1
|
Rajković B, Lovrić A, Maričević M, Novoselović D, Šarčević H. Validation of QTLs for Resistance to Pre-Harvest Sprouting in a Panel of European Wheat Cultivars. PLANTS (BASEL, SWITZERLAND) 2025; 14:1342. [PMID: 40364371 PMCID: PMC12073241 DOI: 10.3390/plants14091342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/26/2025] [Accepted: 04/27/2025] [Indexed: 05/15/2025]
Abstract
Pre-harvest sprouting (PHS) of wheat poses a major challenge to global food security due to its negative impact on grain yield and quality. In the present study, we conducted the validation of previously published markers or functional markers associated with PHS resistance in a panel of 200 wheat cultivars adapted to Southeastern European conditions. In field experiments conducted in four environments in Croatia, the germination index (GI) was assessed, and significant genetic, environmental, and genotype-environment interactions were detected. The broad-sense heritability for GI was high (0.86), confirming the predominant role of genetic factors in determining PHS resistance. Twenty-two polymorphic SNP markers were analyzed for their effects on GI, of which nine markers from chromosomes 3A, 3B, 4A, 5A, and 7B showed significant genotypic effects across environments, especially TaMKK3-A and wsnp_Ex_rep_c66324_64493429. In addition, nine marker combinations were identified, which showed significant differences in GI between allele combinations. Overall, this study elucidates the genetic basis of PHS resistance in wheat cultivars adapted to the agro-climatic conditions of Southeast Europe and provides insights for marker-assisted breeding strategies to improve PHS resistance.
Collapse
Affiliation(s)
- Bruno Rajković
- Bc Institute for Breeding and Production of Field Crops, Rugvica, Dugoselska 7, 10370 Dugo Selo, Croatia; (B.R.); (A.L.); (M.M.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CroP-BioDiv), Svetošimunska Cesta 25, 10000 Zagreb, Croatia;
| | - Ana Lovrić
- Bc Institute for Breeding and Production of Field Crops, Rugvica, Dugoselska 7, 10370 Dugo Selo, Croatia; (B.R.); (A.L.); (M.M.)
| | - Marko Maričević
- Bc Institute for Breeding and Production of Field Crops, Rugvica, Dugoselska 7, 10370 Dugo Selo, Croatia; (B.R.); (A.L.); (M.M.)
| | - Dario Novoselović
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CroP-BioDiv), Svetošimunska Cesta 25, 10000 Zagreb, Croatia;
- Department of Cereal Breeding and Genetics, Agricultural Institute Osijek, Južno Predgrađe 17, 31000 Osijek, Croatia
| | - Hrvoje Šarčević
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CroP-BioDiv), Svetošimunska Cesta 25, 10000 Zagreb, Croatia;
- Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000 Zagreb, Croatia
| |
Collapse
|
2
|
Song P, Li Y, Wang X, Wang X, Zhou F, Zhang A, Zhao W, Zhang H, Zhang Z, Li H, Zhao H, Song K, Xing Y, Sun D. Linkage and association analysis to identify wheat pre-harvest sprouting resistance genetic regions and develop KASP markers. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2025; 45:11. [PMID: 39790292 PMCID: PMC11707105 DOI: 10.1007/s11032-024-01526-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/12/2024] [Indexed: 01/12/2025]
Abstract
Pre-harvest sprouting (PHS) of wheat (Triticum aestivum L.) is one of the complex traits that result in rainfall-dependent reductions in grain production and quality worldwide. Breeding new varieties and germplasm with PHS resistance is of great importance to reduce this problem. However, research on markers and genes related to PHS resistance is limited, especially in marker-assisted selection (MAS) wheat breeding. To this end, we studied PHS resistance in recombinant inbred line (RIL) population and in 171 wheat germplasm accessions in different environments and genotyped using the wheat Infinium 50 K/660 K SNP array. Quantitative trait loci (QTL) mapping and genome-wide association studies (GWAS) identified 59 loci controlling PHS. Upon comparison with previously reported QTL affecting PHS, 16 were found to be new QTL, and the remaining 43 loci were co-localized with QTL from previous studies. We also pinpointed 12 candidate genes within these QTL intervals that share functional similarities with genes previously known to influence PHS resistance. In addition, we developed and validated two kompetitive allele-specific PCR (KASP) markers within the chromosome 7B region identified by linkage analysis. These QTL, candidate genes, and the KASP marker identified in this study have the potential to improve PHS resistance of wheat, and they may enhance our understanding of the genetic basis of PHS resistance, thus being useful for MAS breeding. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01526-0.
Collapse
Affiliation(s)
- Pengbo Song
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Yueyue Li
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Xiaoxiao Wang
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Xin Wang
- Xiangyang Academy of Agricultural Sciences, Xiangyang, 441000 Hubei China
| | - Feng Zhou
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Aoyan Zhang
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Wensha Zhao
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Hailong Zhang
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Zeyuan Zhang
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Haoyang Li
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Huiling Zhao
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Kefeng Song
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Yuanhang Xing
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Daojie Sun
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| |
Collapse
|
3
|
Dallinger HG, Löschenberger F, Azrak N, Ametz C, Michel S, Bürstmayr H. Genome-wide association mapping for pre-harvest sprouting in European winter wheat detects novel resistance QTL, pleiotropic effects, and structural variation in multiple genomes. THE PLANT GENOME 2024; 17:e20301. [PMID: 36851839 DOI: 10.1002/tpg2.20301] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/20/2022] [Indexed: 06/18/2023]
Abstract
Pre-harvest sprouting (PHS), germination of seeds before harvest, is a major problem in global wheat (Triticum aestivum L.) production, and leads to reduced bread-making quality in affected grain. Breeding for PHS resistance can prevent losses under adverse conditions. Selecting resistant lines in years lacking pre-harvest rain, requires challenging of plants in the field or in the laboratory or using genetic markers. Despite the availability of a wheat reference and pan-genome, linking markers, genes, allelic, and structural variation, a complete understanding of the mechanisms underlying various sources of PHS resistance is still lacking. Therefore, we challenged a population of European wheat varieties and breeding lines with PHS conditions and phenotyped them for PHS traits, grain quality, phenological and agronomic traits to conduct genome-wide association mapping. Furthermore, we compared these marker-trait associations to previously reported PHS loci and evaluated their usefulness for breeding. We found markers associated with PHS on all chromosomes, with strong evidence for novel quantitative trait locus/loci (QTL) on chromosome 1A and 5B. The QTL on chromosome 1A lacks pleiotropic effect, for the QTL on 5B we detected pleiotropic effects on phenology and grain quality. Multiple peaks on chromosome 4A co-located with the major resistance locus Phs-A1, for which two causal genes, TaPM19 and TaMKK3, have been proposed. Mapping markers and genes to the pan-genome and chromosomal alignments provide evidence for structural variation around this major PHS-resistance locus. Although PHS is controlled by many loci distributed across the wheat genome, Phs-A1 on chromosome 4A seems to be the most effective and widely deployed source of resistance, in European wheat varieties.
