1
|
Sen A, Karati D. An insight into thymidylate synthase inhibitor as anticancer agents: an explicative review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5437-5448. [PMID: 38446215 DOI: 10.1007/s00210-024-03020-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/20/2024] [Indexed: 03/07/2024]
Abstract
Cancer, a widespread challenge to global health, remains a puzzle of intricate molecular dynamics. This review article delves into the mystery of cancer, with a keen focus on understanding the contributory role of thymidylate synthase (TS) in cancer. TS, a vital enzyme in DNA synthesis and repair, emerges as a significant player in the narrative of cancer development. The conversion of deoxyuridine monophosphate (dUMP) to deoxythymidine monophosphate (dTMP) is a major step in producing DNA. Numerous malignancies, including those of the breast, colon, lung, and ovary, have been linked to dysregulation of TS activity. Overexpression or mutations of TS lead to uncontrolled cell proliferation and tumorigenesis molecular interactions and signalling pathways involving TS come under scrutiny, revealing the nuanced connections that propel its involvement in cancer progression. Beyond overexpression and mutations, there emerges a subtle layer of regulation that involves microRNAs (miRNAs). These tiny particles attach to the TS messenger RNA, causing translational repression or its degradation, which in turn affects TS activity. Moving towards the therapeutic realm, thymidylate synthase inhibition acts as a promising anti-cancer strategy. Targeting TS with small-molecule inhibitors could provide a novel approach to treat various cancers. By reducing the number of available nucleotides, TS inhibition would slow down or halt cancer cell division, thus depriving the tumor of the building blocks required for its proliferation and growth. The aim is to assess the viability and effectiveness of targeting TS to halt or slow down cancer progression. There is growing evidence that, in comparison to traditional TS inhibitors, few novel antifolate TS inhibitors are effective against a wider variety of neoplasms, such as lung carcinomas. It has been discovered that TS inhibitors increase cancer tissues' sensitivity to chemotherapy and radiation, increasing their vulnerability to these treatments. This article aims to provide a comprehensive insight into TS, examining its cellular details, detailing the heterocyclic moieties and molecular foundations, and providing a promising future outlook.
Collapse
Affiliation(s)
- Aratrika Sen
- Department of Pharmaceutical Technology, School of Pharmacy, Techno India University, Kolkata, 700091, West Bengal, India
| | - Dipanjan Karati
- Department of Pharmaceutical Technology, School of Pharmacy, Techno India University, Kolkata, 700091, West Bengal, India.
| |
Collapse
|
2
|
Wang H, Tu R, Ruan Z, Wu D, Peng Z, Zhou X, Liu Q, Wu W, Cao L, Cheng S, Sun L, Zhan X, Shen X. STRIPE3, encoding a human dNTPase SAMHD1 homolog, regulates chloroplast development in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 323:111395. [PMID: 35878695 DOI: 10.1016/j.plantsci.2022.111395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Chloroplast is an important organelle for photosynthesis and numerous essential metabolic processes, thus ensuring plant fitness or survival. Although many genes involved in chloroplast development have been identified, mechanisms underlying such development are not fully understood. Here, we isolated and characterized the stripe3 (st3) mutant which exhibited white-striped leaves with reduced chlorophyll content and abnormal chloroplast development during the seedling stage, but gradually produced nearly normal green leaves as it developed. Map-based cloning and transgenic tests demonstrated that a splicing mutation in ST3, encoding a human deoxynucleoside triphosphate triphosphohydrolase (dNTPase) SAMHD1 homolog, was responsible for st3 phenotypes. ST3 is highly expressed in the third leaf at three-leaf stage and expressed constitutively in root, stem, leaf, sheath, and panicle, and the encoded protein, OsSAMHD1, is localized to the cytoplasm. The st3 mutant showed more severe albino leaf phenotype under exogenous 1-mM dATP/dA, dCTP/dC, and dGTP/dG treatments compared with the control conditions, indicating that ST3 is involved in dNTP metabolism. This study reveals a gene associated with dNTP catabolism, and propose a model in which chloroplast development in rice is regulated by the dNTP pool, providing a potential application of these results to hybrid rice breeding.
