oxygen species (ROS) and electrolyte leakage were the most in P3, the second in RP3 and the least in R3. In addition, RP3 had the highest accumulation of zeaxanthin, violaxanthin and β-cryptoxanthin, followed by P3, and R3 had the least. These results suggest that pepper seedlings are characterized by 'cold stress memory'. Transcriptomics was used to analyze the key genes and transcription factors involved in the biosynthesis of zeaxanthin, violaxanthin and β-cryptoxanthin during the formation of 'cold stress memory'. This study provides candidate genes and transcription factors for an in-depth study of the cold tolerance mechanism in pepper.
Collapse
Affiliation(s)
- Jian Li
- College of Horticulture, Gansu Agriculture University, Lanzhou, 730070, China
- College of Biological and Agricultural Sciences, Honghe University, Mengzi, 661100, China
| | - Ping Yang
- College of Biological and Agricultural Sciences, Honghe University, Mengzi, 661100, China
| | - Hongbo Fu
- College of Biological and Agricultural Sciences, Honghe University, Mengzi, 661100, China
| | - Juan Li
- College of Biological and Agricultural Sciences, Honghe University, Mengzi, 661100, China
- College of Horticulture and Forestry, Tarim University, Alar, 843300, China
| | - Yanzhuang Wang
- College of Horticulture and Forestry, Tarim University, Alar, 843300, China
| | - Keyan Zhu
- College of Horticulture, Gansu Agriculture University, Lanzhou, 730070, China
| | - Jihua Yu
- College of Horticulture, Gansu Agriculture University, Lanzhou, 730070, China.
| | - Jie Li
- College of Biological and Agricultural Sciences, Honghe University, Mengzi, 661100, China.
| |
Collapse
|
5
|
Hau B, Symonds K, Teresinski H, Janssen A, Duff L, Smith M, Benidickson K, Plaxton W, Snedden WA. Arabidopsis Calmodulin-like Proteins CML13 and CML14 Interact with Calmodulin-Binding Transcriptional Activators and Function in Salinity Stress Response. PLANT & CELL PHYSIOLOGY 2024; 65:282-300. [PMID: 38036467 DOI: 10.1093/pcp/pcad152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 12/02/2023]
Abstract
Eukaryotic cells use calcium ions (Ca2+) as second messengers, particularly in response to abiotic and biotic stresses. These signals are detected by Ca2+ sensor proteins, such as calmodulin (CaM), which regulate the downstream target proteins. Plants also possess many CaM-like proteins (CMLs), most of which remain unstudied. We recently demonstrated that Arabidopsis CML13 and CML14 interact with proteins containing isoleucine/glutamine (IQ) domains, including CaM-binding transcriptional activators (CAMTAs). Here, we show that CaM, CML13 and CML14 bind all six members of the Arabidopsis CAMTA family. Using a combination of in planta and in vitro protein-interaction assays, we tested 11 members of the CaM/CML family and demonstrated that only CaM, CML13 and CML14 bind to CAMTA IQ domains. CaM, CML13 and CML14 showed Ca2+-independent binding to the IQ region of CAMTA6 and CAMTA3, and CAMTA6 in vitro exhibited some specificity toward individual IQ domains within CAMTA6 in split-luciferase in planta assays. We show that cml13 mutants exhibited enhanced salinity tolerance during germination compared to wild-type plants, a phenotype similar to camta6 mutants. In contrast, plants overexpressing CML13-GFP or CML14-GFP in the wild-type background showed increased NaCl sensitivity. Under mannitol stress, cml13 mutants were more susceptible than camta6 mutants or wild-type plants. The phenotype of cml13 mutants could be rescued with the wild-type CML13 gene. Several salinity-marker genes under CAMTA6 control were similarly misregulated in both camta6 and cml13 mutants, further supporting a role for CML13 in CAMTA6 function. Collectively, our data suggest that CML13 and CML14 participate in abiotic stress signaling as CAMTA effectors.
Collapse
Affiliation(s)
- Bryan Hau
- Department of Biology, Queen's University, Kingston, ON K7L 4L8, Canada
| | - Kyle Symonds
- Department of Biology, Queen's University, Kingston, ON K7L 4L8, Canada
| | - Howard Teresinski
- Department of Biology, Queen's University, Kingston, ON K7L 4L8, Canada
| | - Abby Janssen
- Department of Biology, Queen's University, Kingston, ON K7L 4L8, Canada
| | - Liam Duff
- Department of Biology, Queen's University, Kingston, ON K7L 4L8, Canada
| | - Milena Smith
- Department of Biology, Queen's University, Kingston, ON K7L 4L8, Canada
| | | | - William Plaxton
- Department of Biology, Queen's University, Kingston, ON K7L 4L8, Canada
| | - Wayne A Snedden
- Department of Biology, Queen's University, Kingston, ON K7L 4L8, Canada
| |
Collapse
|
6
|
Cai P, Lan Y, Gong F, Li C, Xia F, Li Y, Fang C. Identification and Molecular Characterization of the CAMTA Gene Family in Solanaceae with a Focus on the Expression Analysis of Eggplant Genes under Cold Stress. Int J Mol Sci 2024; 25:2064. [PMID: 38396743 PMCID: PMC10888690 DOI: 10.3390/ijms25042064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Calmodulin-binding transcription activator (CAMTA) is an important calmodulin-binding protein with a conserved structure in eukaryotes which is widely involved in plant stress response, growth and development, hormone signal transduction, and other biological processes. Although CAMTA genes have been identified and characterized in many plant species, a systematic and comprehensive analysis of CAMTA genes in the Solanaceae genome is performed for the first time in this study. A total of 28 CAMTA genes were identified using bioinformatics tools, and the biochemical/physicochemical properties of these proteins were investigated. CAMTA genes were categorized into three major groups according to phylogenetic analysis. Tissue-expression profiles indicated divergent spatiotemporal expression patterns of SmCAMTAs. Furthermore, transcriptome analysis of SmCAMTA genes showed that exposure to cold induced differential expression of many eggplant CAMTA genes. Yeast two-hybrid and bimolecular fluorescent complementary assays suggested an interaction between SmCAMTA2 and SmERF1, promoting the transcription of the cold key factor SmCBF2, which may be an important mechanism for plant cold resistance. In summary, our results provide essential information for further functional research on Solanaceae family genes, and possibly other plant families, in the determination of the development of plants.