Collapse
Affiliation(s)
- Hermann G Dallinger
- Institute of Biotechnology in Plant Production, Department of Agrobiotechnology, IFA-Tulln, University of Natural Resources and Life Sciences Vienna, Konrad-Lorenz-Straße 20, Tulln, Austria
- Saatzucht Donau GesmbH & Co KG, Saatzuchtstrasse 11, Probstdorf, Austria
| | | | - Naim Azrak
- Saatzucht Donau GesmbH & Co KG, Saatzuchtstrasse 11, Probstdorf, Austria
| | - Christian Ametz
- Saatzucht Donau GesmbH & Co KG, Saatzuchtstrasse 11, Probstdorf, Austria
| | - Sebastian Michel
- Institute of Biotechnology in Plant Production, Department of Agrobiotechnology, IFA-Tulln, University of Natural Resources and Life Sciences Vienna, Konrad-Lorenz-Straße 20, Tulln, Austria
| | - Hermann Bürstmayr
- Institute of Biotechnology in Plant Production, Department of Agrobiotechnology, IFA-Tulln, University of Natural Resources and Life Sciences Vienna, Konrad-Lorenz-Straße 20, Tulln, Austria
| |
Collapse
|
4
|
Mao X, Zheng X, Sun B, Jiang L, Zhang J, Lyu S, Yu H, Chen P, Chen W, Fan Z, Li C, Liu Q. MKK3 Cascade Regulates Seed Dormancy Through a Negative Feedback Loop Modulating ABA Signal in Rice. RICE (NEW YORK, N.Y.) 2024; 17:2. [PMID: 38170405 PMCID: PMC10764673 DOI: 10.1186/s12284-023-00679-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND With the increasing frequency of climatic anomalies, high temperatures and long-term rain often occur during the rice-harvesting period, especially for early rice crops in tropical and subtropical regions. Seed dormancy directly affects the resistance to pre-harvest sprouting (PHS). Therefore, in order to increase rice production, it is critical to enhance seed dormancy and avoid yield losses to PHS. The elucidation and utilization of the seed dormancy regulation mechanism is of great significance to rice production. Preliminary results indicated that the OsMKKK62-OsMKK3-OsMPK7/14 module might regulate ABA sensitivity and then control seed dormancy. The detailed mechanism is still unclear. RESULTS The overexpression of OsMKK3 resulted in serious PHS. The expression levels of OsMKK3 and OsMPK7 were upregulated by ABA and GA at germination stage. OsMKK3 and OsMPK7 are both located in the nucleus and cytoplasm. The dormancy level of double knockout mutant mkk3/mft2 was lower than that of mkk3, indicating that OsMFT2 functions in the downstream of MKK3 cascade in regulating rice seeds germination. Biochemical results showed that OsMPK7 interacted with multiple core ABA signaling components according to yeast two-hybrid screening and luciferase complementation experiments, suggesting that MKK3 cascade regulates ABA signaling by modulating the core ABA signaling components. Moreover, the ABA response and ABA responsive genes of mpk7/14 were significantly higher than those of wild-type ZH11 when subjected to ABA treatment. CONCLUSION MKK3 cascade mediates the negative feedback loop of ABA signal through the interaction between OsMPK7 and core ABA signaling components in rice.
Collapse
Affiliation(s)
- Xingxue Mao
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Xiaoyu Zheng
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Bingrui Sun
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Liqun Jiang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Jing Zhang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Shuwei Lyu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Hang Yu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Pingli Chen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Wenfeng Chen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Zhilan Fan
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Chen Li
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China.
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, China.
- Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China.
| | - Qing Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China.
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, China.
- Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China.
| |
Collapse
|
5
|
Liu S, Li L, Wang W, Xia G, Liu S. TaSRO1 interacts with TaVP1 to modulate seed dormancy and pre-harvest sprouting resistance in wheat. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:36-53. [PMID: 38108123 DOI: 10.1111/jipb.13600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/15/2023] [Indexed: 12/19/2023]
Abstract
Dormancy is an adaptive trait which prevents seeds from germinating under unfavorable environmental conditions. Seeds with weak dormancy undergo pre-harvest sprouting (PHS) which decreases grain yield and quality. Understanding the genetic mechanisms that regulate seed dormancy and resistance to PHS is crucial for ensuring global food security. In this study, we illustrated the function and molecular mechanism of TaSRO1 in the regulation of seed dormancy and PHS resistance by suppressing TaVP1. The tasro1 mutants exhibited strong seed dormancy and enhanced resistance to PHS, whereas the mutants of tavp1 displayed weak dormancy. Genetic evidence has shown that TaVP1 is epistatic to TaSRO1. Biochemical evidence has shown that TaSRO1 interacts with TaVP1 and represses the transcriptional activation of the PHS resistance genes TaPHS1 and TaSdr. Furthermore, TaSRO1 undermines the synergistic activation of TaVP1 and TaABI5 in PHS resistance genes. Finally, we highlight the great potential of tasro1 alleles for breeding elite wheat cultivars that are resistant to PHS.
Collapse
Affiliation(s)
- Shupeng Liu
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Li Li
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Wenlong Wang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Guangmin Xia
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Shuwei Liu
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| |
Collapse
|
6
|
Liu G, Liu D, Zhang A, Liu H, Mia MS, Mullan D, Yan G. Identification of KASP markers and candidate genes for drought tolerance in wheat using 90K SNP array genotyping of near-isogenic lines targeting a 4BS quantitative trait locus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:190. [PMID: 37584740 PMCID: PMC10432333 DOI: 10.1007/s00122-023-04438-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/31/2023] [Indexed: 08/17/2023]
Abstract
KEY MESSAGE This study identified a novel SNP and developed a highly efficient KASP marker for drought tolerance in wheat by genotyping NILs targeting a major QTL for drought tolerance using an SNP array and validation with commercial varieties. Common wheat (Triticum aestivum L.) is an important winter crop worldwide and a typical allopolyploid with a large and complex genome. With global warming, the environmental volatility and incidence of drought in wheat-producing areas will increase. Molecular markers for drought tolerance are urgently needed to enhance drought tolerance breeding. Here, we genotyped four near-isogenic line (NIL) pairs targeting a major QTL qDSI.4B.1 on wheat chromosome arm 4BS for drought tolerance using the 90K SNP Illumina iSelect array and discovered a single nucleotide polymorphism (SNP) (Excalibur_c100336_106) with consistent genotype-phenotype associations among all four NIL pairs and their parents. Then, we converted the SNP into a Kompetitive Allele-Specific PCR (KASP) marker, with an accuracy of 100% for the four NIL pairs and their parents and as high as 81.8% for the 44 tested wheat lines with known phenotypes collected from Australia and China. Two genes near this SNP were suggested as candidate genes for drought tolerance in wheat after checking the Chinese Spring reference genome annotation version 1.1. One gene, TraesCS4B02G085300, encodes an F-box protein reportedly related to the ABA network, a main pathway for drought tolerance, and another gene, TraesCS4B02G085400, encodes a calcineurin-like metallophos-phoesterase transmembrane protein, which participates in Ca2+-dependent phosphorylation regulatory system. Based on this work and previous research on pre-harvest sprouting, we established a quick and efficient general SQV-based approach for KASP marker development, integrating genotyping by SNP arrays (S) using NILs targeting major QTL for a specific trait (Q) and validating them with commercial varieties (V). The identified SNP and developed KASP marker could be applied to marker-assisted selection in drought breeding, and further study of the candidate genes may improve our understanding of drought tolerance in wheat.
Collapse
Affiliation(s)
- Guannan Liu
- UWA School of Agriculture and Environment and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009 Australia
| | - Dongcheng Liu
- State Key Laboratory of North China Crop Improvement and Regulation, College of Agronomy, Hebei Agriculture University, Baoding, 071000 Hebei China
| | - Aimin Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Agronomy, Hebei Agriculture University, Baoding, 071000 Hebei China
| | - Hui Liu
- UWA School of Agriculture and Environment and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009 Australia
| | - Md Sultan Mia
- UWA School of Agriculture and Environment and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009 Australia
| | - Daniel Mullan
- UWA School of Agriculture and Environment and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009 Australia
- InterGrain Pty. Ltd., 19 Ambitious Link, Bibra Lake, WA 6163 Australia
| | - Guijun Yan
- UWA School of Agriculture and Environment and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009 Australia
| |
Collapse
|
7
|
Eltaher S, Hashem M, Ahmed AAM, Baenziger PS, Börner A, Sallam A. Effectiveness of TaDreb-B1 and 1-FEH w3 KASP Markers in Spring and Winter Wheat Populations for Marker-Assisted Selection to Improve Drought Tolerance. Int J Mol Sci 2023; 24:ijms24108986. [PMID: 37240333 DOI: 10.3390/ijms24108986] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/11/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023] Open
Abstract
Due to the advances in DNA markers, kompetitive allele-specific PCR (KASP) markers could accelerate breeding programs and genetically improve drought tolerance. Two previously reported KASP markers, TaDreb-B1 and 1-FEH w3, were investigated in this study for the marker-assisted selection (MAS) of drought tolerance. Two highly diverse spring and winter wheat populations were genotyped using these two KASP markers. The same populations were evaluated for drought tolerance at seedling (drought stress) and reproductive (normal and drought stress) growth stages. The single-marker analysis revealed a high significant association between the target allele of 1-FEH w3 and drought susceptibility in the spring population, while the marker-trait association was not significant in the winter population. The TaDreb-B1 marker did not have any highly significant association with seedling traits, except the sum of leaf wilting in the spring population. For field experiments, SMA revealed very few negative and significant associations between the target allele of the two markers and yield traits under both conditions. The results of this study revealed that the use of TaDreb-B1 provided better consistency in improving drought tolerance than 1-FEH w3.
