1
|
Spencer V, Wallner ES, Jandrasits K, Edelbacher N, Mosiolek M, Dolan L. Three-dimensional anatomy and dorsoventral asymmetry of the mature Marchantia polymorpha meristem develops from a symmetrical gemma meristem. Development 2024; 151:dev204349. [PMID: 39545722 PMCID: PMC11634034 DOI: 10.1242/dev.204349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/03/2024] [Indexed: 11/17/2024]
Abstract
Meristems are three-dimensional (3D) generative structures that contain stem cells and produce new organs and tissues. Meristems develop in all land plants; however we know little about the spatial and temporal regulation of meristem structure in lineages such as bryophytes. Here, we describe the 3D meristem anatomy during the development of the liverwort Marchantia polymorpha. We show that the apical stem cell of the mature meristem is sub-apical, ventral, and in the outer cell layer. Mature meristem anatomy is therefore asymmetrical in the dorsoventral axis, which is reflected by the domain-specific protein localisation of Class III and Class IV Homeodomain-Leucine-Zippers (MpC3HDZ and MpC4HDZ), and by the promoter activity of MpYUCCA2. The dorsoventral asymmetry that defines the mature meristem is absent in the juvenile meristems of asexual propagules known as gemmae. We discovered that anatomical dorsoventral asymmetry of the meristem forms after 1 to 2 days of gemmaling growth, and is accompanied by expression of the dorsal identity reporter MpC3HDZ. We conclude that the gemma meristem has arrested development and undergoes anatomical rearrangement to develop the 3D meristem structure of the mature plant.
Collapse
Affiliation(s)
| | | | | | | | | | - Liam Dolan
- Gregor Mendel Institute, Dr-Bohr-Gasse 3, 1030 Vienna, Austria
| |
Collapse
|
2
|
Tasker-Brown W, Koh SWH, Trozzi N, Maio KA, Jamil I, Jiang Y, Majda M, Smith RS, Moubayidin L. An incoherent feed-forward loop involving bHLH transcription factors, Auxin and CYCLIN-Ds regulates style radial symmetry establishment in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2885-2903. [PMID: 39121182 DOI: 10.1111/tpj.16959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/18/2024] [Accepted: 07/23/2024] [Indexed: 08/11/2024]
Abstract
The bilateral-to-radial symmetry transition occurring during the development of the Arabidopsis thaliana female reproductive organ (gynoecium) is a crucial biological process linked to plant fertilization and seed production. Despite its significance, the cellular mechanisms governing the establishment and breaking of radial symmetry at the gynoecium apex (style) remain unknown. To fill this gap, we employed quantitative confocal imaging coupled with MorphoGraphX analysis, in vivo and in vitro transcriptional experiments, and genetic analysis encompassing mutants in two bHLH transcription factors necessary and sufficient to promote transition to radial symmetry, SPATULA (SPT) and INDEHISCENT (IND). Here, we show that defects in style morphogenesis correlate with defects in cell-division orientation and rate. We showed that the SPT-mediated accumulation of auxin in the medial-apical cells undergoing symmetry transition is required to maintain cell-division-oriented perpendicular to the direction of organ growth (anticlinal, transversal cell division). In addition, SPT and IND promote the expression of specific core cell-cycle regulators, CYCLIN-D1;1 (CYC-D1;1) and CYC-D3;3, to support progression through the G1 phase of the cell cycle. This transcriptional regulation is repressed by auxin, thus forming an incoherent feed-forward loop mechanism. We propose that this mechanism fine-tunes cell division rate and orientation with the morphogenic signal provided by auxin, during patterning of radial symmetry at the style.