Collapse
Affiliation(s)
- Peng Cai
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Chengdu 610066, China
| | - Yanhong Lan
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Chengdu 610066, China
| | - Fangyi Gong
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Chengdu 610066, China
| | - Chun Li
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Chengdu 610066, China
| | - Feng Xia
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Chengdu 610066, China
| | - Yifan Li
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Chengdu 610066, China
| | - Chao Fang
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Chengdu 610066, China
| |
Collapse
|
7
|
Abdel-Hameed AAE, Prasad KVSK, Reddy ASN. The amino acid region from 448-517 of CAMTA3 transcription factor containing a part of the TIG domain represses the N-terminal repression module function. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1813-1824. [PMID: 38222273 PMCID: PMC10784436 DOI: 10.1007/s12298-023-01401-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/21/2023] [Accepted: 12/04/2023] [Indexed: 01/16/2024]
Abstract
CAMTA3, a Ca2+-regulated transcription factor, is a repressor of plant immune responses. A truncated version of CAMTA3; CAMTA3334 called N-terminal repression module (NRM), and its extended version (CAMTA447), which include the DNA binding domain, were previously reported to complement the camta3/2 mutant phenotype. Here, we generated a series of CAMTA3 truncated versions [the N-terminus (aa 1-517), C-terminus (aa 517-1032), R1 (aa 1-173), R2 (aa 174-345), R3 (aa 346-517), R4 (aa 517-689), R5 (aa 690-861) and R6 (aa 862-1032)], expressed in camta3 mutant and analyzed the phenotypes of the transgenic lines. Interestingly, unlike CAMTA447, extending the N-terminal region to 517 aa did not complement the camta3 phenotype, suggesting that the amino acid region from 448-517 (70 aa), which includes a part of the TIG domain suppresses the NRM activity. The C-terminus and other truncated versions (R1-R6) also failed to complement the camta3 mutant. Expressing the full length or NRM of CAMTA3 in camta3 plants suppressed the activation of immune-responsive genes and increased the expression of cold-induced genes. In contrast, the transgenic lines expressing the N- or C-terminus or R1-R6 of CAMTA3 showed expression patterns like those of the camta3 with enhanced expression of the defense genes and suppressed expression of the cold response genes. Furthermore, like camta3, the transgenic lines expressing the N- or C-terminus, or R1-R6 of CAMTA3 exhibited higher levels of H2O2 and increased resistance to a Pst DC3000 as compared to WT, NRM, or FL-CAMTA3 transgenic plants. Our studies identified a novel regulatory region in CAMTA3 that suppresses the NRM activity. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01401-w.
Collapse
Affiliation(s)
- Amira A. E. Abdel-Hameed
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1878 USA
- Present Address: Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, 44519 Egypt
| | - Kasavajhala V. S. K. Prasad
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1878 USA
| | - Anireddy S. N. Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1878 USA
| |
Collapse
|
8
|
Ye K, Shen W, Zhao Y. External application of brassinolide enhances cold resistance of tea plants (Camellia sinensis L.) by integrating calcium signals. PLANTA 2023; 258:114. [PMID: 37943407 DOI: 10.1007/s00425-023-04276-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 10/28/2023] [Indexed: 11/10/2023]
Abstract
MAIN CONCLUSION Exogenous brassinolide can activate the expression of key genes in the calcium signalling pathway to enhance cold resistance of tea plants. Brassinolide is an endogenous sterol phytohormone containing multiple hydroxyl groups that has the important function of improving plant cold resistance and alleviating freeze damage. To explore the molecular mechanism of how brassinolide improves the cold resistance of tea plants, "Qiancha 1" was used as the material, and the method of spraying brassinolide on the leaves was adopted to explore its effects on the tea plants under 4 °C low-temperature treatment. The results showed that brassinolide can significantly increase the protective enzyme activity of tea plants under cold stress and reduce cold damage. At the transcriptome level, brassinolide significantly enhanced the expression of key genes involved in calcium signal transduction, Calmodulin (CaM), Calcium-dependent protein kinase (CDPK), calcineurin B-like protein (CBL) and calmodulin-binding transcriptional activators (CAMTA), which then activated the downstream key genes transcriptional regulator CBF1 (CBF1) and transcription factor ICE1 (ICE1) during cold induction. Quantitative real-time PCR (qRT‒PCR) results showed that the expression of these genes was significantly induced after treatment with brassinolide, especially CaM and CBF1. When calcium signalling was inhibited, the upregulated expression of CBF1 and ICE1 disappeared, and when CAMTA was knocked down, the expression of other genes under cold stress was also significantly reduced. The above results indicate that brassinolide combined with the calcium signalling pathway can improve the cold resistance of tea plants. This study provides a new theoretical basis for the study of the cold resistance mechanism of brassinolide.
Collapse
Affiliation(s)
- Kun Ye
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Tea Sciences, College of Life Sciences, Guizhou University, Guiyang, 550025, China
| | - Weijian Shen
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Tea Sciences, College of Life Sciences, Guizhou University, Guiyang, 550025, China
| | - Yichen Zhao
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Tea Sciences, College of Life Sciences, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
9
|
Li B, He S, Zheng Y, Wang Y, Lang X, Wang H, Fan K, Hu J, Ding Z, Qian W. Genome-wide identification and expression analysis of the calmodulin-binding transcription activator (CAMTA) family genes in tea plant. BMC Genomics 2022; 23:667. [PMID: 36138347 PMCID: PMC9502961 DOI: 10.1186/s12864-022-08894-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 09/16/2022] [Indexed: 11/12/2022] Open
Abstract
Background As a type of calmodulin binding protein, CAMTAs are widely involved in vegetative and reproductive processes as well as various hormonal and stress responses in plants. To study the functions of CAMTA genes in tea plants, we investigated bioinformatics analysis and performed qRT-PCR analysis of the CAMTA gene family by using the genomes of ‘ShuChaZao’ tea plant cultivar. Results In this study, 6 CsCAMTAs were identified from tea plant genome. Bioinformatics analysis results showed that all CsCAMTAs contained six highly conserved functional domains. Tissue-specific analysis results found that CsCAMTAs played great roles in mediating tea plant aging and flowering periods. Under hormone and abiotic stress conditions, most CsCAMTAs were upregulated at different time points under different treatment conditions. In addition, the expression levels of CsCAMTA1/3/4/6 were higher in cold-resistant cultivar ‘LongJing43’ than in the cold-susceptible cultivar ‘DaMianBai’ at cold acclimation stage, while CsCAMTA2/5 showed higher expression levels in ‘DaMianBai’ than in ‘LongJing43’ during entire cold acclimation periods. Conclusions In brief, the present results revealed that CsCAMTAs played great roles in tea plant growth, development and stress responses, which laid the foundation for deeply exploring their molecular regulation mechanisms. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08894-x.