Collapse
Affiliation(s)
- Hong Wang
- State Key Laboratory of Rice Biology, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401 China
| | - Ranran Tu
- State Key Laboratory of Rice Biology, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401 China
| | - Zheyan Ruan
- State Key Laboratory of Rice Biology, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401 China
| | - Duo Wu
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Zequn Peng
- State Key Laboratory of Rice Biology, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401 China
| | - Xingpeng Zhou
- State Key Laboratory of Rice Biology, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401 China
| | - Qunen Liu
- State Key Laboratory of Rice Biology, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401 China
| | - Weixun Wu
- State Key Laboratory of Rice Biology, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401 China
| | - Liyong Cao
- State Key Laboratory of Rice Biology, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401 China
| | - Shihua Cheng
- State Key Laboratory of Rice Biology, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401 China
| | - Lianping Sun
- State Key Laboratory of Rice Biology, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401 China.
| | - Xiaodeng Zhan
- State Key Laboratory of Rice Biology, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401 China.
| | - Xihong Shen
- State Key Laboratory of Rice Biology, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401 China.
| |
Collapse
|
3
|
Niehaus M, Straube H, Specht A, Baccolini C, Witte CP, Herde M. The nucleotide metabolome of germinating Arabidopsis thaliana seeds reveals a central role for thymidine phosphorylation in chloroplast development. THE PLANT CELL 2022; 34:3790-3813. [PMID: 35861422 PMCID: PMC9516053 DOI: 10.1093/plcell/koac207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/13/2022] [Indexed: 05/29/2023]
Abstract
Thymidylates are generated by several partially overlapping metabolic pathways in different subcellular locations. This interconnectedness complicates an understanding of how thymidylates are formed in vivo. Analyzing a comprehensive collection of mutants and double mutants on the phenotypic and metabolic level, we report the effect of de novo thymidylate synthesis, salvage of thymidine, and conversion of cytidylates to thymidylates on thymidylate homeostasis during seed germination and seedling establishment in Arabidopsis (Arabidopsis thaliana). During germination, the salvage of thymidine in organelles contributes predominantly to the thymidylate pools and a mutant lacking organellar (mitochondrial and plastidic) thymidine kinase has severely altered deoxyribonucleotide levels, less chloroplast DNA, and chlorotic cotyledons. This phenotype is aggravated when mitochondrial thymidylate de novo synthesis is additionally compromised. We also discovered an organellar deoxyuridine-triphosphate pyrophosphatase and show that its main function is not thymidylate synthesis but probably the removal of noncanonical nucleotide triphosphates. Interestingly, cytosolic thymidylate synthesis can only compensate defective organellar thymidine salvage in seedlings but not during germination. This study provides a comprehensive insight into the nucleotide metabolome of germinating seeds and demonstrates the unique role of enzymes that seem redundant at first glance.
Collapse
Affiliation(s)
- Markus Niehaus
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Hannover 30419, Germany
| | - Henryk Straube
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Hannover 30419, Germany
| | - André Specht
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Hannover 30419, Germany
| | - Chiara Baccolini
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Hannover 30419, Germany
| | - Claus-Peter Witte
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Hannover 30419, Germany
| | - Marco Herde
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Hannover 30419, Germany
| |
Collapse
|
4
|
Gu M, Lu Q, Liu Y, Cui M, Si Y, Wu H, Chai T, Ling HQ. Requirement and functional redundancy of two large ribonucleotide reductase subunit genes for cell cycle, chloroplast biogenesis and photosynthesis in tomato. ANNALS OF BOTANY 2022; 130:173-187. [PMID: 35700127 PMCID: PMC9445600 DOI: 10.1093/aob/mcac078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND AIMS Ribonucleotide reductase (RNR), functioning in the de novo synthesis of deoxyribonucleoside triphosphates (dNTPs), is crucial for DNA replication and cell cycle progression. In most plants, the large subunits of RNR have more than one homologous gene. However, the different functions of these homologous genes in plant development remain unknown. In this study, we obtained the mutants of two large subunits of RNR in tomato and studied their functions. METHODS The mutant ylc1 was obtained by ethyl methyl sulfonate (EMS) treatment. Through map-based cloning, complementation and knock-out experiments, it was confirmed that YLC1 encodes a large subunit of RNR (SlRNRL1). The expression level of the genes related to cell cycle progression, chloroplast biogenesis and photosynthesis was assessed by RNA-sequencing. In addition, we knocked out SlRNRL2 (a SlRNRL1 homologue) using CRISPR-Cas9 technology in the tomato genome, and we down-regulated SlRNRL2 expression in the genetic background of slrnrl1-1 using a tobacco rattle virus-induced gene silencing (VIGS) system. KEY RESULTS The mutant slrnrl1 exhibited dwarf stature, chlorotic young leaves and smaller fruits. Physiological and transcriptomic analyses indicated that SlRNRL1 plays a crucial role in the regulation of cell cycle progression, chloroplast biogenesis and photosynthesis in tomato. The slrnrl2 mutant did not exhibit any visible phenotype. SlRNRL2 has a redundant function with SlRNRL1, and the double mutant slrnrl1slrnrl2 is lethal. CONCLUSIONS SlRNRL1 is essential for cell cycle progression, chloroplast biogenesis and photosynthesis. In addition, SlRNRL1 and SlRNRL2 possess redundant functions and at least one of these RNRLs is required for tomato survival, growth and development.