Collapse
Affiliation(s)
| | - Samuel W H Koh
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, Norfolk, UK
| | - Nicola Trozzi
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, Norfolk, UK
- Department of Computational and Systems Biology, John Innes Centre, Norwich, Norfolk, UK
| | - Kestrel A Maio
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, Norfolk, UK
| | - Iqra Jamil
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, Norfolk, UK
| | - Yuxiang Jiang
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, Norfolk, UK
| | - Mateusz Majda
- Department of Computational and Systems Biology, John Innes Centre, Norwich, Norfolk, UK
| | - Richard S Smith
- Department of Computational and Systems Biology, John Innes Centre, Norwich, Norfolk, UK
| | - Laila Moubayidin
- Department of Crop Genetics, John Innes Centre, Norwich, Norfolk, UK
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, Norfolk, UK
| |
Collapse
|
3
|
Maio KA, Moubayidin L. 'Organ'ising Floral Organ Development. PLANTS (BASEL, SWITZERLAND) 2024; 13:1595. [PMID: 38931027 PMCID: PMC11207604 DOI: 10.3390/plants13121595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Flowers are plant structures characteristic of the phylum Angiosperms composed of organs thought to have emerged from homologous structures to leaves in order to specialize in a distinctive function: reproduction. Symmetric shapes, colours, and scents all play important functional roles in flower biology. The evolution of flower symmetry and the morphology of individual flower parts (sepals, petals, stamens, and carpels) has significantly contributed to the diversity of reproductive strategies across flowering plant species. This diversity facilitates attractiveness for pollination, protection of gametes, efficient fertilization, and seed production. Symmetry, the establishment of body axes, and fate determination are tightly linked. The complex genetic networks underlying the establishment of organ, tissue, and cellular identity, as well as the growth regulators acting across the body axes, are steadily being elucidated in the field. In this review, we summarise the wealth of research already at our fingertips to begin weaving together how separate processes involved in specifying organ identity within the flower may interact, providing a functional perspective on how identity determination and axial regulation may be coordinated to inform symmetrical floral organ structures.
Collapse
Affiliation(s)
| | - Laila Moubayidin
- Department of Cell and Developmental Biology, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK;
| |
Collapse
|
4
|
Consolacion J, Ceacero F, Musa AS, Ny V, Kotrba R, Illek J, Škorič M, Needham T. Reproductive tract morphology and symmetry of farmed common eland (Tragelaphus oryx) bulls, and their relationship with secondary sexual traits and social rank. Anim Reprod Sci 2024; 263:107438. [PMID: 38417312 DOI: 10.1016/j.anireprosci.2024.107438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/15/2024] [Indexed: 03/01/2024]
Abstract
Common eland bulls are important game ranching animals in southern Africa, for tourism, breeding/live sales, trophy hunting, and game meat production. Interest has grown in their production potential, intensifying animal husbandry and breeding approaches. However, little scientific information is available regarding the intensive management of this species, including information regarding scientifically based selection criteria for breeding bulls. Often, simple phenotypic traits are utilised unless high-value game animals are being bred, with horn and body size often being the only traits considered for breeding bulls. This study provides basic information about the reproductive tract morphology, symmetry, and their relationships with secondary sexual traits, social rank, and temperament in common eland. Six eland males (2-2.5 years old; 203 ± 20 kg) were utilised for the study. Social rank, body weight and body condition score, temperament score, and horn size were determined before the animals were culled, and their reproductive tracts were collected for morphometric and histological evaluation. Results indicate relatively low asymmetry in bilateral reproductive tract components. Individual traits of eland bulls such as age, body weight, and social rank correlated the development of some testicular morphologies and thus may possibly be used in zoos, game ranching, and commercial production for the selection of breeding males, but not temperament and horn length, which should be carefully evaluated. Whilst this study provides baseline information from a limited sample size, further studies should incorporate the assessment of testicular hemodynamics, as well as the effects of factors such as season and androgen secretion patterns over a wider age range of common eland males and populations to provide further information for the management practices of breeding common eland bulls.
Collapse
Affiliation(s)
- Jerico Consolacion
- Department of Animal Science and Food Processing, Faculty of Tropical Agrisciences, Czech University of Life Sciences Prague, Prague, Czech Republic; Department of Agricultural Sciences, College of Agriculture, Forestry, and Environmental Sciences, Mindanao State University at Naawan, Naawan, Misamis Oriental, Philippines
| | - Francisco Ceacero
- Department of Animal Science and Food Processing, Faculty of Tropical Agrisciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Abubakar Sadiq Musa
- Department of Animal Science and Food Processing, Faculty of Tropical Agrisciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Veit Ny
- Department of Animal Science and Food Processing, Faculty of Tropical Agrisciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Radim Kotrba
- Department of Animal Science and Food Processing, Faculty of Tropical Agrisciences, Czech University of Life Sciences Prague, Prague, Czech Republic; Department of Ethology, Institute of Animal Science, Prague 104 00, Czech Republic
| | - Josef Illek
- Department of Large Animal Clinic Laboratory, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Miša Škorič
- Department of Pathological Morphology, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Tersia Needham
- Department of Animal Science and Food Processing, Faculty of Tropical Agrisciences, Czech University of Life Sciences Prague, Prague, Czech Republic.