Collapse
Affiliation(s)
- Bo Li
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China.,Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Shan He
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China.,Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Yiqian Zheng
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China.,Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Yu Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China.,Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Xuxu Lang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China.,Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Huan Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China.,Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Kai Fan
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China.,Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Jianhui Hu
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China.,Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Zhaotang Ding
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China.,Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Wenjun Qian
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China. .,Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China.
| |
Collapse
|
10
|
Kidokoro S, Shinozaki K, Yamaguchi-Shinozaki K. Transcriptional regulatory network of plant cold-stress responses. TRENDS IN PLANT SCIENCE 2022; 27:922-935. [PMID: 35210165 DOI: 10.1016/j.tplants.2022.01.008] [Citation(s) in RCA: 187] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 01/04/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Recent studies have revealed the complex and flexible transcriptional regulatory network involved in cold-stress responses. Focusing on two major signaling pathways that respond to cold stress, we outline current knowledge of the transcriptional regulatory network and the post-translational regulation of transcription factors in the network. Cold-stress signaling pathways are closely associated with other signaling pathways such as those related to the circadian clock, and large amounts of data on their crosstalk and tradeoffs are available. However, it remains unknown how plants sense and transmit cold-stress signals to regulate gene expression. We discuss recent reports on cold-stress sensing and associated signaling pathways that regulate the network. We also emphasize future directions for developing abiotic stress-tolerant crop plants.
Collapse
Affiliation(s)
- Satoshi Kidokoro
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - Kazuo Shinozaki
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Tsukuba, Ibaraki 305-0074, Japan
| | - Kazuko Yamaguchi-Shinozaki
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan; Research Institute for Agricultural and Life Sciences, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-8502, Japan.
| |
Collapse
|
11
|
Genome-Wide Identification and Characterization of the Calmodulin-Binding Transcription Activator (CAMTA) Gene Family in Plants and the Expression Pattern Analysis of CAMTA3/SR1 in Tomato under Abiotic Stress. Int J Mol Sci 2022; 23:ijms23116264. [PMID: 35682943 PMCID: PMC9181194 DOI: 10.3390/ijms23116264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 12/03/2022] Open
Abstract
Calmodulin-binding transcription activator (CAMTA) plays an important regulatory role in plant growth, development, and stress response. This study identified the phylogenetic relationships of the CAMTA family in 42 plant species using a genome-wide search approach. Subsequently, the evolutionary relationships, gene structures, and conservative structural domain of CAMTA3/SR1 in different plants were analyzed. Meanwhile, in the promoter region, the cis-acting elements, protein clustering interaction, and tissue-specific expression of CAMTA3/SR1 in tomato were identified. The results show that SlCAMTA3/SR1 genes possess numerous cis-acting elements related to hormones, light response, and stress in the promoter regions. SlCAMTA3 might act together with other Ca2+ signaling components to regulate Ca2+-related biological processes. Then, the expression pattern of SlCAMTA3/SR1 was also investigated by quantitative real-time PCR (qRT-PCR) analysis. The results show that SlCAMTA3/SR1 might respond positively to various abiotic stresses, especially Cd stress. The expression of SlCAMTA3/SR1 was scarcely detected in tomato leaf at the seedling and flowering stages, whereas SlCAMTA3/SR1 was highly expressed in the root at the seedling stage. In addition, SlCAMTA3/SR1 had the highest expression levels in flowers at the reproductive stage. Here, we provide a basic reference for further studies about the functions of CAMTA3/SR1 proteins in plants.
Collapse
|
12
|
Photosynthesis Mediated by RBOH-Dependent Signaling Is Essential for Cold Stress Memory. Antioxidants (Basel) 2022; 11:antiox11050969. [PMID: 35624833 PMCID: PMC9137663 DOI: 10.3390/antiox11050969] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 11/16/2022] Open
Abstract
Cold tolerance is improved by cold stress acclimation (CS-ACC), and the cold tolerance level is ‘remembered’ by plants. However, the underlying signaling mechanisms remain largely unknown. Here, the CS memory mechanism was studied by bioinformation, plant physiological and photosynthetic parameters, and gene expression. We found that CS-ACC induced the acquisition of CS memory and enhanced the maintenance of acquired cold tolerance (MACT) in cucumber seedlings. The H2O2 content and NADPH oxidase activity encoded by CsRBOH was maintained at higher levels during recovery after CS-ACC and inhibition of RBOH-dependent signaling after CS-ACC resulted in a decrease in the H2O2 content, NADPH oxidase activity, and MACT. CsRBOH2, 3, 4, and 5 showed high expression during recovery after CS-ACC. Many BZR-binding sites were identified in memory-responsive CsRBOHs promoters, and CsBZR1 and 3 showed high expression during recovery after CS-ACC. Inhibition of RBOH-dependent signaling or brassinosteroids affected the maintenance of the expression of these memory-responsive CsRBOHs and CsBZRs. The photosynthetic efficiency (PE) decreased but then increased with the prolonged recovery after CS-ACC, and was higher than the control at 48 h of recovery; however, inhibition of RBOH-dependent signaling resulted in a lower PE. Further etiolated seedlings experiments showed that a photosynthetic capacity was necessary for CS memory. Therefore, photosynthesis mediated by RBOH-dependent signaling is essential for CS memory.