Collapse
Affiliation(s)
| | | | - Yi Liu
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, Jiangxi, China
| | - Man Cui
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yaoqi Si
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | | | - Tuanyao Chai
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | | |
Collapse
|
5
|
Straube H, Niehaus M, Zwittian S, Witte CP, Herde M. Enhanced nucleotide analysis enables the quantification of deoxynucleotides in plants and algae revealing connections between nucleoside and deoxynucleoside metabolism. THE PLANT CELL 2021; 33:270-289. [PMID: 33793855 PMCID: PMC8136904 DOI: 10.1093/plcell/koaa028] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/12/2020] [Indexed: 05/02/2023]
Abstract
Detecting and quantifying low-abundance (deoxy)ribonucleotides and (deoxy)ribonucleosides in plants remains difficult; this is a major roadblock for the investigation of plant nucleotide (NT) metabolism. Here, we present a method that overcomes this limitation, allowing the detection of all deoxy- and ribonucleotides as well as the corresponding nucleosides from the same plant sample. The method is characterized by high sensitivity and robustness enabling the reproducible detection and absolute quantification of these metabolites even if they are of low abundance. Employing the new method, we analyzed Arabidopsis thaliana null mutants of CYTIDINE DEAMINASE, GUANOSINE DEAMINASE, and NUCLEOSIDE HYDROLASE 1, demonstrating that the deoxyribonucleotide (dNT) metabolism is intricately interwoven with the catabolism of ribonucleosides (rNs). In addition, we discovered a function of rN catabolic enzymes in the degradation of deoxyribonucleosides in vivo. We also determined the concentrations of dNTs in several mono- and dicotyledonous plants, a bryophyte, and three algae, revealing a correlation of GC to AT dNT ratios with genomic GC contents. This suggests a link between the genome and the metabolome previously discussed but not experimentally addressed. Together, these findings demonstrate the potential of this new method to provide insight into plant NT metabolism.