Collapse
Affiliation(s)
- Shamseldeen Eltaher
- Department of Plant Biotechnology, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City (USC), Sadat City 32897, Egypt
| | - Mostafa Hashem
- Department of Genetics, Faculty of Agriculture, Assiut University, Assiut 71526, Egypt
| | - Asmaa A M Ahmed
- Department of Genetics, Faculty of Agriculture, Assiut University, Assiut 71526, Egypt
| | - P Stephen Baenziger
- Department of Agronomy & Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Andreas Börner
- Department Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
| | - Ahmed Sallam
- Department of Genetics, Faculty of Agriculture, Assiut University, Assiut 71526, Egypt
- Department Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
| |
Collapse
|
8
|
Liu G, Mullan D, Zhang A, Liu H, Liu D, Yan G. Identification of KASP markers and putative genes for pre-harvest sprouting resistance in common wheat (Triticum aestivum L.). THE CROP JOURNAL 2023; 11:549-557. [DOI: 10.1016/j.cj.2022.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
9
|
Li Z, Chen Y, Ou X, Wang M, Wang N, Li W, Deng Y, Diao Y, Sun Z, Luo Q, Li X, Zhao L, Yan T, Peng W, Jiang Q, Fang Y, Ren Z, Tan F, Luo P, Ren T. Identification of a stable major-effect quantitative trait locus for pre-harvest sprouting in common wheat (Triticum aestivum L.) via high-density SNP-based genotyping. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:4183-4195. [PMID: 36068440 DOI: 10.1007/s00122-022-04211-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
A major and stable QTL cQSGR.sau.3D, which can explain 33.25% of the phenotypic variation in SGR, was mapped and validated, and cQSGR.sau.3D was found to be independent of GI. In this study, a recombinant inbred line (RIL) population containing 304 lines derived from the cross of Chuan-nong17 (CN17) and Chuan-nong11 (CN11) was genotyped using the Wheat55K single-nucleotide polymorphism array. A high-density genetic map consisting of 8329 markers spanning 4131.54 cM and distributed across 21 wheat chromosomes was constructed. QTLs for whole spike germination rate (SGR) were identified in multiple years. Six and fourteen QTLs were identified using the Inclusive Composite Interval Mapping-Biparental Populations and Multi-Environment Trial methods, respectively. A total of 106 digenic epistatic QTLs were also detected in this study. One of the additive QTLs, cQSGR.sau.3D, which was mapped in the region from 3.5 to 4.5 cM from linkage group 3D-2 on chromosome 3D, can explain 33.25% of the phenotypic variation in SGR and be considered a major and stable QTL for SGR. This QTL was independent of the seeds' germination traits, such as germination index. One Kompetitive Allele-Specific PCR (KASP) marker, KASP-AX-110772653, which is tightly linked to cQSGR.sau.3D, was developed. The genetic effect of cQSGR.sau.3D on SGR in the RIL and natural populations was successfully confirmed. Furthermore, within the interval in which cQSGR.sau.3D is located in Chinese Spring reference genomes, thirty-seven genes were found. cQSGR.sau.3D may provide new resources for pre-harvest sprouting resistance breeding of wheat in the future.
Collapse
Affiliation(s)
- Zhi Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Yongyan Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Xia Ou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Mengning Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Nanxin Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Wei Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Yawen Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Yixin Diao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Zixin Sun
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Qinyi Luo
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Xinli Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Liqi Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Tong Yan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Wanhua Peng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Qing Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Yi Fang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Zhenglong Ren
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Feiquan Tan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Peigao Luo
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Tianheng Ren
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China.
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
10
|
Lehnert H, Berner T, Lang D, Beier S, Stein N, Himmelbach A, Kilian B, Keilwagen J. Insights into breeding history, hotspot regions of selection, and untapped allelic diversity for bread wheat breeding. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:897-918. [PMID: 36073999 DOI: 10.1111/tpj.15952] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Breeding has increasingly altered the genetics of crop plants since the domestication of their wild progenitors. It is postulated that the genetic diversity of elite wheat breeding pools is too narrow to cope with future challenges. In contrast, plant genetic resources (PGRs) of wheat stored in genebanks are valuable sources of unexploited genetic diversity. Therefore, to ensure breeding progress in the future, it is of prime importance to identify the useful allelic diversity available in PGRs and to transfer it into elite breeding pools. Here, a diverse collection consisting of modern winter wheat cultivars and genebank accessions was investigated based on reduced-representation genomic sequencing and an iSelect single nucleotide polymorphism (SNP) chip array. Analyses of these datasets provided detailed insights into population structure, levels of genetic diversity, sources of new allelic diversity, and genomic regions affected by breeding activities. We identified 57 regions representing genomic signatures of selection and 827 regions representing private alleles associated exclusively with genebank accessions. The presence of known functional wheat genes, quantitative trait loci, and large chromosomal modifications, i.e., introgressions from wheat wild relatives, provided initial evidence for putative traits associated within these identified regions. These findings were supported by the results of ontology enrichment analyses. The results reported here will stimulate further research and promote breeding in the future by allowing for the targeted introduction of novel allelic diversity into elite wheat breeding pools.
Collapse
Affiliation(s)
- Heike Lehnert
- Institute for Biosafety in Plant Biotechnology, Julius Kuehn Institute, Quedlinburg, Germany
| | - Thomas Berner
- Institute for Biosafety in Plant Biotechnology, Julius Kuehn Institute, Quedlinburg, Germany
| | - Daniel Lang
- PGSB, Helmholtz Center Munich, German Research Center for Environmental Health, Plant Genome and Systems Biology, Neuherberg, Germany
| | - Sebastian Beier
- Research Group Bioinformatics and Information Technology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Nils Stein
- Research Group Genomics of Genetic Resources, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
- Center of integrated Breeding Research (CiBreed), Department of Crop Sciences, Georg-August-University, Göttingen, Germany
| | - Axel Himmelbach
- Research Group Genomics of Genetic Resources, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | | | - Jens Keilwagen
- Institute for Biosafety in Plant Biotechnology, Julius Kuehn Institute, Quedlinburg, Germany
| |
Collapse
|
11
|
Yiwen H, Xuran D, Hongwei L, Shuo Y, Chunyan M, Liqiang Y, Guangjun Y, Li Y, Yang Z, Hongjie L, Hongjun Z. Identification of effective alleles and haplotypes conferring pre-harvest sprouting resistance in winter wheat cultivars. BMC PLANT BIOLOGY 2022; 22:326. [PMID: 35790923 PMCID: PMC9258197 DOI: 10.1186/s12870-022-03710-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Pre-harvest sprouting (PHS) is a serious limiting factor for wheat (Triticum aestivum L.) grain yield and end-use quality. Identification of reliable molecular markers and PHS-resistant germplasms is vital to improve PHS resistance by molecular marker-assisted selection (MAS), but the effects of allelic variation and haplotypes in genes conferring PHS resistance in winter wheat cultivars are less understood. RESULTS Resistance to PHS was tested in 326 commercial winter wheat cultivars for three consecutive growing seasons from 2018-2020. The effects of alleles and haplotypes of 10 genes associated with PHS resistance were determined for all cultivars and were validated by introgressing the PHS-resistance allele and haplotype into a susceptible wheat cultivar. High level of phenotypic variation in PHS resistance was observed in this set of cultivars and 8 of them were highly resistant to PHS with stable germination index (GI) of less than 25% in each individual year. Allelic effects of nine genes and TaMFT haplotype analysis demonstrated that the haplotype Hap1 with low-GI alleles at five positions had the best PHS resistance. This haplotype has the priority to use in improving PHS resistance because of its high effectiveness and rare present in the current commercial cultivars. Among 14 main allelic combinations (ACs) identified, the AC1 carrying the haplotype Hap1 and the TaSdr-B1a allele had better PHS resistance than the other classes. The introgression of Hap1 and TaSdr-B1a is able to significantly improve the PHS resistance in the susceptible cultivar Lunxuan 13. CONCLUSIONS The effectiveness of alleles conferring PHS resistance in winter wheat cultivars was determined and the useful alleles and haplotypes were identified, providing valuable information for parental selection and MAS aiming at improving PHS-resistance in winter wheat. The identification of the PHS-resistant cultivars without known resistance alleles offers an opportunity to explore new PHS-resistant genes.