| |
Collapse
|
5
|
Fujiwara M, Imamura M, Matsushita K, Roszak P, Yamashino T, Hosokawa Y, Nakajima K, Fujimoto K, Miyashima S. Patterned proliferation orients tissue-wide stress to control root vascular symmetry in Arabidopsis. Curr Biol 2023; 33:886-898.e8. [PMID: 36787744 DOI: 10.1016/j.cub.2023.01.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/24/2022] [Accepted: 01/18/2023] [Indexed: 02/16/2023]
Abstract
Symmetric tissue alignment is pivotal to the functions of plant vascular tissue, such as long-distance molecular transport and lateral organ formation. During the vascular development of the Arabidopsis roots, cytokinins initially determine cell-type boundaries among vascular stem cells and subsequently promote cell proliferation to establish vascular tissue symmetry. Although it is unknown whether and how the symmetry of initially defined boundaries is progressively refined under tissue growth in plants, such boundary shapes in animal tissues are regulated by cell fluidity, e.g., cell migration and intercalation, lacking in plant tissues. Here, we uncover that cell proliferation during vascular development produces anisotropic compressive stress, smoothing, and symmetrizing cell arrangement of the vascular-cell-type boundary. Mechanistically, the GATA transcription factor HANABA-TARANU cooperates with the type-B Arabidopsis response regulators to form an incoherent feedforward loop in cytokinin signaling. The incoherent feedforward loop fine-tunes the position and frequency of vascular cell proliferation, which in turn restricts the source of mechanical stress to the position distal and symmetric to the boundary. By combinatorial analyses of mechanical simulations and laser cell ablation, we show that the spatially constrained environment of vascular tissue efficiently entrains the stress orientation among the cells to produce a tissue-wide stress field. Together, our data indicate that the localized proliferation regulated by the cytokinin signaling circuit is decoded into a globally oriented mechanical stress to shape the vascular tissue symmetry, representing a reasonable mechanism controlling the boundary alignment and symmetry in tissue lacking cell fluidity.
Collapse
Affiliation(s)
- Motohiro Fujiwara
- Department of Biological Sciences, Graduate School of Science, Osaka University, Machikaneyama-cho, Toyonaka 560-0043, Japan
| | - Miyu Imamura
- Laboratory of Molecular and Functional Genomics, Graduate School of Bioagricultural Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Katsuyoshi Matsushita
- Department of Biological Sciences, Graduate School of Science, Osaka University, Machikaneyama-cho, Toyonaka 560-0043, Japan
| | - Pawel Roszak
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, United Kingdom; Faculty of Biological and Environmental Sciences, University of Helsinki 00014, Helsinki, Finland
| | - Takafumi Yamashino
- Laboratory of Molecular and Functional Genomics, Graduate School of Bioagricultural Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Yoichiroh Hosokawa
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Keiji Nakajima
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Koichi Fujimoto
- Department of Biological Sciences, Graduate School of Science, Osaka University, Machikaneyama-cho, Toyonaka 560-0043, Japan.
| | - Shunsuke Miyashima
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan.