Collapse
|
13
|
Iqbal Z, Iqbal MS, Sangpong L, Khaksar G, Sirikantaramas S, Buaboocha T. Comprehensive genome-wide analysis of calmodulin-binding transcription activator (CAMTA) in Durio zibethinus and identification of fruit ripening-associated DzCAMTAs. BMC Genomics 2021; 22:743. [PMID: 34649525 PMCID: PMC8518175 DOI: 10.1186/s12864-021-08022-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/13/2021] [Indexed: 12/11/2022] Open
Abstract
Background Fruit ripening is an intricate developmental process driven by a highly coordinated action of complex hormonal networks. Ethylene is considered as the main phytohormone that regulates the ripening of climacteric fruits. Concomitantly, several ethylene-responsive transcription factors (TFs) are pivotal components of the regulatory network underlying fruit ripening. Calmodulin-binding transcription activator (CAMTA) is one such ethylene-induced TF implicated in various stress and plant developmental processes. Results Our comprehensive analysis of the CAMTA gene family in Durio zibethinus (durian, Dz) identified 10 CAMTAs with conserved domains. Phylogenetic analysis of DzCAMTAs, positioned DzCAMTA3 with its tomato ortholog that has already been validated for its role in the fruit ripening process through ethylene-mediated signaling. Furthermore, the transcriptome-wide analysis revealed DzCAMTA3 and DzCAMTA8 as the highest expressing durian CAMTA genes. These two DzCAMTAs possessed a distinct ripening-associated expression pattern during post-harvest ripening in Monthong, a durian cultivar native to Thailand. The expression profiling of DzCAMTA3 and DzCAMTA8 under natural ripening conditions and ethylene-induced/delayed ripening conditions substantiated their roles as ethylene-induced transcriptional activators of ripening. Similarly, auxin-suppressed expression of DzCAMTA3 and DzCAMTA8 confirmed their responsiveness to exogenous auxin treatment in a time-dependent manner. Accordingly, we propose that DzCAMTA3 and DzCAMTA8 synergistically crosstalk with ethylene during durian fruit ripening. In contrast, DzCAMTA3 and DzCAMTA8 antagonistically with auxin could affect the post-harvest ripening process in durian. Furthermore, DzCAMTA3 and DzCAMTA8 interacting genes contain significant CAMTA recognition motifs and regulated several pivotal fruit-ripening-associated pathways. Conclusion Taken together, the present study contributes to an in-depth understanding of the structure and probable function of CAMTA genes in the post-harvest ripening of durian. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08022-1.
Collapse
Affiliation(s)
- Zahra Iqbal
- Molecular Crop Research Unit, Department of Biochemistry, Chulalongkorn University, Bangkok, Thailand
| | - Mohammed Shariq Iqbal
- Amity Institute of Biotechnology, Amity University, Lucknow Campus, Lucknow, Uttar Pradesh, India
| | - Lalida Sangpong
- Molecular Crop Research Unit, Department of Biochemistry, Chulalongkorn University, Bangkok, Thailand
| | - Gholamreza Khaksar
- Molecular Crop Research Unit, Department of Biochemistry, Chulalongkorn University, Bangkok, Thailand
| | - Supaart Sirikantaramas
- Molecular Crop Research Unit, Department of Biochemistry, Chulalongkorn University, Bangkok, Thailand.,Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Teerapong Buaboocha
- Molecular Crop Research Unit, Department of Biochemistry, Chulalongkorn University, Bangkok, Thailand. .,Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
14
|
Yuan P, Tanaka K, Poovaiah BW. Calmodulin-binding transcription activator AtSR1/CAMTA3 fine-tunes plant immune response by transcriptional regulation of the salicylate receptor NPR1. PLANT, CELL & ENVIRONMENT 2021; 44:3140-3154. [PMID: 34096631 DOI: 10.1111/pce.14123] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/26/2021] [Accepted: 05/30/2021] [Indexed: 05/27/2023]
Abstract
Calcium (Ca2+ ) signalling regulates salicylic acid (SA)-mediated immune response through calmodulin-meditated transcriptional activators, AtSRs/CAMTAs, but its mechanism is not fully understood. Here, we report an AtSR1/CAMTA3-mediated regulatory mechanism involving the expression of the SA receptor, NPR1. Results indicate that the transcriptional expression of NPR1 was regulated by AtSR1 binding to a CGCG box in the NPR1 promotor. The atsr1 mutant exhibited resistance to the virulent strain of Pseudomonas syringae pv. tomato (Pst), however, was susceptible to an avirulent Pst strain carrying avrRpt2, due to the failure of the induction of hypersensitive responses. These resistant/susceptible phenotypes in the atsr1 mutant were reversed in the npr1 mutant background, suggesting that AtSR1 regulates NPR1 as a downstream target during plant immune response. The virulent Pst strain triggered a transient elevation in intracellular Ca2+ concentration, whereas the avirulent Pst strain triggered a prolonged change. The distinct Ca2+ signatures were decoded into the regulation of NPR1 expression through AtSR1's IQ motif binding with Ca2+ -free-CaM2, while AtSR1's calmodulin-binding domain with Ca2+ -bound-CaM2. These observations reveal a role for AtSR1 as a Ca2+ -mediated transcription regulator in controlling the NPR1-mediated plant immune response.