Collapse
Affiliation(s)
- Henryk Straube
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Hannover 30419, Germany
| | - Markus Niehaus
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Hannover 30419, Germany
| | - Sarah Zwittian
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Hannover 30419, Germany
| | - Claus-Peter Witte
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Hannover 30419, Germany
| | - Marco Herde
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Hannover 30419, Germany
- Author for correspondence:
| |
Collapse
|
6
|
Nájera-Martínez M, Pedroza-García JA, Suzuri-Hernández LJ, Mazubert C, Drouin-Wahbi J, Vázquez-Ramos J, Raynaud C, Plasencia J. Maize Thymidine Kinase Activity Is Present throughout Plant Development and Its Heterologous Expression Confers Tolerance to an Organellar DNA-Damaging Agent. PLANTS 2020; 9:plants9080930. [PMID: 32717805 PMCID: PMC7463494 DOI: 10.3390/plants9080930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 11/16/2022]
Abstract
Thymidine kinase 1 (TK1) phosphorylates thymidine nucleosides to generate thymidine monophosphate. This reaction belongs to the pyrimidine salvage route that is phylogenetically conserved. In the model plant Arabidopsis thaliana, TK activity contributes to maintain nuclear and organellar genome integrity by providing deoxythymidine-triphosphate (dTTP) for DNA synthesis. Arabidopsis has two TK1 genes (TK1a and TK1b) and double mutants show an albino phenotype and develop poorly. In contrast, maize (Zea mays L.) has a single TK1 (ZmTK1) gene and mutant plants are albino and display reduced genome copy number in chloroplasts. We studied the role of ZmTK1 during development and genotoxic stress response by assessing its activity at different developmental stages and by complementing Arabidopsis tk1 mutants. We found that ZmTK1 transcripts and activity are present during germination and throughout maize development. We show that ZmTK1 translocation to chloroplasts depends on a 72-amino-acid N-signal and its plastid localization is consistent with its ability to complement Arabidopsis tk1b mutants which are hypersensitive to ciprofloxacin (CIP), a genotoxic agent to organellar DNA. Also, ZmTK1 partly complemented the Arabidopsis double mutant plants during development. Our results contribute to the understanding of TK1 function in monocot species as an organellar enzyme for genome replication and repair.
Collapse
Affiliation(s)
- Manuela Nájera-Martínez
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (M.N.-M.); (J.A.P.-G.); (L.J.S.-H.); (J.V.-R.)
| | - José Antonio Pedroza-García
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (M.N.-M.); (J.A.P.-G.); (L.J.S.-H.); (J.V.-R.)
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, Paris University, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment 630, 91405 Orsay, France; (C.M.); (J.D.-W.); (C.R.)
| | - Luis Jiro Suzuri-Hernández
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (M.N.-M.); (J.A.P.-G.); (L.J.S.-H.); (J.V.-R.)
- Licenciatura en Ciencia Forense, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Christelle Mazubert
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, Paris University, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment 630, 91405 Orsay, France; (C.M.); (J.D.-W.); (C.R.)
| | - Jeannine Drouin-Wahbi
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, Paris University, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment 630, 91405 Orsay, France; (C.M.); (J.D.-W.); (C.R.)
| | - Jorge Vázquez-Ramos
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (M.N.-M.); (J.A.P.-G.); (L.J.S.-H.); (J.V.-R.)
| | - Cécile Raynaud
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, Paris University, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment 630, 91405 Orsay, France; (C.M.); (J.D.-W.); (C.R.)
| | - Javier Plasencia
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (M.N.-M.); (J.A.P.-G.); (L.J.S.-H.); (J.V.-R.)
- Correspondence:
| |
Collapse
|
7
|
Liu LL, You J, Zhu Z, Chen KY, Hu MM, Gu H, Liu ZW, Wang ZY, Wang YH, Liu SJ, Chen LM, Liu X, Tian YL, Zhou SR, Jiang L, Wan JM. WHITE STRIPE LEAF8, encoding a deoxyribonucleoside kinase, is involved in chloroplast development in rice. PLANT CELL REPORTS 2020; 39:19-33. [PMID: 31485784 DOI: 10.1007/s00299-019-02470-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 08/29/2019] [Indexed: 06/10/2023]
Abstract
WSL8 encoding a deoxyribonucleoside kinase (dNK) that catalyzes the first step in the salvage pathway of nucleotide synthesis plays an important role in early chloroplast development in rice. The chloroplast is an organelle that converts light energy into chemical energy; therefore, the normal differentiation and development of chloroplast are pivotal for plant survival. Deoxyribonucleoside kinases (dNKs) play an important role in the salvage pathway of nucleotides. However, the relationship between dNKs and chloroplast development remains elusive. Here, we identified a white stripe leaf 8 (wsl8) mutant that exhibited a white stripe leaf phenotype at seedling stage (before the four-leaf stage). The mutant showed a significantly lower chlorophyll content and defective chloroplast morphology, whereas higher reactive oxygen species than the wild type. As the leaf developed, the chlorotic mutant plants gradually turned green, accompanied by the restoration in chlorophyll accumulation and chloroplast ultrastructure. Map-based cloning revealed that WSL8 encodes a dNK on chromosome 5. Compared with the wild type, a C-to-G single base substitution occurred in the wsl8 mutant, which caused a missense mutation (Leu 349 Val) and significantly reduced dNK enzyme activity. A subcellular localization experiment showed the WSL8 protein was targeted in the chloroplast and its transcripts were expressed in various tissues, with more abundance in young leaves and nodes. Ribosome and RNA-sequencing analysis indicated that some components and genes related to ribosome biosynthesis were down-regulated in the mutant. An exogenous feeding experiment suggested that the WSL8 performed the enzymic activity of thymidine kinase, especially functioning in the salvage synthesis of thymidine monophosphate. Our results highlight that the salvage pathway mediated by the dNK is essential for early chloroplast development in rice.