Collapse
Affiliation(s)
- Huang Yiwen
- National Engineering Research Center of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Dai Xuran
- National Engineering Research Center of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- College of Agronomy and Biotechnology, Hebei Normal University of Science & Technology, Qinhuangdao, 066004, China
| | - Liu Hongwei
- National Engineering Research Center of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yu Shuo
- National Engineering Research Center of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Mai Chunyan
- Xinxiang Innovation Center for Breeding Technology of Dwarf-Male-Sterile Wheat, Xinxiang, 453731, China
| | - Yu Liqiang
- Zhaoxian Experiment Station, Shijiazhuang Academy of Agricultural and Forestry Sciences, Zhaoxian, 051530, China
| | - Yu Guangjun
- Zhaoxian Experiment Station, Shijiazhuang Academy of Agricultural and Forestry Sciences, Zhaoxian, 051530, China
| | - Yang Li
- National Engineering Research Center of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhou Yang
- National Engineering Research Center of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Li Hongjie
- National Engineering Research Center of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Zhang Hongjun
- National Engineering Research Center of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
12
|
Rabieyan E, Bihamta MR, Moghaddam ME, Mohammadi V, Alipour H. Genome-wide association mapping and genomic prediction for pre‑harvest sprouting resistance, low α-amylase and seed color in Iranian bread wheat. BMC PLANT BIOLOGY 2022; 22:300. [PMID: 35715737 PMCID: PMC9204952 DOI: 10.1186/s12870-022-03628-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Pre-harvest sprouting (PHS) refers to a phenomenon, in which the physiologically mature seeds are germinated on the spike before or during the harvesting practice owing to high humidity or prolonged period of rainfall. Pre-harvest sprouting (PHS) remarkably decreases seed quality and yield in wheat; hence it is imperative to uncover genomic regions responsible for PHS tolerance to be used in wheat breeding. A genome-wide association study (GWAS) was carried out using 298 bread wheat landraces and varieties from Iran to dissect the genomic regions of PHS tolerance in a well-irrigated environment. Three different approaches (RRBLUP, GBLUP and BRR) were followed to estimate prediction accuracies in wheat genomic selection. RESULTS Genomes B, A, and D harbored the largest number of significant marker pairs (MPs) in both landraces (427,017, 328,006, 92,702 MPs) and varieties (370,359, 266,708, 63,924 MPs), respectively. However, the LD levels were found the opposite, i.e., genomes D, A, and B have the highest LD, respectively. Association mapping by using GLM and MLM models resulted in 572 and 598 marker-trait associations (MTAs) for imputed SNPs (- log10 P > 3), respectively. Gene ontology exhibited that the pleitropic MPs located on 1A control seed color, α-Amy activity, and PHS. RRBLUP model indicated genetic effects better than GBLUP and BRR, offering a favorable tool for wheat genomic selection. CONCLUSIONS Gene ontology exhibited that the pleitropic MPs located on 1A can control seed color, α-Amy activity, and PHS. The verified markers in the current work can provide an opportunity to clone the underlying QTLs/genes, fine mapping, and genome-assisted selection.Our observations uncovered key MTAs related to seed color, α-Amy activity, and PHS that can be exploited in the genome-mediated development of novel varieties in wheat.
Collapse
Affiliation(s)
- Ehsan Rabieyan
- Department of Agronomy and Plant Breeding, Faculty of Agricultural Sciences and Engineering, University of Tehran, Karaj, Iran
| | - Mohammad Reza Bihamta
- Department of Agronomy and Plant Breeding, Faculty of Agricultural Sciences and Engineering, University of Tehran, Karaj, Iran
| | | | - Valiollah Mohammadi
- Department of Agronomy and Plant Breeding, Faculty of Agricultural Sciences and Engineering, University of Tehran, Karaj, Iran
| | - Hadi Alipour
- Department of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia, Iran
| |
Collapse
|
13
|
Zhu T, De Lima CFF, De Smet I. The Heat is On: How Crop Growth, Development and Yield Respond to High Temperature. JOURNAL OF EXPERIMENTAL BOTANY 2021:erab308. [PMID: 34185832 DOI: 10.1093/jxb/erab308] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Indexed: 06/13/2023]
Abstract
Plants are exposed to a wide range of temperatures during their life cycle and need to continuously adapt. These adaptations need to deal with temperature changes on a daily and seasonal level and with temperatures affected by climate change. Increasing global temperatures negatively impact crop performance, and several physiological, biochemical, morphological and developmental responses to increased temperature have been described that allow plants to mitigate this. In this review, we assess various growth, development, and yield-related responses of crops to extreme and moderate high temperature, focusing on knowledge gained from both monocot (e.g. wheat, barley, maize, rice) and dicot crops (e.g. soybean and tomato) and incorporating information from model plants (e.g. Arabidopsis and Brachypodium). This revealed common and different responses between dicot and monocot crops, and defined different temperature thresholds depending on the species, growth stage and organ.
Collapse
Affiliation(s)
- Tingting Zhu
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Cassio Flavio Fonseca De Lima
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Ive De Smet
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
14
|
Identification of QTLs and a Candidate Gene for Reducing Pre-Harvest Sprouting in Aegilops tauschii- Triticum aestivum Chromosome Segment Substitution Lines. Int J Mol Sci 2021; 22:ijms22073729. [PMID: 33918469 PMCID: PMC8038248 DOI: 10.3390/ijms22073729] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 12/03/2022] Open
Abstract
Wheat pre-harvest sprouting (PHS) causes serious losses in wheat yield. In this study, precise mapping was carried out in the chromosome segment substitution lines (CSSL) F2 population generated by a direct cross of Zhoumai 18 (PHS-sensitive) and Aegilops tauschii accession T093 (highly PHS-resistant). Three Ae. tauschii-derived quantitative trait loci (QTLs), QDor.3D.1, QDor.3D.2, and QDor.3D.3, were detected on chromosome 3DL using four simple sequence repeats (SSR) markers and 10 developed Kompetitive allele-specific PCR (KASP) markers. Alongside these QTL results, the RNA-Seq and qRT-PCR analysis revealed expression levels of TraesCS3D01G466100 in the QDor.3D.2 region that were significantly higher in CSSLs 495 than in Zhoumai 18 during the seed imbibition treatment. The cDNA sequencing results of TraesCS3D01G466100 showed two single nucleotide polymorphisms (SNPs), resulting in two changed amino acid substitutions between Zhoumai 18 and line 495, and the 148 nt amino acid substitution of TraesCS3D01G466100, derived from Ae. tauschii T093, which may play an important role in the functioning of ubiquitin ligase enzymes 3 (E3) according to the homology protein analysis, which could lead to differential PHS-resistance phenotypes. Taken together, our results may foster a better understanding of the mechanism of PHS resistance and are potentially valuable for marker-assisted selection in practical wheat breeding efforts.
Collapse
|
15
|
Liu S, Wang D, Lin M, Sehgal SK, Dong L, Wu Y, Bai G. Artificial selection in breeding extensively enriched a functional allelic variation in TaPHS1 for pre-harvest sprouting resistance in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:339-350. [PMID: 33068119 DOI: 10.1007/s00122-020-03700-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 10/03/2020] [Indexed: 06/11/2023]
Abstract
Pre-harvest sprouting (PHS) causes significant losses in wheat yield and quality worldwide. Previously, we cloned a PHS resistance gene, TaPHS1, and identified two causal mutations for reduced seed dormancy (SD) and increased PHS susceptibility. Here we identified a novel allelic variation of C to T transition in 3'-UTR of TaPHS1, which associated with reduced SD and PHS resistance. The T allele occurred in wild wheat progenitors and was likely the earliest functional mutation in TaPHS1 for PHS susceptibility. Allele frequency analysis revealed low frequency of the T allele in wild diploid and tetraploid wheat progenitors, but very high frequency in modern wheat cultivars and breeding lines, indicating that artificial selection quickly enriched the T allele during modern breeding. The T allele was significantly associated with short SD in both T. aestivum and T. durum, the two most cultivated species of wheat. This variation together with previously reported functional sequence variations co-regulated TaPHS1 expression levels and PHS resistance in different germplasms. Haplotype analysis of the four functional variations identified the best PHS resistance haplotype of TaPHS1. The resistance haplotype can be used in marker-assisted selection to transfer TaPHS1 to new wheat cultivars.