Collapse
Affiliation(s)
- Peiguo Yuan
- Department of Horticulture, Washington State University, Pullman, Washington, USA
| | - Kiwamu Tanaka
- Department of Plant Pathology, Washington State University, Pullman, Washington, USA
| | - B W Poovaiah
- Department of Horticulture, Washington State University, Pullman, Washington, USA
| |
Collapse
|
15
|
Iqbal Z, Shariq Iqbal M, Singh SP, Buaboocha T. Ca 2+/Calmodulin Complex Triggers CAMTA Transcriptional Machinery Under Stress in Plants: Signaling Cascade and Molecular Regulation. FRONTIERS IN PLANT SCIENCE 2020; 11:598327. [PMID: 33343600 PMCID: PMC7744605 DOI: 10.3389/fpls.2020.598327] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/30/2020] [Indexed: 05/21/2023]
Abstract
Calcium (Ca2+) ion is a critical ubiquitous intracellular second messenger, acting as a lead currency for several distinct signal transduction pathways. Transient perturbations in free cytosolic Ca2+ ([Ca2+]cyt) concentrations are indispensable for the translation of signals into adaptive biological responses. The transient increase in [Ca2+]cyt levels is sensed by an array of Ca2+ sensor relay proteins such as calmodulin (CaM), eventually leading to conformational changes and activation of CaM. CaM, in a Ca2+-dependent manner, regulates several transcription factors (TFs) that are implicated in various molecular, physiological, and biochemical functions in cells. CAMTA (calmodulin-binding transcription activator) is one such member of the Ca2+-loaded CaM-dependent family of TFs. The present review focuses on Ca2+ as a second messenger, its interaction with CaM, and Ca2+/CaM-mediated CAMTA transcriptional regulation in plants. The review recapitulates the molecular and physiological functions of CAMTA in model plants and various crops, confirming its probable involvement in stress signaling pathways and overall plant development. Studying Ca2+/CaM-mediated CAMTA TF will help in answering key questions concerning signaling cascades and molecular regulation under stress conditions and plant growth, thus improving our knowledge for crop improvement.
Collapse
Affiliation(s)
- Zahra Iqbal
- Molecular Crop Research Unit, Department of Biochemistry, Chulalongkorn University, Bangkok, Thailand
| | - Mohammed Shariq Iqbal
- Amity Institute of Biotechnology, Amity University, Uttar Pradesh, Lucknow Campus, Lucknow, India
| | - Surendra Pratap Singh
- Plant Molecular Biology Laboratory, Department of Botany, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University, Kanpur, India
| | - Teerapong Buaboocha
- Molecular Crop Research Unit, Department of Biochemistry, Chulalongkorn University, Bangkok, Thailand
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
16
|
Distinct Molecular Pattern-Induced Calcium Signatures Lead to Different Downstream Transcriptional Regulations via AtSR1/CAMTA3. Int J Mol Sci 2020; 21:ijms21218163. [PMID: 33142885 PMCID: PMC7662696 DOI: 10.3390/ijms21218163] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/24/2020] [Accepted: 10/28/2020] [Indexed: 12/17/2022] Open
Abstract
Plants encrypt the perception of different pathogenic stimuli into specific intracellular calcium (Ca2+) signatures and subsequently decrypt the signatures into appropriate downstream responses through various Ca2+ sensors. Two microbe-associated molecular patterns (MAMPs), bacterial flg22 and fungal chitin, and one damage-associated molecular pattern (DAMP), AtPep1, were used to study the differential Ca2+ signatures in Arabidopsis leaves. The results revealed that flg22, chitin, and AtPep1 induced distinct changes in Ca2+ dynamics in both the cytosol and nucleus. In addition, Flg22 and chitin upregulated the expression of salicylic acid-related genes, ICS1 and EDS1, whereas AtPep1 upregulated the expression of jasmonic acid-related genes, JAZ1 and PDF1.2, in addition to ICS1 and EDS1. These data demonstrated that distinct Ca2+ signatures caused by different molecular patterns in leaf cells lead to specific downstream events. Furthermore, these changes in the expression of defense-related genes were disrupted in a knockout mutant of the AtSR1/CAMTA3 gene, encoding a calmodulin-binding transcription factor, in which a calmodulin-binding domain on AtSR1 was required for deciphering the Ca2+ signatures into downstream transcription events. These observations extend our knowledge regarding unique and intrinsic roles for Ca2+ signaling in launching and fine-tuning plant immune response, which are mediated by the AtSR1/CAMTA3 transcription factor.
Collapse
|
17
|
Gene co-expression network analysis provides a novel insight into the dynamic response of wheat to powdery mildew stress. J Genet 2020. [DOI: 10.1007/s12041-020-01206-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
18
|
Liu J, Lenzoni G, Knight MR. Design Principle for Decoding Calcium Signals to Generate Specific Gene Expression Via Transcription. PLANT PHYSIOLOGY 2020; 182:1743-1761. [PMID: 31744935 PMCID: PMC7140924 DOI: 10.1104/pp.19.01003] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/31/2019] [Indexed: 05/18/2023]
Abstract
The second messenger calcium plays a key role in conveying specificity of signaling pathways in plant cells. Specific calcium signatures are decoded to generate correct gene expression responses and amplification of calcium signatures is vital to this process. (1) It is not known if this amplification is an intrinsic property of all calcium-regulated gene expression responses and whether all calcium signatures have the potential to be amplified, or (2) how a given calcium signature maintains specificity in cells containing a great number of transcription factors (TFs) and other proteins with the potential to be calcium-regulated. The work presented here uncovers the design principle by which it is possible to decode calcium signals into specific changes in gene transcription in plant cells. Regarding the first question, we found that the binding mechanism between protein components possesses an intrinsic property that will nonlinearly amplify any calcium signal. This nonlinear amplification allows plant cells to effectively distinguish the kinetics of different calcium signatures to produce specific and appropriate changes in gene expression. Regarding the second question, we found that the large number of calmodulin (CaM)-binding TFs or proteins in plant cells form a buffering system such that the concentration of an active CaM-binding TF is insensitive to the concentration of any other CaM-binding protein, thus maintaining specificity. The design principle revealed by this work can be used to explain how any CaM-binding TF decodes calcium signals to generate specific gene expression responses in plant cells via transcription.
