1
|
Touchette L, Godbout J, Lamothe M, Porth I, Isabel N. A cryptic syngameon within Betula shrubs revealed: Implications for conservation in changing subarctic environments. Evol Appl 2024; 17:e13689. [PMID: 38633131 PMCID: PMC11022622 DOI: 10.1111/eva.13689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 02/06/2024] [Accepted: 03/20/2024] [Indexed: 04/19/2024] Open
Abstract
Arctic and subarctic ecosystems are rapidly transforming due to global warming, emphasizing the need to understand the genetic diversity and adaptive strategies of northern plant species for effective conservation. This study focuses on Betula glandulosa, a native North American tundra shrub known as dwarf birch, which demonstrates an apparent capacity to adapt to changing climate conditions. To address the taxonomic challenges associated with shrub birches and logistical complexities of sampling in the northernmost areas where species' ranges overlap, we adopted a multicriteria approach. Incorporating molecular data, ploidy level assessment and leaf morphology, we aimed to distinguish B. glandulosa individuals from other shrub birch species sampled. Our results revealed three distinct species and their hybrids within the 537 collected samples, suggesting the existence of a shrub birch syngameon, a reproductive network of interconnected species. Additionally, we identified two discrete genetic clusters within the core species, B. glandulosa, that likely correspond to two different glacial lineages. A comparison between the nuclear and chloroplast SNP data emphasizes a long history of gene exchange between different birch species and genetic clusters. Furthermore, our results highlight the significance of incorporating interfertile congeneric species in conservation strategies and underscores the need for a holistic approach to conservation in the context of climate change, considering the complex dynamics of species interactions. While further research will be needed to describe this shrub birches syngameon and its constituents, this study is a first step in recognizing its existence and disseminating awareness among ecologists and conservation practitioners. This biological phenomenon, which offers evolutionary flexibility and resilience beyond what its constituent species can achieve individually, may have significant ecological implications.
Collapse
Affiliation(s)
- Lyne Touchette
- Department of Wood and Forest SciencesUniversité LavalQuebecQuebecCanada
- Natural Resources Canada, Canadian Forest ServiceLaurentian Forestry CentreQuebecQuebecCanada
- Centre for Forest ResearchUniversité LavalQuebecQuebecCanada
| | - Julie Godbout
- Ministère des Ressources naturelles et des Forêts, Direction de la recherche forestièreQuébecQuébecCanada
| | - Manuel Lamothe
- Natural Resources Canada, Canadian Forest ServiceLaurentian Forestry CentreQuebecQuebecCanada
| | - Ilga Porth
- Department of Wood and Forest SciencesUniversité LavalQuebecQuebecCanada
- Centre for Forest ResearchUniversité LavalQuebecQuebecCanada
| | - Nathalie Isabel
- Natural Resources Canada, Canadian Forest ServiceLaurentian Forestry CentreQuebecQuebecCanada
- Centre for Forest ResearchUniversité LavalQuebecQuebecCanada
| |
Collapse
|
2
|
Volf M, Renoult SA, Panthee S, van Dam NM. Quantifying various aspects of chemical diversity in hybrid plants can help understanding ecological consequences of hybridization. AMERICAN JOURNAL OF BOTANY 2024; 111:e16283. [PMID: 38332482 DOI: 10.1002/ajb2.16283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/14/2023] [Accepted: 12/14/2023] [Indexed: 02/10/2024]
Affiliation(s)
- Martin Volf
- Biology Centre of the Czech Academy of Sciences, Branisovska 31, Ceske Budejovice, 37005, Czech Republic
- Faculty of Science, University of South Bohemia, Branisovska 31, Ceske Budejovice, 37005, Czech Republic
| | - Sofian A Renoult
- Biology Centre of the Czech Academy of Sciences, Branisovska 31, Ceske Budejovice, 37005, Czech Republic
- Faculty of Science, University of South Bohemia, Branisovska 31, Ceske Budejovice, 37005, Czech Republic
| | - Shristee Panthee
- Leibniz Institute for Vegetable and Ornamental Crops (IGZ) e.V., Theodor-Echtermeyer-Weg 1, Großbeeren, 14979, Germany
| | - Nicole M van Dam
- Leibniz Institute for Vegetable and Ornamental Crops (IGZ) e.V., Theodor-Echtermeyer-Weg 1, Großbeeren, 14979, Germany
- Institute of Biodiversity, Friedrich-Schiller-Universität Jena, Dornburgerstraße 159, Jena, 07745, Germany
| |
Collapse
|
3
|
Fetter KC, Keller SR. Admixture mapping and selection scans identify genomic regions associated with stomatal patterning and disease resistance in hybrid poplars. Ecol Evol 2023; 13:e10579. [PMID: 37881228 PMCID: PMC10597741 DOI: 10.1002/ece3.10579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/27/2023] Open
Abstract
Variation in fitness components can be linked in some cases to variation in key traits. Metric traits that lie at the intersection of development, defense, and ecological interactions may be expected to experience environmental selection, informing our understanding of evolutionary and ecological processes. Here, we use quantitative genetic and population genomic methods to investigate disease dynamics in hybrid and non-hybrid populations. We focus our investigation on morphological and ecophysiological traits which inform our understanding of physiology, growth, and defense against a pathogen. In particular, we investigate stomata, microscopic pores on the surface of a leaf that regulate gas exchange during photosynthesis and are sites of entry for various plant pathogens. Stomatal patterning traits were highly predictive of disease risk. Admixture mapping identified a polygenic basis of disease resistance. Candidate genes for stomatal and disease resistance map to the same genomic regions and experienced positive selection. Genes with functions to guard cell homeostasis, the plant immune system, components of constitutive defenses, and growth-related transcription factors were identified. Our results indicate positive selection acted on candidate genes for stomatal patterning and disease resistance, potentially acting in concert to structure their variation in naturally formed backcrossing hybrid populations.