Collapse
Affiliation(s)
- Shubing Liu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| | - Danfeng Wang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Meng Lin
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Sunish K Sehgal
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Lei Dong
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Yuye Wu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Guihua Bai
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA.
- USDA-ARS, Hard Winter Wheat Genetic Research Unit, Manhattan, KS, 66506, USA.
| |
Collapse
|
16
|
Cheng X, Cao J, Gao C, Gao W, Yan S, Yao H, Xu K, Liu X, Xu D, Pan X, Lu J, Chang C, Zhang H, Ma C. Identification of the wheat C3H gene family and expression analysis of candidates associated with seed dormancy and germination. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 156:524-537. [PMID: 33053501 DOI: 10.1016/j.plaphy.2020.09.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/28/2020] [Indexed: 05/01/2023]
Abstract
C3H zinc finger transcription factors play important roles in managing various biotic/abiotic stresses in Aarabidopsis, rice, and maize. The functions of these factors in wheat, however, remain largely unclear. We identified 88 TaC3H genes that were divided into four subfamilies in this analysis. Gene structure and conserved domain analyses indicate that most members of the same subfamily have similar structures. A total of 76 paralogous and 48 orthologous pairs were identified and Ka/Ks values were used to analyze replication relationships amongst wheat, rice, and Arabidopsis. Gene ontology (GO) annotation analysis showed that most TaC3H genes possessed molecular functions, while transcriptome results showed that the 88 TaC3H genes responded to water imbibition. Microarray data for 53 TaC3H genes were obtained and heat maps were generated; these results indicate that these genes are expressed in 13 wheat tissues. Subcellular localization prediction analysis indicates that most TaC3H genes are located in the nucleus. Promoter analysis indicates that most TaC3H genes contained cis-elements including ABRE, GARE-motif, and MBS, indicating that these can respond to various biotic/abiotic stresses. Transcriptome data and quantitative real-time PCR analysis of wheat cultivars with contrasting seed dormancy phenotypes show that five genes TaC3H4/-18/-37/-51/-72 were very likely involved in seed dormancy and germination. Exogenous ABA treatment further indicated that these five genes were responsive to ABA, suggesting that there may be a crosstalk between these genes and ABA signaling pathway in controlling seed dormancy and germination. These results provide a theoretical basis for subsequent studies on TaC3H gene function and also contribute to studies on the C3H gene in other species.
Collapse
Affiliation(s)
- Xinran Cheng
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| | - Jiajia Cao
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| | - Chang Gao
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| | - Wei Gao
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| | - Shengnan Yan
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| | - Hui Yao
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| | - Kangle Xu
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| | - Xue Liu
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| | - Dongmei Xu
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| | - Xu Pan
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| | - Jie Lu
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| | - Cheng Chang
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China.
| | - Haiping Zhang
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China.
| | - Chuanxi Ma
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| |
Collapse
|
17
|
López-Marqués RL, Nørrevang AF, Ache P, Moog M, Visintainer D, Wendt T, Østerberg JT, Dockter C, Jørgensen ME, Salvador AT, Hedrich R, Gao C, Jacobsen SE, Shabala S, Palmgren M. Prospects for the accelerated improvement of the resilient crop quinoa. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5333-5347. [PMID: 32643753 PMCID: PMC7501820 DOI: 10.1093/jxb/eraa285] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/11/2020] [Indexed: 05/04/2023]
Abstract
Crops tolerant to drought and salt stress may be developed by two approaches. First, major crops may be improved by introducing genes from tolerant plants. For example, many major crops have wild relatives that are more tolerant to drought and high salinity than the cultivated crops, and, once deciphered, the underlying resilience mechanisms could be genetically manipulated to produce crops with improved tolerance. Secondly, some minor (orphan) crops cultivated in marginal areas are already drought and salt tolerant. Improving the agronomic performance of these crops may be an effective way to increase crop and food diversity, and an alternative to engineering tolerance in major crops. Quinoa (Chenopodium quinoa Willd.), a nutritious minor crop that tolerates drought and salinity better than most other crops, is an ideal candidate for both of these approaches. Although quinoa has yet to reach its potential as a fully domesticated crop, breeding efforts to improve the plant have been limited. Molecular and genetic techniques combined with traditional breeding are likely to change this picture. Here we analyse protein-coding sequences in the quinoa genome that are orthologous to domestication genes in established crops. Mutating only a limited number of such genes by targeted mutagenesis appears to be a promising route for accelerating the improvement of quinoa and generating a nutritious high-yielding crop that can meet the future demand for food production in a changing climate.
Collapse
Affiliation(s)
- Rosa L López-Marqués
- NovoCrops Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
- Correspondence: or
| | - Anton F Nørrevang
- NovoCrops Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Peter Ache
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Max Moog
- NovoCrops Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Davide Visintainer
- NovoCrops Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Toni Wendt
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, Copenhagen V, Denmark
| | - Jeppe T Østerberg
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, Copenhagen V, Denmark
| | - Christoph Dockter
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, Copenhagen V, Denmark
| | - Morten E Jørgensen
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, Copenhagen V, Denmark
| | - Andrés Torres Salvador
- The Quinoa Company, Wageningen, The Netherlands
- Plant Biotechnology Laboratory (COCIBA), Universidad San Francisco de Quito USFQ, Cumbayá, Ecuador
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | | | - Sergey Shabala
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China
- Tasmanian Institute for Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tasmania, Australia
| | - Michael Palmgren
- NovoCrops Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China
- Correspondence: or
| |
Collapse
|
18
|
Sun J, Bie XM, Wang N, Zhang XS, Gao XQ. Genome-wide identification and expression analysis of YTH domain-containing RNA-binding protein family in common wheat. BMC PLANT BIOLOGY 2020; 20:351. [PMID: 32713350 PMCID: PMC7384225 DOI: 10.1186/s12870-020-02505-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/18/2020] [Indexed: 05/10/2023]
Abstract
BACKGROUND N6-Methyladenosine (m6A) is the most widespread RNA modification that plays roles in the regulation of genes and genome stability. YT521-B homology (YTH) domain-containing RNA-binding proteins are important RNA binding proteins that affect the fate of m6A-containing RNA by binding m6A. Little is known about the YTH genes in common wheat (Triticum aestivum L.), one of the most important crops for humans. RESULTS A total of 39 TaYTH genes were identified in common wheat, which are comprised of 13 homologous triads, and could be mapped in 18 out of the 21 chromosomes. A phylogenetic analysis revealed that the TaYTHs could be divided into two groups: YTHDF (TaDF) and YTHDC (TaDC). The TaYTHs in the same group share similar motif distributions and domain organizations, which indicates functional similarity between the closely related TaYTHs. The TaDF proteins share only one domain, which is the YTH domain. In contrast, the TaDCs possess three C3H1-type zinc finger repeats at their N-termini in addition to their central YTH domain. In TaDFs, the predicated aromatic cage pocket that binds the methylysine residue of m6A is composed of tryptophan, tryptophan, and tryptophan (WWW). In contrast, the aromatic cage pocket in the TaDCs is composed of tryptophan, tryptophan, and tyrosine (WWY). In addition to the general aspartic acid or asparagine residue used to form a hydrogen bond with N1 of m6A, histidine might be utilized in some TaDFb proteins. An analysis of the expression using both online RNA-Seq data and quantitative real-time PCR verification revealed that the TaDFa and TaDFb genes are highly expressed in various tissues/organs compared with that of TaDFcs and TaDCs. In addition, the expression of the TaYTH genes is changed in response to various abiotic stresses. CONCLUSIONS In this study, we identified 39 TaYTH genes from common wheat. The phylogenetic structure, chromosome distribution, and patterns of expression of these genes and their protein structures were analyzed. Our results provide a foundation for the functional analysis of TaYTHs in the future.