Collapse
Affiliation(s)
- L L Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - J You
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Z Zhu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - K Y Chen
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - M M Hu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - H Gu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Z W Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Z Y Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Y H Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - S J Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - L M Chen
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - X Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Y L Tian
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - S R Zhou
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - L Jiang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - J M Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China.
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
8
|
Pedroza-García JA, Nájera-Martínez M, Mazubert C, Aguilera-Alvarado P, Drouin-Wahbi J, Sánchez-Nieto S, Gualberto JM, Raynaud C, Plasencia J. Role of pyrimidine salvage pathway in the maintenance of organellar and nuclear genome integrity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:430-446. [PMID: 30317699 DOI: 10.1111/tpj.14128] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 10/08/2018] [Indexed: 06/08/2023]
Abstract
Nucleotide biosynthesis proceeds through a de novo pathway and a salvage route. In the salvage route, free bases and/or nucleosides are recycled to generate the corresponding nucleotides. Thymidine kinase (TK) is the first enzyme in the salvage pathway to recycle thymidine nucleosides as it phosphorylates thymidine to yield thymidine monophosphate. The Arabidopsis genome contains two TK genes -TK1a and TK1b- that show similar expression patterns during development. In this work, we studied the respective roles of the two genes during early development and in response to genotoxic agents targeting the organellar or the nuclear genome. We found that the pyrimidine salvage pathway is crucial for chloroplast development and genome replication, as well as for the maintenance of its integrity, and is thus likely to play a crucial role during the transition from heterotrophy to autotrophy after germination. Interestingly, defects in TK activity could be partially compensated by supplementation of the medium with sugar, and this effect resulted from both the availability of a carbon source and the activation of the nucleotide de novo synthesis pathway, providing evidence for a compensation mechanism between two routes of nucleotide biosynthesis that depend on nutrient availability. Finally, we found differential roles of the TK1a and TK1b genes during the plant response to genotoxic stress, suggesting that different pools of nucleotides exist within the cells and are required to respond to different types of DNA damage. Altogether, our results highlight the importance of the pyrimidine salvage pathway, both during plant development and in response to genotoxic stress.
Collapse
Affiliation(s)
- José-Antonio Pedroza-García
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510 CD, Mexico
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université Évry, Université Paris-Saclay, 91405, Orsay, Paris, France
| | - Manuela Nájera-Martínez
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510 CD, Mexico
| | - Christelle Mazubert
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université Évry, Université Paris-Saclay, 91405, Orsay, Paris, France
| | - Paulina Aguilera-Alvarado
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510 CD, Mexico
| | - Jeannine Drouin-Wahbi
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université Évry, Université Paris-Saclay, 91405, Orsay, Paris, France
| | - Sobeida Sánchez-Nieto
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510 CD, Mexico
| | - José M Gualberto
- Institut de Biologie Moléculaire des Plantes, CNRS-UPR2357, Université de Strasbourg, 67084, Strasbourg, France
| | - Cécile Raynaud
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université Évry, Université Paris-Saclay, 91405, Orsay, Paris, France
| | - Javier Plasencia
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510 CD, Mexico
| |
Collapse
|
9
|
Bourbousse C, Vegesna N, Law JA. SOG1 activator and MYB3R repressors regulate a complex DNA damage network in Arabidopsis. Proc Natl Acad Sci U S A 2018; 115:E12453-E12462. [PMID: 30541889 PMCID: PMC6310815 DOI: 10.1073/pnas.1810582115] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