| |
Collapse
|
6
|
Evaluation of Middle Cerebral Artery Symmetry: A Pilot Study for Clinical Application in Mechanical Thrombectomy. World Neurosurg 2022; 166:e980-e985. [PMID: 35964905 DOI: 10.1016/j.wneu.2022.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/06/2022] [Accepted: 08/06/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Endovascular mechanical thrombectomy (MT) has now evolved to become the standard treatment for acute ischemic stroke due to large vessel occlusion. Arterial perforation is a potential complication of MT, and the risk of this event during blind crossing the occlusion site has been elucidated. The intracranial arterial system shows morphological structural symmetry, so we investigated the utility of the bilateral symmetry of the proximal middle cerebral artery (MCA) as a preprocedural evaluation to predict hidden running course distal to the thrombus. METHODS This study retrospectively analyzed 191 consecutive patients (mean age, 67.5 ± 15.5 years; 100 women) who underwent time-of-flight-magnetic resonance angiography in our institution. Four landmarks of the MCA were assessed: division pattern, early branching pattern, length, and course pattern. Each geometric property was compared between cerebral hemispheres. Frequencies of symmetry and symmetry breaking were assessed. RESULTS In 91% (bifurcation type, 87%; trifurcation type, 4%), branching patterns of the left and right M1 were symmetrical. Early frontal and/or temporal branches were observed in 31%, and the presence/absence of early branches was symmetrical in 70% cases. In 19%, M1 was classified as short M1, and classifications were identical between hemispheres in 74%. Running course of the M1 was symmetrical in 63%. Two or more parameters were symmetrical in 181 cases (95%). CONCLUSIONS The symmetry of bilateral M1-2 structures was demonstrated in most cases from the perspectives of 4 parameters. The MCA symmetry can predict the running course of the MCA before crossing the occlusion site and shows potential benefits for neurointerventionalists.
Collapse
|
7
|
Le Ray D, Guayasamin M. How Does the Central Nervous System for Posture and Locomotion Cope With Damage-Induced Neural Asymmetry? Front Syst Neurosci 2022; 16:828532. [PMID: 35308565 PMCID: PMC8927091 DOI: 10.3389/fnsys.2022.828532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/07/2022] [Indexed: 12/28/2022] Open
Abstract
In most vertebrates, posture and locomotion are achieved by a biomechanical apparatus whose effectors are symmetrically positioned around the main body axis. Logically, motor commands to these effectors are intrinsically adapted to such anatomical symmetry, and the underlying sensory-motor neural networks are correspondingly arranged during central nervous system (CNS) development. However, many developmental and/or life accidents may alter such neural organization and acutely generate asymmetries in motor operation that are often at least partially compensated for over time. First, we briefly present the basic sensory-motor organization of posturo-locomotor networks in vertebrates. Next, we review some aspects of neural plasticity that is implemented in response to unilateral central injury or asymmetrical sensory deprivation in order to substantially restore symmetry in the control of posturo-locomotor functions. Data are finally discussed in the context of CNS structure-function relationship.
Collapse
|
8
|
Coordination of biradial-to-radial symmetry and tissue polarity by HD-ZIP II proteins. Nat Commun 2021; 12:4321. [PMID: 34262040 PMCID: PMC8280177 DOI: 10.1038/s41467-021-24550-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 06/21/2021] [Indexed: 11/15/2022] Open
Abstract
Symmetry establishment is a critical process in the development of multicellular organs and requires careful coordination of polarity axes while cells actively divide within tissues. Formation of the apical style in the Arabidopsis gynoecium involves a bilateral-to-radial symmetry transition, a stepwise process underpinned by the dynamic distribution of the plant morphogen auxin. Here we show that SPATULA (SPT) and the HECATE (HEC) bHLH proteins mediate the final step in the style radialisation process and synergistically control the expression of adaxial-identity genes, HOMEOBOX ARABIDOPSIS THALIANA 3 (HAT3) and ARABIDOPSIS THALIANA HOMEOBOX 4 (ATHB4). HAT3/ATHB4 module drives radialisation of the apical style by promoting basal-to-apical auxin flow and via a negative feedback mechanism that finetune auxin distribution through repression of SPT expression and cytokinin sensitivity. Thus, this work reveals the molecular basis of axes-coordination and hormonal cross-talk during the sequential steps of symmetry transition in the Arabidopsis style. The apical style in Arabidopsis is formed following a bilateral-to-radial symmetry transition in the gynoecium. Here the authors show that the final step in style radialization is coordinated by the adaxial regulators HAT3 and ATHB4, which are induced by the SPT and HEC transcription factors.