Collapse
Affiliation(s)
- Karl C. Fetter
- Department of Plant BiologyUniversity of VermontBurlingtonVermontUSA
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticutUSA
| | - Stephen R. Keller
- Department of Plant BiologyUniversity of VermontBurlingtonVermontUSA
| |
Collapse
|
4
|
The role of timing in intraspecific trait ecology. Trends Ecol Evol 2022; 37:997-1005. [DOI: 10.1016/j.tree.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 11/17/2022]
|
5
|
Fetter KC, Nelson DM, Keller SR. Growth-defense trade-offs masked in unadmixed populations are revealed by hybridization. Evolution 2021; 75:1450-1465. [PMID: 33914360 DOI: 10.1111/evo.14227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/15/2021] [Indexed: 12/20/2022]
Abstract
Organisms are constantly challenged by pathogens and pests, which can drive the evolution of growth-defense strategies. Plant stomata are essential for gas exchange during photosynthesis and conceptually lie at the intersection of the physiological demands of growth and exposure to foliar fungal pathogens. Generations of natural selection for locally adapted growth-defense strategies can eliminate variation between traits, potentially masking trade-offs and selection conflicts that may have existed in the past. Hybrid populations offer a unique opportunity to reset the clock on selection and to study potentially maladaptive trait variation before selection removes it. We study the interactions of growth, stomatal, ecopysiological, and disease resistance traits in poplars (Populus) after infection by the leaf rust Melampsora medusae. Phenotypes were measured in a common garden and genotyped at 227K SNPs. We isolate the effects of hybridization on trait variance, discover correlations between stomatal, ecophysiology, and disease resistance, examine trade-offs and selection conflicts, and explore the evolution of growth-defense strategies potentially mediated by selection for stomatal traits on the upper leaf surface. These results suggest an important role for stomata in determining growth-defense strategies in organisms susceptible to foliar pathogens, and reinforces the contribution of hybridization studies toward our understanding of trait evolution.
Collapse
Affiliation(s)
- Karl C Fetter
- Department of Plant Biology, University of Georgia, Athens, Georgia, 30602, USA.,Department of Plant Biology, University of Vermont, Burlington, Vermont, 05405, USA
| | - David M Nelson
- Appalachian Laboratory, University of Maryland Center for Environmental Science, Frostburg, Maryland, 21532, USA
| | - Stephen R Keller
- Department of Plant Biology, University of Vermont, Burlington, Vermont, 05405, USA
| |
Collapse
|
6
|
Godbout J, Gros-Louis M, Lamothe M, Isabel N. Going with the flow: Intraspecific variation may act as a natural ally to counterbalance the impacts of global change for the riparian species Populus deltoides. Evol Appl 2020; 13:176-194. [PMID: 31892951 PMCID: PMC6935597 DOI: 10.1111/eva.12854] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/16/2019] [Accepted: 07/31/2019] [Indexed: 12/19/2022] Open
Abstract
The speed and magnitude of global change will have major impacts on riparian ecosystems, thereby leading to greater forest vulnerability. Assessing species' adaptive capacities to provide relevant information for vulnerability assessments remains challenging, especially for nonmodel species like the North American Populus deltoides W. Bartram ex Marshall. The objective of this study was to understand how genomic diversity of this foundation species was shaped by its environment (climate, soil, and biotic interactions) to gauge its adaptive capacity. We used two complementary approaches to get a full portrait of P. deltoides genetic diversity at both the species and whole-genome ranges. First, we used a set of 93 nuclear and three chloroplastic SNP markers in 946 individuals covering most of the species' natural distribution. Then, to measure the degree of intraspecific divergence at the whole-genome level and to support the outlier and genomic-environment association analyses, we used a sequence capture approach on DNA pools. Three distinct lineages for P. deltoides were detected, and their current distribution was associated with abiotic and biotic variations. The comparison between both cpDNA and ncDNA patterns showed that gene flow between the lineages is unbalanced. The southern and northeastern populations may benefit from the input, through river flow, of novel alleles located upstream to their local gene pools. These alleles could migrate from populations that are already adapted to conditions that fit the predicted climates in the receiving local populations, hotter at the northeastern limit and drier in the Central United States. These "preadapted" incoming alleles may help to cope with maladaptation in populations facing changing conditions.