Collapse
Affiliation(s)
- Jing Sun
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Xiao Min Bie
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Ning Wang
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Xian Sheng Zhang
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Xin-Qi Gao
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
19
|
Li Q, Pan Z, Gao Y, Li T, Liang J, Zhang Z, Zhang H, Deng G, Long H, Yu M. Quantitative Trait Locus (QTLs) Mapping for Quality Traits of Wheat Based on High Density Genetic Map Combined With Bulked Segregant Analysis RNA-seq (BSR-Seq) Indicates That the Basic 7S Globulin Gene Is Related to Falling Number. FRONTIERS IN PLANT SCIENCE 2020; 11:600788. [PMID: 33424899 PMCID: PMC7793810 DOI: 10.3389/fpls.2020.600788] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/11/2020] [Indexed: 05/14/2023]
Abstract
Numerous quantitative trait loci (QTLs) have been identified for wheat quality; however, most are confined to low-density genetic maps. In this study, based on specific-locus amplified fragment sequencing (SLAF-seq), a high-density genetic map was constructed with 193 recombinant inbred lines derived from Chuanmai 42 and Chuanmai 39. In total, 30 QTLs with phenotypic variance explained (PVE) up to 47.99% were identified for falling number (FN), grain protein content (GPC), grain hardness (GH), and starch pasting properties across three environments. Five NAM genes closely adjacent to QGPC.cib-4A probably have effects on GPC. QGH.cib-5D was the only one detected for GH with high PVE of 33.31-47.99% across the three environments and was assumed to be related to the nearest pina-D1 and pinb-D1genes. Three QTLs were identified for FN in at least two environments, of which QFN.cib-3D had relatively higher PVE of 16.58-25.74%. The positive effect of QFN.cib-3D for high FN was verified in a double-haploid population derived from Chuanmai 42 × Kechengmai 4. The combination of these QTLs has a considerable effect on increasing FN. The transcript levels of Basic 7S globulin and Basic 7S globulin 2 in QFN.cib-3D were significantly different between low FN and high FN bulks, as observed through bulk segregant RNA-seq (BSR). These QTLs and candidate genes based on the high-density genetic map would be beneficial for further understanding of the genetic mechanism of quality traits and molecular breeding of wheat.
Collapse
Affiliation(s)
- Qiao Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Zhifen Pan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- *Correspondence: Zhifen Pan, ; orcid.org/0000-0002-1692-5425
| | - Yuan Gao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tao Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Junjun Liang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Zijin Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Haili Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Guangbing Deng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Hai Long
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Maoqun Yu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| |
Collapse
|
20
|
Bao Y, Hu G, Grover CE, Conover J, Yuan D, Wendel JF. Unraveling cis and trans regulatory evolution during cotton domestication. Nat Commun 2019; 10:5399. [PMID: 31776348 PMCID: PMC6881400 DOI: 10.1038/s41467-019-13386-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/06/2019] [Indexed: 12/12/2022] Open
Abstract
Cis and trans regulatory divergence underlies phenotypic and evolutionary diversification. Relatively little is understood about the complexity of regulatory evolution accompanying crop domestication, particularly for polyploid plants. Here, we compare the fiber transcriptomes between wild and domesticated cotton (Gossypium hirsutum) and their reciprocal F1 hybrids, revealing genome-wide (~15%) and often compensatory cis and trans regulatory changes under divergence and domestication. The high level of trans evolution (54%-64%) observed is likely enabled by genomic redundancy following polyploidy. Our results reveal that regulatory variation is significantly associated with sequence evolution, inheritance of parental expression patterns, co-expression gene network properties, and genomic loci responsible for domestication traits. With respect to regulatory evolution, the two subgenomes of allotetraploid cotton are often uncoupled. Overall, our work underscores the complexity of regulatory evolution during fiber domestication and may facilitate new approaches for improving cotton and other polyploid plants.
Collapse
Affiliation(s)
- Ying Bao
- School of Life Sciences, Qufu Normal University, 273165, Qufu, Shandong Province, China.
| | - Guanjing Hu
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - Corrinne E Grover
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - Justin Conover
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - Daojun Yuan
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - Jonathan F Wendel
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
21
|
Zuo J, Lin CT, Cao H, Chen F, Liu Y, Liu J. Genome-wide association study and quantitative trait loci mapping of seed dormancy in common wheat (Triticum aestivum L.). PLANTA 2019; 250:187-198. [PMID: 30972483 DOI: 10.1007/s00425-019-03164-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 04/06/2019] [Indexed: 05/06/2023]
Abstract
Totally, 23 and 26 loci for the first count germination ratio and the final germination ratio were detected by quantitative trait loci (QTL) mapping and association mapping, respectively, which could be used to facilitate wheat pre-harvest sprouting breeding. Weak dormancy can cause pre-harvest sprouting in seeds of common wheat which significantly reduces grain yield. In this study, both quantitative trait loci (QTL) mapping and genome-wide association study (GWAS) were used to identify loci controlling seed dormancy. The analyses were based on a recombinant inbred line population derived from Zhou 8425B/Chinese Spring cross and 166 common wheat accessions. Inclusive composite interval mapping detected 8 QTL, while 45 loci were identified in the 166 wheat accessions by GWAS. Among these, four loci (Qbifcgr.cas-3AS/Qfcgr.cas-3AS, Qbifcgr.cas-6AL.1/Qfcgr.cas-6AL.1, Qbifcgr.cas-7BL.2/Qfcgr.cas-7BL.2, and Qbigr.cas-3DL/Qgr.cas-3DL) were detected in both QTL mapping and GWAS. In addition, 41 loci co-located with QTL reported previously, whereas 8 loci (Qfcgr.cas-5AL, Qfcgr.cas-6DS, Qfcgr.cas-7AS, Qgr.cas-3DS.1, Qgr.cas-3DS.2, Qbigr.cas-3DL/Qgr.cas-3DL, Qgr.cas-4B, and Qgr.cas-5A) were likely to be new. Linear regression showed the first count germination ratio or the final germination ratio reduced while multiple favorable alleles increased. It is suggested that QTL pyramiding was effective to reduce pre-harvest sprouting risk. This study could enrich the research on pre-harvest sprouting and provide valuable information of marker exploration for wheat breeding programs.
Collapse
Affiliation(s)
- Jinghong Zuo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Science, Beijing, China
| | - Chih-Ta Lin
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Hong Cao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Fengying Chen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yongxiu Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
- College of Life Science, University of Chinese Academy of Science, Beijing, China.
| | - Jindong Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
22
|
Vetch JM, Stougaard RN, Martin JM, Giroux MJ. Review: Revealing the genetic mechanisms of pre-harvest sprouting in hexaploid wheat (Triticum aestivum L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 281:180-185. [PMID: 30824050 DOI: 10.1016/j.plantsci.2019.01.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/21/2018] [Accepted: 01/07/2019] [Indexed: 05/06/2023]
Abstract
Pre-harvest sprouting (PHS) of wheat (Triticum aestivum L.) is an important phenomenon that results in weather dependent reductions in grain yield and quality across the globe. Due to the large annual losses, breeding PHS resistant varieties is of great importance. Many quantitative trait loci have been associated with PHS and a number of specific genes have been proven to impact PHS. TaPHS1, TaMKK3, Tamyb10, and TaVp1 have been shown to have a large impact on PHS susceptibility while many other genes such as TaSdr, TaQSd, and TaDOG1 have been shown to account for smaller, but significant, proportions of variation. These advances in understanding the genetics behind PHS are making molecular selection and loci stacking viable methods for affecting this quantitative trait. The current review article serves to provide a brief synthesis of recent advances regarding PHS, as well as provide unique insight into the genetic mechanisms governing PHS in bread wheat.