Collapse
|
9
|
Wilson-Sánchez D, Martínez-López S, Navarro-Cartagena S, Jover-Gil S, Micol JL. Members of the DEAL subfamily of the DUF1218 gene family are required for bilateral symmetry but not for dorsoventrality in Arabidopsis leaves. THE NEW PHYTOLOGIST 2018; 217:1307-1321. [PMID: 29139551 DOI: 10.1111/nph.14898] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 10/03/2017] [Indexed: 06/07/2023]
Abstract
Most plant leaves exhibit bilateral symmetry, which has been hypothesized as an inevitable consequence of the existence of the proximodistal and dorsoventral axes. No gene has been described that affects leaf bilateral symmetry but not dorsoventrality in Arabidopsis thaliana. We screened for viable insertional mutations that affect leaf morphology, and out of more than 700 mutants found only one, desigual1-1 (deal1-1), that exhibited bilateral symmetry breaking but no obvious defects in dorsoventrality. We found that deal1-1 is an allele of VASCULATURE COMPLEXITY AND CONNECTIVITY (VCC). Several overlapping regulatory pathways establish the interspersed lobes and indentations along the margin of Arabidopsis thaliana leaves. These pathways involve feedback loops of auxin, the PIN-FORMED1 (PIN1) auxin efflux carrier, and the CUP-SHAPED COTYLEDON2 (CUC2) transcriptional regulator. Early vcc (deal1) leaf primordia fail to acquire bilateral symmetry and instead form ectopic lobes and sinuses. The vcc leaves show aberrant recruitment of marginal cells expressing properly polarized PIN1, resulting in misplaced auxin maxima. Normal PIN1 polarization requires CUC2 expression and CUC2 genetically interacts with VCC; VCC also affects CUC2 expression. VCC has a domain of unknown function, DUF1218, and localizes to the endoplasmic reticulum membrane. VCC acts partially redundantly with its two closest paralogs, DEAL2 and DEAL3, in early leaf margin patterning and is required for bilateral symmetry, but its loss of function does not visibly affect dorsoventrality.
Collapse
Affiliation(s)
- David Wilson-Sánchez
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Elche, Alicante, Spain
| | - Sebastián Martínez-López
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Elche, Alicante, Spain
| | - Sergio Navarro-Cartagena
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Elche, Alicante, Spain
| | - Sara Jover-Gil
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Elche, Alicante, Spain
| | - José Luis Micol
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Elche, Alicante, Spain
| |
Collapse
|
10
|
Moubayidin L, Østergaard L. Gynoecium formation: an intimate and complicated relationship. Curr Opin Genet Dev 2017; 45:15-21. [DOI: 10.1016/j.gde.2017.02.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/07/2017] [Accepted: 02/09/2017] [Indexed: 02/02/2023]
|
11
|
Łangowski Ł, Stacey N, Østergaard L. Diversification of fruit shape in the Brassicaceae family. PLANT REPRODUCTION 2016; 29:149-63. [PMID: 27016361 DOI: 10.1007/s00497-016-0278-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/22/2016] [Indexed: 05/14/2023]
Abstract
Diversity in fruit shape. Angiosperms (flowering plants) evolved during the Cretaceous Period more than 100 million years ago and quickly colonized all terrestrial habitats on the planet. A major reason for their success was the formation of fruits that would protect and nurture the developing seeds. Moreover, a massive range of diversity in fruit shape occurred during a relatively short time, which allowed for the development of ingenious ways of fertilization as well as strategies for efficient seed dispersal. The Brassicaceae family more than any exemplifies the diversity in fruit morphologies, thus providing an ideal group of plants to study how specific shapes are established. Although many genes controlling fruit patterning in the model plant Arabidopsis thaliana have been identified, the processes of carpel and fruit morphogenesis are still poorly understood. Moreover, Arabidopsis fruits are relatively simple in their structure and are therefore not ideally suited for analyzing processes of morphology determination without comparison to species with differently shaped fruits. Here, we review the diversity of fruit shape within the Brassicaceae family. As an example we describe the close relative of Arabidopsis, Capsella rubella that develops flat, heart-shaped fruits showing and highlighting its potential as a model system for research into organ shape. Recent progress in genomics including fast and cheap genome sequencing and annotation as well as development of mutant populations has opened entirely new and exciting possibilities of studying the mechanisms and processes underlying fruit formation in angiosperms.
Collapse
Affiliation(s)
- Łukasz Łangowski
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Colney, Norfolk, Norwich, NR4 7UH, UK
| | - Nicola Stacey
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Colney, Norfolk, Norwich, NR4 7UH, UK
| | - Lars Østergaard
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Colney, Norfolk, Norwich, NR4 7UH, UK.
| |
Collapse
|