Collapse
Affiliation(s)
- Julie Godbout
- Ministère des Forêts, de la Faune et des Parcs, Direction de la recherche forestièreQuébecQCCanada
- Canadian Forest Service, Laurentian Forestry CentreNatural Resources CanadaQuébecQCCanada
| | | | - Manuel Lamothe
- Canadian Forest Service, Laurentian Forestry CentreNatural Resources CanadaQuébecQCCanada
| | - Nathalie Isabel
- Canadian Forest Service, Laurentian Forestry CentreNatural Resources CanadaQuébecQCCanada
| |
Collapse
|
7
|
Chhatre VE, Evans LM, DiFazio SP, Keller SR. Adaptive introgression and maintenance of a trispecies hybrid complex in range‐edge populations of
Populus. Mol Ecol 2018; 27:4820-4838. [DOI: 10.1111/mec.14820] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Vikram E. Chhatre
- Department of Plant Biology University of Vermont Burlington Vermont
| | - Luke M. Evans
- Department of Ecology and Evolutionary Biology Institute of Behavioral Genetics University of Colorado Boulder Colorado
| | | | - Stephen R. Keller
- Department of Plant Biology University of Vermont Burlington Vermont
| |
Collapse
|
8
|
Deacon NJ, Grossman JJ, Schweiger AK, Armour I, Cavender-Bares J. Genetic, morphological, and spectral characterization of relictual Niobrara River hybrid aspens ( Populus × smithii). AMERICAN JOURNAL OF BOTANY 2017; 104:1878-1890. [PMID: 29247028 DOI: 10.3732/ajb.1700268] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 11/06/2017] [Indexed: 05/26/2023]
Abstract
PREMISE OF THE STUDY Aspen groves along the Niobrara River in Nebraska have long been a biogeographic curiosity due to morphological differences from nearby remnant Populus tremuloides populations. Pleistocene hybridization between P. tremuloides and P. grandidentata has been proposed, but the nearest P. grandidentata populations are currently several hundred kilometers east. We tested the hybrid-origin hypothesis using genetic data and characterized putative hybrids phenotypically. METHODS We compared nuclear microsatellite loci and chloroplast sequences of Niobrara River aspens to their putative parental species. Parental species and putative hybrids were also grown in a common garden for phenotypic comparison. On the common garden plants, we measured leaf morphological traits and leaf-level spectral reflectance profiles, from which chemical traits were derived. KEY RESULTS The genetic composition of the three unique Niobrara aspen genotypes is consistent with the hybridization hypothesis and with maternal chloroplast inheritance from P. grandidentata. Leaf margin dentition and abaxial pubescence differentiated taxa, with the hybrids showing intermediate values. Spectral profiles allowed statistical separation of taxa in short-wave infrared wavelengths, with hybrids showing intermediate values, indicating that traits associated with internal structure of leaves and water absorption may vary among taxa. However, reflectance values in the visible region did not differentiate taxa, indicating that traits related to pigments are not differentiated. CONCLUSIONS Both genetic and phenotypic results support the hypothesis of a hybrid origin for these genetically unique aspens. However, low genetic diversity and ongoing ecological and climatic threats to the hybrid taxon present a challenge for conservation of these relictual boreal communities.