Collapse
Affiliation(s)
- Justin M Vetch
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717-3150, USA
| | - Robert N Stougaard
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717-3150, USA; College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA
| | - John M Martin
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717-3150, USA
| | - Michael J Giroux
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717-3150, USA.
| |
Collapse
|
23
|
Unraveling Molecular and Genetic Studies of Wheat (Triticum aestivum L.) Resistance against Factors Causing Pre-Harvest Sprouting. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9030117] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Pre-harvest sprouting (PHS) is one of the most important factors having adverse effects on yield and grain quality all over the world, particularly in wet harvest conditions. PHS is controlled by both genetic and environmental factors and the interaction of these factors. Breeding varieties with high PHS resistance have important implications for reducing yield loss and improving grain quality. The rapid advancements in the wheat genomic database along with transcriptomic and proteomic technologies have broadened our knowledge for understanding the regulatory mechanism of PHS resistance at transcriptomic and post-transcriptomic levels. In this review, we have described in detail the recent advancements on factors influencing PHS resistance, including grain color, seed dormancy, α-amylase activity, plant hormones (especially abscisic acid and gibberellin), and QTL/genes, which are useful for mining new PHS-resistant genes and developing new molecular markers for multi-gene pyramiding breeding of wheat PHS resistance, and understanding the complicated regulatory mechanism of PHS resistance.
Collapse
|
24
|
Mao X, Zhang J, Liu W, Yan S, Liu Q, Fu H, Zhao J, Huang W, Dong J, Zhang S, Yang T, Yang W, Liu B, Wang F. The MKKK62-MKK3-MAPK7/14 module negatively regulates seed dormancy in rice. RICE (NEW YORK, N.Y.) 2019; 12:2. [PMID: 30671680 PMCID: PMC6342742 DOI: 10.1186/s12284-018-0260-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 12/11/2018] [Indexed: 05/04/2023]
Abstract
BACKGROUND Seed dormancy directly affects the phenotype of pre-harvest sprouting, and ultimately affects the quality and yield of rice seeds. Although many genes controlling seed dormancy have been cloned from cereals, the regulatory mechanisms controlling this process are complex, and much remains unknown. The MAPK cascade is involved in many signal transduction pathways. Recently, MKK3 has been reported to be involved in the regulation of seed dormancy, but its mechanism of action is unclear. RESULTS We found that MKKK62-overexpressing rice lines (OE) lost seed dormancy. Further analyses showed that the abscisic acid (ABA) sensitivity of OE lines was decreased. In yeast two-hybrid experiments, MKKK62 interacted with MKK3, and MKK3 interacted with MAPK7 and MAPK14. Knock-out experiments confirmed that MKK3, MAPK7, and MAPK14 were involved in the regulation of seed dormancy. The OE lines showed decreased transcript levels of OsMFT, a homolog of a gene that controls seed dormancy in wheat. The up-regulation of OsMFT in MKK3-knockout lines (OE/mkk3) and MAPK7/14-knockout lines (OE/mapk7/mapk14) indicated that the MKKK62-MKK3-MAPK7/MAPK14 system controlled seed dormancy by regulating the transcription of OsMFT. CONCLUSION Our results showed that MKKK62 negatively controls seed dormancy in rice, and that during the germination stage and the late stage of seed maturation, ABA sensitivity and OsMFT transcription are negatively controlled by MKKK62. Our results have clarified the entire MAPK cascade controlling seed dormancy in rice. Together, these results indicate that protein modification by phosphorylation plays a key role in controlling seed dormancy.
Collapse
Affiliation(s)
- Xingxue Mao
- Guangdong Academy of Agricultural Sciences, Rice Research Institute, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Jianjun Zhang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, SCAU, Guangzhou, 510642 China
| | - Wuge Liu
- Guangdong Academy of Agricultural Sciences, Rice Research Institute, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Shijuan Yan
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Qing Liu
- Guangdong Academy of Agricultural Sciences, Rice Research Institute, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Hua Fu
- Guangdong Academy of Agricultural Sciences, Rice Research Institute, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Junliang Zhao
- Guangdong Academy of Agricultural Sciences, Rice Research Institute, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Wenjie Huang
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Jingfang Dong
- Guangdong Academy of Agricultural Sciences, Rice Research Institute, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Shaohong Zhang
- Guangdong Academy of Agricultural Sciences, Rice Research Institute, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Tifeng Yang
- Guangdong Academy of Agricultural Sciences, Rice Research Institute, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Wu Yang
- Guangdong Academy of Agricultural Sciences, Rice Research Institute, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Bin Liu
- Guangdong Academy of Agricultural Sciences, Rice Research Institute, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Feng Wang
- Guangdong Academy of Agricultural Sciences, Rice Research Institute, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| |
Collapse
|
25
|
Shao M, Bai G, Rife TW, Poland J, Lin M, Liu S, Chen H, Kumssa T, Fritz A, Trick H, Li Y, Zhang G. QTL mapping of pre-harvest sprouting resistance in a white wheat cultivar Danby. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:1683-1697. [PMID: 29860625 DOI: 10.1007/s00122-018-3107-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 05/02/2018] [Indexed: 05/06/2023]
Abstract
One major and three minor QTLs for resistance to pre-harvest sprouting (PHS) were identified from a white wheat variety "Danby." The major QTL on chromosome 3A is TaPHS1, and the sequence variation in its promoter region was responsible for the PHS resistance. Additive × additive effects were detected between two minor QTLs on chromosomes 3B and 5A, which can greatly enhance the PHS resistance. Pre-harvest sprouting (PHS) causes significant losses in yield and quality in wheat. White wheat is usually more susceptible to PHS than red wheat. Therefore, the use of none grain color-related PHS resistance quantitative trait loci (QTLs) is essential for the improvement in PHS resistance in white wheat. To identify PHS resistance QTLs in the white wheat cultivar "Danby" and determine their effects, a doubled haploid population derived from a cross of Danby × "Tiger" was genotyped using genotyping-by-sequencing markers and phenotyped for PHS resistance in two greenhouse and one field experiments. One major QTL corresponding to a previously cloned gene, TaPHS1, was consistently detected on the chromosome arm 3AS in all three experiments and explained 21.6-41.0% of the phenotypic variations. A SNP (SNP-222) in the promoter of TaPHS1 co-segregated with PHS in this mapping population and was also significantly associated with PHS in an association panel. Gene sequence comparison and gene expression analysis further confirmed that SNP-222 is most likely the causal mutation in TaPHS1 for PHS resistance in Danby in this study. In addition, two stable minor QTLs on chromosome arms 3BS and 5AL were detected in two experiments with allele effects consistently contributed by Danby, while one minor QTL on 2AS was detected in two environments with contradicted allelic effects. The two stable minor QTLs showed significant additive × additive effects. The results demonstrated that pyramiding those three QTLs using breeder-friendly KASP markers developed in this study could greatly improve PHS resistance in white wheat.
Collapse
Affiliation(s)
- Mingqin Shao
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Guihua Bai
- USDA-ARS, Plant Science and Entomology Research Unit, Manhattan, KS, 66506, USA
| | - Trevor W Rife
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Jesse Poland
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Meng Lin
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Shubing Liu
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Hui Chen
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Tadele Kumssa
- Agricultural Research Center-Hays, Kansas State University, Hays, KS, 67601, USA
| | - Allan Fritz
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Harold Trick
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Yan Li
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Guorong Zhang
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA.
- Agricultural Research Center-Hays, Kansas State University, Hays, KS, 67601, USA.
| |
Collapse
|
26
|
Nakamura S. Grain dormancy genes responsible for preventing pre-harvest sprouting in barley and wheat. BREEDING SCIENCE 2018; 68:295-304. [PMID: 30100796 PMCID: PMC6081298 DOI: 10.1270/jsbbs.17138] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/31/2018] [Indexed: 05/04/2023]
Abstract
Pre-harvest sprouting (PHS) remains a long-standing problem for the production of barley (Hordeum vulgare) and wheat (Triticum aestivum) worldwide. Grain dormancy, a key trait for the prevention of PHS, controls the timing of germination. Discovery of the causal sequence polymorphisms (CSPs) that produce naturally occurring variation in dormancy will help improve PHS tolerance. The identification of CSPs for dormancy remains difficult, especially for barley and wheat, because they are the last major cereals to have their genomes sequenced. However, recent work has identified several important CSPs that play pivotal roles in fine-tuning the dormancy levels in barley and wheat cultivars. This review summarizes these recent advances, which can be directly applied in breeding programs to improve PHS tolerance. These recent findings indicate the possibility that barley and wheat cultivars grown in East Asia, where much rain falls during the harvest season, will be rich sources of alleles that confer strong dormancy, since these cultivars have been selected to cope with the regional climate. The newly discovered dormant alleles will be useful for improving PHS tolerance around the world, just as Reduced-height (Rht) alleles from Japanese wheat varieties contributed to yield increases for the Green Revolution.