To combat DNA damage, organisms mount a DNA damage response (DDR) that results in cell cycle regulation, DNA repair and, in severe cases, cell death. Underscoring the importance of gene regulation in this response, studies in Arabidopsis have demonstrated that all of the aforementioned processes rely on SUPPRESSOR OF GAMMA RESPONSE 1 (SOG1), a NAC family transcription factor (TF) that has been functionally equated to the mammalian tumor suppressor, p53. However, the expression networks connecting SOG1 to these processes remain largely unknown and, although the DDR spans from minutes to hours, most transcriptomic data correspond to single time-point snapshots. Here, we generated transcriptional models of the DDR from GAMMA (γ)-irradiated wild-type and sog1 seedlings during a 24-hour time course using DREM, the Dynamic Regulatory Events Miner, revealing 11 coexpressed gene groups with distinct biological functions and cis-regulatory features. Within these networks, additional chromatin immunoprecipitation and transcriptomic experiments revealed that SOG1 is the major activator, directly targeting the most strongly up-regulated genes, including TFs, repair factors, and early cell cycle regulators, while three MYB3R TFs are the major repressors, specifically targeting the most strongly down-regulated genes, which mainly correspond to G2/M cell cycle-regulated genes. Together these models reveal the temporal dynamics of the transcriptional events triggered by γ-irradiation and connects these events to TFs and biological processes over a time scale commensurate with key processes coordinated in response to DNA damage, greatly expanding our understanding of the DDR.
Collapse
Affiliation(s)
- Clara Bourbousse
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Neeraja Vegesna
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Julie A Law
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037;
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
10
|
Chloroplast RNA-Binding Protein RBD1 Promotes Chilling Tolerance through 23S rRNA Processing in Arabidopsis. PLoS Genet 2016; 12:e1006027. [PMID: 27138552 PMCID: PMC4854396 DOI: 10.1371/journal.pgen.1006027] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/14/2016] [Indexed: 01/17/2023] Open
Abstract
Plants have varying abilities to tolerate chilling (low but not freezing temperatures), and it is largely unknown how plants such as Arabidopsis thaliana achieve chilling tolerance. Here, we describe a genome-wide screen for genes important for chilling tolerance by their putative knockout mutants in Arabidopsis thaliana. Out of 11,000 T-DNA insertion mutant lines representing half of the genome, 54 lines associated with disruption of 49 genes had a drastic chilling sensitive phenotype. Sixteen of these genes encode proteins with chloroplast localization, suggesting a critical role of chloroplast function in chilling tolerance. Study of one of these proteins RBD1 with an RNA binding domain further reveals the importance of chloroplast translation in chilling tolerance. RBD1 is expressed in the green tissues and is localized in the chloroplast nucleoid. It binds directly to 23S rRNA and the binding is stronger under chilling than at normal growth temperatures. The rbd1 mutants are defective in generating mature 23S rRNAs and deficient in chloroplast protein synthesis especially under chilling conditions. Together, our study identifies RBD1 as a regulator of 23S rRNA processing and reveals the importance of chloroplast function especially protein translation in chilling tolerance. Compared to cold acclimation (enhancement of freezing tolerance by a prior exposure to low non-freezing temperature), the tolerance mechanism to non-freezing chilling temperatures is not well understood. Here, we performed a genome-wide mutant screen for chilling sensitive phenotype and identified 49 candidate genes important for chilling tolerance in Arabidopsis. Among the proteins encoded by these 49 genes, 16 are annotated as having chloroplast localization, suggesting a critical role of chloroplast function in chilling tolerance. We further studied RBD1, one of the four RNA-binding proteins localized to chloroplast. RBD1 is only expressed in the green photosynthetic tissues and is localized to nucleoid of chloroplasts. Furthermore, RBD1 is found to be a regulator of 23S rRNA processing likely through direct binding to the precursor of 23S rRNA in a temperature dependent manner. Our study thus reveals the importance of chloroplast function especially protein translation in chilling tolerance at genome-wide scale and suggests an adaptive mechanism involving low temperature enhanced activities from proteins such as RBD1 in chilling tolerance.
Collapse
|