Collapse
Affiliation(s)
- Nicholas John Deacon
- Ecology, Evolution and Behavior, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Avenue, St. Paul, MN 55108 USA
- Plant Biology, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Avenue, St. Paul, MN 55108 USA
| | - Jake Joseph Grossman
- Ecology, Evolution and Behavior, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Avenue, St. Paul, MN 55108 USA
| | - Anna Katharina Schweiger
- Ecology, Evolution and Behavior, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Avenue, St. Paul, MN 55108 USA
| | | | - Jeannine Cavender-Bares
- Ecology, Evolution and Behavior, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Avenue, St. Paul, MN 55108 USA
| |
Collapse
|
9
|
Jarvis KJ, Allan GJ, Craig AJ, Beresic-Perrins RK, Wimp G, Gehring CA, Whitham TG. Arthropod communities on hybrid and parental cottonwoods are phylogenetically structured by tree type: Implications for conservation of biodiversity in plant hybrid zones. Ecol Evol 2017; 7:5909-5921. [PMID: 28808554 PMCID: PMC5551273 DOI: 10.1002/ece3.3146] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/17/2017] [Indexed: 02/03/2023] Open
Abstract
Although hybridization in plants has been recognized as an important pathway in plant speciation, it may also affect the ecology and evolution of associated communities. Cottonwood species (Populus angustifolia and P. fremontii) and their naturally occurring hybrids are known to support different plant, animal, and microbial communities, but no studies have examined community structure within the context of phylogenetic history. Using a community composed of 199 arthropod species, we tested for differences in arthropod phylogenetic patterns within and among hybrid and parental tree types in a common garden. Three major patterns emerged. (1) Phylogenetic diversity (PD) was significantly different between arthropod communities on hybrids and Fremont cottonwood when pooled by tree type. (2) Mean phylogenetic distance (MPD) and net relatedness index (NRI) indicated that communities on hybrid trees were significantly more phylogenetically overdispersed than communities on either parental tree type. (3) Community distance (Dpw) indicated that communities on hybrids were significantly different than parental species. Our results show that arthropod communities on parental and hybrid cottonwoods exhibit significantly different patterns of phylogenetic structure. This suggests that arthropod community assembly is driven, in part, by plant-arthropod interactions at the level of cottonwood tree type. We discuss potential hypotheses to explain the effect of plant genetic dissimilarity on arthropod phylogenetic community structure, including the role of competition and environmental filtering. Our findings suggest that cottonwood species and their hybrids function as evolutionarily significant units (ESUs) that affect the assembly and composition of associated arthropod communities and deserve high priority for conservation.
Collapse
Affiliation(s)
- Karl J Jarvis
- School of Forestry Northern Arizona University Flagstaff AZ USA.,Biology Department Southern Utah University Cedar City UT USA
| | - Gerard J Allan
- Department of Biological Sciences Northern Arizona University Flagstaff AZ USA.,Merriam-Powell Center for Environmental Research Flagstaff AZ USA
| | - Ashley J Craig
- Department of Biological Sciences Northern Arizona University Flagstaff AZ USA
| | | | - Gina Wimp
- Department of Biology Georgetown University Washington DC USA
| | - Catherine A Gehring
- Department of Biological Sciences Northern Arizona University Flagstaff AZ USA.,Merriam-Powell Center for Environmental Research Flagstaff AZ USA
| | - Thomas G Whitham
- Department of Biological Sciences Northern Arizona University Flagstaff AZ USA.,Merriam-Powell Center for Environmental Research Flagstaff AZ USA
| |
Collapse
|
10
|
Landscape Genomics of Angiosperm Trees: From Historic Roots to Discovering New Branches of Adaptive Evolution. COMPARATIVE AND EVOLUTIONARY GENOMICS OF ANGIOSPERM TREES 2017. [DOI: 10.1007/7397_2016_19] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Gompert Z, Buerkle CA. What, if anything, are hybrids: enduring truths and challenges associated with population structure and gene flow. Evol Appl 2016; 9:909-23. [PMID: 27468308 PMCID: PMC4947152 DOI: 10.1111/eva.12380] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 02/27/2016] [Indexed: 01/17/2023] Open
Abstract
Hybridization is a potent evolutionary process that can affect the origin, maintenance, and loss of biodiversity. Because of its ecological and evolutionary consequences, an understanding of hybridization is important for basic and applied sciences, including conservation biology and agriculture. Herein, we review and discuss ideas that are relevant to the recognition of hybrids and hybridization. We supplement this discussion with simulations. The ideas we present have a long history, particularly in botany, and clarifying them should have practical consequences for managing hybridization and gene flow in plants. One of our primary goals is to illustrate what we can and cannot infer about hybrids and hybridization from molecular data; in other words, we ask when genetic analyses commonly used to study hybridization might mislead us about the history or nature of gene flow and selection. We focus on patterns of variation when hybridization is recent and populations are polymorphic, which are particularly informative for applied issues, such as contemporary hybridization following recent ecological change. We show that hybridization is not a singular process, but instead a collection of related processes with variable outcomes and consequences. Thus, it will often be inappropriate to generalize about the threats or benefits of hybridization from individual studies, and at minimum, it will be important to avoid categorical thinking about what hybridization and hybrids are. We recommend potential sampling and analytical approaches that should help us confront these complexities of hybridization.