Collapse
Affiliation(s)
- Junli Liu
- Department of Biosciences, Durham University, Durham DH1 3LE, United Kingdom
| | - Gioia Lenzoni
- School of Pharmaceutical Sciences, University of Geneva, Geneva CH-1211, Switzerland
| | - Marc R Knight
- Department of Biosciences, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
19
|
Matthus E, Wilkins KA, Swarbreck SM, Doddrell NH, Doccula FG, Costa A, Davies JM. Phosphate Starvation Alters Abiotic-Stress-Induced Cytosolic Free Calcium Increases in Roots. PLANT PHYSIOLOGY 2019; 179:1754-1767. [PMID: 30696750 PMCID: PMC6446763 DOI: 10.1104/pp.18.01469] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 01/17/2019] [Indexed: 05/08/2023]
Abstract
Phosphate (Pi) deficiency strongly limits plant growth, and plant roots foraging the soil for nutrients need to adapt to optimize Pi uptake. Ca2+ is known to signal in root development and adaptation but has to be tightly controlled, as it is highly toxic to Pi metabolism. Under Pi starvation and the resulting decreased cellular Pi pool, the use of cytosolic free Ca2+ ([Ca2+]cyt) as a signal transducer may therefore have to be altered. Employing aequorin-expressing Arabidopsis (Arabidopsis thaliana), we show that Pi starvation, but not nitrogen starvation, strongly dampens the [Ca2+]cyt increases evoked by mechanical, salt, osmotic, and oxidative stress as well as by extracellular nucleotides. The altered root [Ca2+]cyt response to extracellular ATP manifests during seedling development under chronic Pi deprivation but can be reversed by Pi resupply. Employing ratiometric imaging, we delineate that Pi-starved roots have a normal response to extracellular ATP at the apex but show a strongly dampened [Ca2+]cyt response in distal parts of the root tip, correlating with high reactive oxygen species levels induced by Pi starvation. Excluding iron, as well as Pi, rescues this altered [Ca2+]cyt response and restores reactive oxygen species levels to those seen under nutrient-replete conditions. These results indicate that, while Pi availability does not seem to be signaled through [Ca2+]cyt, Pi starvation strongly affects stress-induced [Ca2+]cyt signatures. These data reveal how plants can integrate nutritional and environmental cues, adding another layer of complexity to the use of Ca2+ as a signal transducer.
Collapse
Affiliation(s)
- Elsa Matthus
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Katie A Wilkins
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Stéphanie M Swarbreck
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Nicholas H Doddrell
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | | | - Alex Costa
- Department of Biosciences, University of Milan, 20133 Milan, Italy
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, 20133 Milan, Italy
| | - Julia M Davies
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| |
Collapse
|
20
|
Martins TV, Hammelman J, Marinova S, Ding CO, Morris RJ. An Information-Theoretical Approach for Calcium Signaling Specificity. IEEE Trans Nanobioscience 2018; 18:93-100. [PMID: 30561348 DOI: 10.1109/tnb.2018.2882223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Calcium is a key signaling agent in animals and plants. Its involvement in the regulation of a wide range of processes has led to the question of how calcium signals can activate stimulus-specific responses. We introduce a computational framework for studying intracellular calcium signaling using elements of information theory. We use mutual information to quantify the differential activation of proteins in response to different calcium signals to provide an operational definition of specificity. Using optimization procedures this framework allows us to explore the biochemical determinants of calcium decoding. We explore simple toy models and general binding kinetics approaches to demonstrate the utility and limitations of the proposed framework. Unravelling signaling specificity is key for understanding information processing within cells and for the future design of synthetic nanodevices for molecular communications.
Collapse
|
21
|
Lenzoni G, Liu J, Knight MR. Predicting plant immunity gene expression by identifying the decoding mechanism of calcium signatures. THE NEW PHYTOLOGIST 2018; 217:1598-1609. [PMID: 29218709 DOI: 10.1111/nph.14924] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/25/2017] [Indexed: 05/28/2023]
Abstract
Calcium plays a key role in determining the specificity of a vast array of signalling pathways in plants. Cellular calcium elevations with different characteristics (calcium signatures) carry information on the identity of the primary stimulus, ensuring appropriate downstream responses. However, the mechanism for decoding calcium signatures is unknown. To determine this, decoding of the salicylic acid (SA)-mediated plant immunity signalling network controlling gene expression was examined. A dynamic mathematical model of the SA-mediated plant immunity network was developed. This model was used to predict responses to different calcium signatures; these were validated empirically using quantitative real-time PCR to measure gene expression. The mechanism for decoding calcium signatures to control expression of plant immunity genes enhanced disease susceptibility 1 (EDS1) and isochorismate synthase 1 (ICS1) was identified. Calcium, calmodulin, calmodulin-binding transcription activators (CAMTA)3 and calmodulin binding protein 60g (CBP60g) together amplify each calcium signature into three active signals, simultaneously regulating expression. The time required for calcium to return to steady-state level also quantitatively regulates gene expression. Decoding of calcium signatures occurs via nonlinear interactions between these active signals, producing a unique response in each case. Key properties of the calcium signatures are not intuitive, exemplifying the importance of mathematical modelling approaches. This approach can be applied to identifying the decoding mechanisms of other plant calcium signalling pathways.
Collapse
Affiliation(s)
- Gioia Lenzoni
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Junli Liu
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Marc R Knight
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| |
Collapse
|
22
|
Aldon D, Mbengue M, Mazars C, Galaud JP. Calcium Signalling in Plant Biotic Interactions. Int J Mol Sci 2018; 19:E665. [PMID: 29495448 PMCID: PMC5877526 DOI: 10.3390/ijms19030665] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 02/21/2018] [Accepted: 02/22/2018] [Indexed: 12/31/2022] Open
Abstract
Calcium (Ca2+) is a universal second messenger involved in various cellular processes, leading to plant development and to biotic and abiotic stress responses. Intracellular variation in free Ca2+ concentration is among the earliest events following the plant perception of environmental change. These Ca2+ variations differ in their spatio-temporal properties according to the nature, strength and duration of the stimulus. However, their conversion into biological responses requires Ca2+ sensors for decoding and relaying. The occurrence in plants of calmodulin (CaM) but also of other sets of plant-specific Ca2+ sensors such as calmodulin-like proteins (CMLs), Ca2+-dependent protein kinases (CDPKs) and calcineurin B-like proteins (CBLs) indicate that plants possess specific tools and machineries to convert Ca2+ signals into appropriate responses. Here, we focus on recent progress made in monitoring the generation of Ca2+ signals at the whole plant or cell level and their long distance propagation during biotic interactions. The contribution of CaM/CMLs and CDPKs in plant immune responses mounted against bacteria, fungi, viruses and insects are also presented.