Collapse
|
27
|
Shorinola O, Balcárková B, Hyles J, Tibbits JFG, Hayden MJ, Holušova K, Valárik M, Distelfeld A, Torada A, Barrero JM, Uauy C. Haplotype Analysis of the Pre-harvest Sprouting Resistance Locus Phs-A1 Reveals a Causal Role of TaMKK3-A in Global Germplasm. FRONTIERS IN PLANT SCIENCE 2017; 8:1555. [PMID: 28955352 PMCID: PMC5602128 DOI: 10.3389/fpls.2017.01555] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 08/25/2017] [Indexed: 05/03/2023]
Abstract
Pre-harvest sprouting (PHS) is an important cause of quality loss in many cereal crops and is particularly prevalent and damaging in wheat. Resistance to PHS is therefore a valuable target trait in many breeding programs. The Phs-A1 locus on wheat chromosome arm 4AL has been consistently shown to account for a significant proportion of natural variation to PHS in diverse mapping populations. However, the deployment of sprouting resistance is confounded by the fact that different candidate genes, including the tandem duplicated Plasma Membrane 19 (PM19) genes and the mitogen-activated protein kinase kinase 3 (TaMKK3-A) gene, have been proposed to underlie Phs-A1. To further define the Phs-A1 locus, we constructed a physical map across this interval in hexaploid and tetraploid wheat. We established close proximity of the proposed candidate genes which are located within a 1.2 Mb interval. Genetic characterization of diverse germplasm used in previous genetic mapping studies suggests that TaMKK3-A, and not PM19, is the major gene underlying the Phs-A1 effect in European, North American, Australian and Asian germplasm. We identified the non-dormant TaMKK3-A allele at low frequencies within the A-genome diploid progenitor Triticum urartu genepool, and show an increase in the allele frequency in modern varieties. In United Kingdom varieties, the frequency of the dormant TaMKK3-A allele was significantly higher in bread-making quality varieties compared to feed and biscuit-making cultivars. Analysis of exome capture data from 58 diverse hexaploid wheat accessions identified fourteen haplotypes across the extended Phs-A1 locus and four haplotypes for TaMKK3-A. Analysis of these haplotypes in a collection of United Kingdom and Australian cultivars revealed distinct major dormant and non-dormant Phs-A1 haplotypes in each country, which were either rare or absent in the opposing germplasm set. The diagnostic markers and haplotype information reported in the study will help inform the choice of germplasm and breeding strategies for the deployment of Phs-A1 resistance into breeding germplasm.
Collapse
Affiliation(s)
| | - Barbara Balcárková
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural ResearchOlomouc, Czechia
| | - Jessica Hyles
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture and Food, CanberraACT, Australia
| | - Josquin F. G. Tibbits
- Department of Economic Development, Jobs, Transport and Resources, Centre for AgriBioscience, BundooraVIC, Australia
| | - Matthew J. Hayden
- Department of Economic Development, Jobs, Transport and Resources, Centre for AgriBioscience, BundooraVIC, Australia
| | - Katarina Holušova
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural ResearchOlomouc, Czechia
| | - Miroslav Valárik
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural ResearchOlomouc, Czechia
| | - Assaf Distelfeld
- The Institute for Cereal Crop Improvement, Tel Aviv UniversityTel Aviv, Israel
| | | | - Jose M. Barrero
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture and Food, CanberraACT, Australia
| | | |
Collapse
|
28
|
Zhou Y, Tang H, Cheng MP, Dankwa KO, Chen ZX, Li ZY, Gao S, Liu YX, Jiang QT, Lan XJ, Pu ZE, Wei YM, Zheng YL, Hickey LT, Wang JR. Genome-Wide Association Study for Pre-harvest Sprouting Resistance in a Large Germplasm Collection of Chinese Wheat Landraces. FRONTIERS IN PLANT SCIENCE 2017; 8:401. [PMID: 28428791 PMCID: PMC5382224 DOI: 10.3389/fpls.2017.00401] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 03/09/2017] [Indexed: 05/06/2023]
Abstract
Pre-harvest sprouting (PHS) is mainly caused by the breaking of seed dormancy in high rainfall regions, which leads to huge economic losses in wheat. In this study, we evaluated 717 Chinese wheat landraces for PHS resistance and carried out genome-wide association studies (GWAS) using to 9,740 DArT-seq and 178,803 SNP markers. Landraces were grown across six environments in China and germination testing of harvest-ripe grain was used to calculate the germination rate (GR) for each accession at each site. GR was highly correlated across all environments. A large number of landraces (194) displayed high levels of PHS resistance (i.e., mean GR < 0.20), which included nine white-grained accessions. Overall, white-grained accessions displayed a significantly higher mean GR (42.7-79.6%) compared to red-grained accessions (19.1-56.0%) across the six environments. Landraces from mesic growing zones in southern China showed higher levels of PHS resistance than those sourced from xeric areas in northern and north-western China. Three main quantitative trait loci (QTL) were detected by GWAS: one on 5D that appeared to be novel and two co-located with the grain color transcription factor Tamyb10 on 3A and 3D. An additional 32 grain color related QTL (GCR-QTL) were detected when the set of red-grained landraces were analyzed separately. GCR-QTL occurred at high frequencies in the red-grained accessions and a strong correlation was observed between the number of GCR-QTL and GR (R2 = 0.62). These additional factors could be critical for maintaining high levels of PHS resistance and represent targets for introgression into white-grained wheat cultivars. Further, investigation of the origin of haplotypes associated with the three main QTL revealed that favorable haplotypes for PHS resistance were more common in accessions from higher rainfall zones in China. Thus, a combination of natural and artificial selection likely resulted in landraces incorporating PHS resistance in China.
Collapse
Affiliation(s)
- Yong Zhou
- Triticeae Research Institute, Sichuan Agricultural UniversityChengdu, China
| | - Hao Tang
- Triticeae Research Institute, Sichuan Agricultural UniversityChengdu, China
| | - Meng-Ping Cheng
- Triticeae Research Institute, Sichuan Agricultural UniversityChengdu, China
| | - Kwame O. Dankwa
- Triticeae Research Institute, Sichuan Agricultural UniversityChengdu, China
| | - Zhong-Xu Chen
- Triticeae Research Institute, Sichuan Agricultural UniversityChengdu, China
| | - Zhan-Yi Li
- Triticeae Research Institute, Sichuan Agricultural UniversityChengdu, China
| | - Shang Gao
- Triticeae Research Institute, Sichuan Agricultural UniversityChengdu, China
| | - Ya-Xi Liu
- Triticeae Research Institute, Sichuan Agricultural UniversityChengdu, China
| | - Qian-Tao Jiang
- Triticeae Research Institute, Sichuan Agricultural UniversityChengdu, China
| | - Xiu-Jin Lan
- Triticeae Research Institute, Sichuan Agricultural UniversityChengdu, China
| | - Zhi-En Pu
- Triticeae Research Institute, Sichuan Agricultural UniversityChengdu, China
| | - Yu-Ming Wei
- Triticeae Research Institute, Sichuan Agricultural UniversityChengdu, China
| | - You-Liang Zheng
- Triticeae Research Institute, Sichuan Agricultural UniversityChengdu, China
- Ministry of Education Key Laboratory for Crop Genetic Resources and Improvement in Southwest China, Sichuan Agricultural UniversityYa’an, China
| | - Lee T. Hickey
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, BrisbaneQLD, Australia
| | - Ji-Rui Wang
- Triticeae Research Institute, Sichuan Agricultural UniversityChengdu, China
- *Correspondence: Ji-Rui Wang,
| |
Collapse
|
29
|
Wang K, Jiao Z, Xu M, Wang Y, Li R, Cui X, Gu L, Zhang S. Landscape and Fruit Developmental Regulation of Alternative Splicing in Tomato by Genome-Wide Analysis. HORTICULTURAL PLANT JOURNAL 2016; 2:338-350. [PMID: 0 DOI: 10.1016/j.hpj.2017.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
|