Collapse
Affiliation(s)
- Didier Aldon
- Laboratoire de Recherche en Sciences Vegetales, Universite de Toulouse, CNRS, UPS, 24, Chemin de Borde-Rouge, Auzeville, BP 42617, 31326 Castanet-Tolosan, France.
| | - Malick Mbengue
- Laboratoire de Recherche en Sciences Vegetales, Universite de Toulouse, CNRS, UPS, 24, Chemin de Borde-Rouge, Auzeville, BP 42617, 31326 Castanet-Tolosan, France.
| | - Christian Mazars
- Laboratoire de Recherche en Sciences Vegetales, Universite de Toulouse, CNRS, UPS, 24, Chemin de Borde-Rouge, Auzeville, BP 42617, 31326 Castanet-Tolosan, France.
| | - Jean-Philippe Galaud
- Laboratoire de Recherche en Sciences Vegetales, Universite de Toulouse, CNRS, UPS, 24, Chemin de Borde-Rouge, Auzeville, BP 42617, 31326 Castanet-Tolosan, France.
| |
Collapse
|
23
|
Ca 2+-permeable mechanosensitive channels MCA1 and MCA2 mediate cold-induced cytosolic Ca 2+ increase and cold tolerance in Arabidopsis. Sci Rep 2018; 8:550. [PMID: 29323146 PMCID: PMC5765038 DOI: 10.1038/s41598-017-17483-y] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 11/28/2017] [Indexed: 01/12/2023] Open
Abstract
Cold shock triggers an immediate rise in the cytosolic free calcium concentration ([Ca2+]cyt) in Arabidopsis thaliana and this cold-induced elevation of [Ca2+]cyt is inhibited by lanthanum or EGTA. It is suggested that intracellular calcium mainly contributes to the cold-induced [Ca2+]cyt response by entering into the cytosol. Two calcium-permeable mechanosensitive channels, MCA1 and MCA2 (mid1-complementing activity), have been identified in Arabidopsis. Here, we demonstrate that MCA1 and MCA2 are involved in a cold-induced increase in [Ca2+]cyt. The cold-induced [Ca2+]cyt increase in mca1 and mca2 mutants was markedly lower than that in wild types. The mca1 mca2 double mutant exhibited chilling and freezing sensitivity, compared to wild-type plants. Expression of At5g61820, At3g51660, and At4g15490, which are not regulated by the CBF/DREB1s transcription factor, was down-regulated in mca1 mca2. These results suggest that MCA1 and MCA2 are involved in the cold-induced elevation of [Ca2+]cyt, cold tolerance, and CBF/DREB1-independent cold signaling.
Collapse
|
24
|
Wang DZ, Jin YN, Ding XH, Wang WJ, Zhai SS, Bai LP, Guo ZF. Gene Regulation and Signal Transduction in the ICE-CBF-COR Signaling Pathway during Cold Stress in Plants. BIOCHEMISTRY (MOSCOW) 2017; 82:1103-1117. [PMID: 29037131 DOI: 10.1134/s0006297917100030] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Low temperature is an abiotic stress that adversely affects the growth and production of plants. Resistance and adaptation of plants to cold stress is dependent upon the activation of molecular networks and pathways involved in signal transduction and the regulation of cold-stress related genes. Because it has numerous and complex genes, regulation factors, and pathways, research on the ICE-CBF-COR signaling pathway is the most studied and detailed, which is thought to be rather important for cold resistance of plants. In this review, we focus on the function of each member, interrelation among members, and the influence of manipulators and repressors in the ICE-CBF-COR pathway. In addition, regulation and signal transduction concerning plant hormones, circadian clock, and light are discussed. The studies presented provide a detailed picture of the ICE-CBF-COR pathway.
Collapse
Affiliation(s)
- Da-Zhi Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China.
| | | | | | | | | | | | | |
Collapse
|
25
|
Skrzypczak T, Krela R, Kwiatkowski W, Wadurkar S, Smoczyńska A, Wojtaszek P. Plant Science View on Biohybrid Development. Front Bioeng Biotechnol 2017; 5:46. [PMID: 28856135 PMCID: PMC5558049 DOI: 10.3389/fbioe.2017.00046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/24/2017] [Indexed: 01/07/2023] Open
Abstract
Biohybrid consists of a living organism or cell and at least one engineered component. Designing robot-plant biohybrids is a great challenge: it requires interdisciplinary reconsideration of capabilities intimate specific to the biology of plants. Envisioned advances should improve agricultural/horticultural/social practice and could open new directions in utilization of plants by humans. Proper biohybrid cooperation depends upon effective communication. During evolution, plants developed many ways to communicate with each other, with animals, and with microorganisms. The most notable examples are: the use of phytohormones, rapid long-distance signaling, gravity, and light perception. These processes can now be intentionally re-shaped to establish plant-robot communication. In this article, we focus on plants physiological and molecular processes that could be used in bio-hybrids. We show phototropism and biomechanics as promising ways of effective communication, resulting in an alteration in plant architecture, and discuss the specifics of plants anatomy, physiology and development with regards to the bio-hybrids. Moreover, we discuss ways how robots could influence plants growth and development and present aims, ideas, and realized projects of plant-robot biohybrids.
Collapse
Affiliation(s)
- Tomasz Skrzypczak
- Faculty of Biology, Department of Molecular and Cellular Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Rafał Krela
- Faculty of Biology, Department of Molecular and Cellular Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Wojciech Kwiatkowski
- Faculty of Biology, Department of Molecular and Cellular Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Shraddha Wadurkar
- Faculty of Biology, Department of Molecular and Cellular Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Aleksandra Smoczyńska
- Faculty of Biology, Department of Gene Expression, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Przemysław Wojtaszek
- Faculty of Biology, Department of Molecular and Cellular Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| |
Collapse
|
26
|
Kidokoro S, Yoneda K, Takasaki H, Takahashi F, Shinozaki K, Yamaguchi-Shinozaki K. Different Cold-Signaling Pathways Function in the Responses to Rapid and Gradual Decreases in Temperature. THE PLANT CELL 2017; 29:760-774. [PMID: 28351986 PMCID: PMC5435423 DOI: 10.1105/tpc.16.00669] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 02/21/2017] [Accepted: 03/22/2017] [Indexed: 05/18/2023]
Abstract
In plants, cold temperatures trigger stress responses and long-term responses that result in cold tolerance. In Arabidopsis thaliana, three dehydration-responsive element (DRE) binding protein 1/C-repeat binding factors (DREB1/CBFs) act as master switches in cold-responsive gene expression. Induction of DREB1 genes triggers the cold stress-inducible transcriptional cascade, followed by the induction of numerous genes that function in the cold stress response and cold tolerance. Many regulatory factors involved in DREB1 induction have been identified, but how these factors orchestrate the cold stress-specific expression of DREB1s has not yet been clarified. Here, we revealed that plants recognize cold stress as two different signals, rapid and gradual temperature decreases, and induce expression of the DREB1 genes. CALMODULIN BINDING TRANSCRIPTION ACTIVATOR3 (CAMTA3) and CAMTA5 respond to a rapid decrease in temperature and induce the expression of DREB1s, but these proteins do not respond to a gradual decrease in temperature. Moreover, they function during the day and night, in contrast to some key circadian components, including CIRCADIAN CLOCK ASSOCIATED1 and LATE ELONGATED HYPOCOTYL, which regulate cold-responsive DREB1 expression as transcriptional activators only during the day. Thus, plants efficiently control the acquisition of freezing tolerance using two different signaling pathways in response to a gradual temperature decrease during seasonal changes and a sudden temperature drop during the night.
Collapse
Affiliation(s)
- Satoshi Kidokoro
- Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Koshi Yoneda
- Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hironori Takasaki
- Gene Discovery Research Group, RIKEN Centre for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Fuminori Takahashi
- Gene Discovery Research Group, RIKEN Centre for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Kazuo Shinozaki
- Gene Discovery Research Group, RIKEN Centre for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Kazuko Yamaguchi-Shinozaki
- Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
27
|
Pittman JK, Hirschi KD. CAX-ing a wide net: Cation/H(+) transporters in metal remediation and abiotic stress signalling. PLANT BIOLOGY (STUTTGART, GERMANY) 2016; 18:741-9. [PMID: 27061644 PMCID: PMC4982074 DOI: 10.1111/plb.12460] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 04/04/2016] [Indexed: 05/19/2023]
Abstract
Cation/proton exchangers (CAXs) are a class of secondary energised ion transporter that are being implicated in an increasing range of cellular and physiological functions. CAXs are primarily Ca(2+) efflux transporters that mediate the sequestration of Ca(2+) from the cytosol, usually into the vacuole. Some CAX isoforms have broad substrate specificity, providing the ability to transport trace metal ions such as Mn(2+) and Cd(2+) , as well as Ca(2+) . In recent years, genomic analyses have begun to uncover the expansion of CAXs within the green lineage and their presence within non-plant species. Although there appears to be significant conservation in tertiary structure of CAX proteins, there is diversity in function of CAXs between species and individual isoforms. For example, in halophytic plants, CAXs have been recruited to play a role in salt tolerance, while in metal hyperaccumulator plants CAXs are implicated in cadmium transport and tolerance. CAX proteins are involved in various abiotic stress response pathways, in some cases as a modulator of cytosolic Ca(2+) signalling, but in some situations there is evidence of CAXs acting as a pH regulator. The metal transport and abiotic stress tolerance functions of CAXs make them attractive targets for biotechnology, whether to provide mineral nutrient biofortification or toxic metal bioremediation. The study of non-plant CAXs may also provide insight into both conserved and novel transport mechanisms and functions.
Collapse
Affiliation(s)
- J. K. Pittman
- Faculty of Life SciencesUniversity of ManchesterManchesterUK
| | - K. D. Hirschi
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research CenterBaylor College of MedicineHoustonTXUSA
| |
Collapse
|
28
|
Virdi AS, Singh S, Singh P. Abiotic stress responses in plants: roles of calmodulin-regulated proteins. FRONTIERS IN PLANT SCIENCE 2015; 6:809. [PMID: 26528296 PMCID: PMC4604306 DOI: 10.3389/fpls.2015.00809] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 09/16/2015] [Indexed: 05/20/2023]
Abstract
Intracellular changes in calcium ions (Ca(2+)) in response to different biotic and abiotic stimuli are detected by various sensor proteins in the plant cell. Calmodulin (CaM) is one of the most extensively studied Ca(2+)-sensing proteins and has been shown to be involved in transduction of Ca(2+) signals. After interacting with Ca(2+), CaM undergoes conformational change and influences the activities of a diverse range of CaM-binding proteins. A number of CaM-binding proteins have also been implicated in stress responses in plants, highlighting the central role played by CaM in adaptation to adverse environmental conditions. Stress adaptation in plants is a highly complex and multigenic response. Identification and characterization of CaM-modulated proteins in relation to different abiotic stresses could, therefore, prove to be essential for a deeper understanding of the molecular mechanisms involved in abiotic stress tolerance in plants. Various studies have revealed involvement of CaM in regulation of metal ions uptake, generation of reactive oxygen species and modulation of transcription factors such as CAMTA3, GTL1, and WRKY39. Activities of several kinases and phosphatases have also been shown to be modulated by CaM, thus providing further versatility to stress-associated signal transduction pathways. The results obtained from contemporary studies are consistent with the proposed role of CaM as an integrator of different stress signaling pathways, which allows plants to maintain homeostasis between different cellular processes. In this review, we have attempted to present the current state of understanding of the role of CaM in modulating different stress-regulated proteins and its implications in augmenting abiotic stress tolerance in plants.
Collapse
Affiliation(s)
- Amardeep S. Virdi
- Texture Analysis Laboratory, Department of Food Science & Technology, Guru Nanak Dev UniversityAmritsar, India
| | - Supreet Singh
- Plant Molecular Biology Laboratory, Department of Biotechnology, Guru Nanak Dev UniversityAmritsar, India
| | - Prabhjeet Singh
- Plant Molecular Biology Laboratory, Department of Biotechnology, Guru Nanak Dev UniversityAmritsar, India
| |
Collapse
|
29
|
Panstruga R, Kuhn H. Introduction to a Virtual Special Issue on cell biology at the plant-microbe interface. THE NEW PHYTOLOGIST 2015; 207:931-8. [PMID: 26235485 DOI: 10.1111/nph.13551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Affiliation(s)
- Ralph Panstruga
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056, Aachen, Germany
| | - Hannah Kuhn
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056, Aachen, Germany
| |
Collapse
|