Collapse
|
12
|
Evans LM, Kaluthota S, Pearce DW, Allan GJ, Floate K, Rood SB, Whitham TG. Bud phenology and growth are subject to divergent selection across a latitudinal gradient in Populus angustifolia and impact adaptation across the distributional range and associated arthropods. Ecol Evol 2016; 6:4565-81. [PMID: 27386097 PMCID: PMC4931002 DOI: 10.1002/ece3.2222] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 05/11/2016] [Indexed: 12/12/2022] Open
Abstract
Temperate forest tree species that span large geographical areas and climatic gradients often have high levels of genetic variation. Such species are ideal for testing how neutral demographic factors and climate‐driven selection structure genetic variation within species, and how this genetic variation can affect ecological communities. Here, we quantified genetic variation in vegetative phenology and growth traits in narrowleaf cottonwood, Populus angustifolia, using three common gardens planted with genotypes originating from source populations spanning the species' range along the Rocky Mountains of North America (ca. 1700 km). We present three main findings. First, we found strong evidence of divergent selection (QST > FST) on fall phenology (bud set) with adaptive consequences for frost avoidance. We also found evidence for selection on bud flush duration, tree height, and basal diameter, resulting in population differentiation. Second, we found strong associations with climate variables that were strongly correlated with latitude of origin. More strongly differentiated traits also showed stronger climate correlations, which emphasizes the role that climate has played in divergent selection throughout the range. We found population × garden interaction effects; for some traits, this accounted for more of the variance than either factor alone. Tree height was influenced by the difference in climate of the source and garden locations and declined with increasing transfer distance. Third, growth traits were correlated with dependent arthropod community diversity metrics. Synthesis. Overall, we conclude that climate has influenced genetic variation and structure in phenology and growth traits and leads to local adaptation in P. angustifolia, which can then impact dependent arthropod species. Importantly, relocation of genotypes far northward or southward often resulted in poor growth, likely due to a phenological mismatch with photoperiod, the proximate cue for fall growth cessation. Genotypes moved too far southward suffer from early growth cessation, whereas those moved too far northward are prone to fall frost and winter dieback. In the face of current and forecasted climate change, habitat restoration, forestry, and tree breeding efforts should utilize these findings to better match latitudinal and climatic source environments with management locations for optimal future outcomes.
Collapse
Affiliation(s)
- Luke M Evans
- Department of Biological Sciences & Merriam-Powell Center for Environmental Research Northern Arizona University PO Box 5640 Flagstaff Arizona 86011
| | - Sobadini Kaluthota
- Biological Science University of Lethbridge Lethbridge Alberta T1K 3M4 Canada
| | - David W Pearce
- Biological Science University of Lethbridge Lethbridge Alberta T1K 3M4 Canada
| | - Gerard J Allan
- Department of Biological Sciences & Merriam-Powell Center for Environmental Research Northern Arizona University PO Box 5640 Flagstaff Arizona 86011
| | - Kevin Floate
- Lethbridge Research and Development Centre Agriculture and Agri-Food Canada Lethbridge Alberta T1J 4B1 Canada
| | - Stewart B Rood
- Biological Science University of Lethbridge Lethbridge Alberta T1K 3M4 Canada
| | - Thomas G Whitham
- Department of Biological Sciences & Merriam-Powell Center for Environmental Research Northern Arizona University PO Box 5640 Flagstaff Arizona 86011
| |
Collapse
|
13
|
Gene Flow of a Forest-Dependent Bird across a Fragmented Landscape. PLoS One 2015; 10:e0140938. [PMID: 26580222 PMCID: PMC4651334 DOI: 10.1371/journal.pone.0140938] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 09/30/2015] [Indexed: 02/01/2023] Open
Abstract
Habitat loss and fragmentation can affect the persistence of populations by reducing connectivity and restricting the ability of individuals to disperse across landscapes. Dispersal corridors promote population connectivity and therefore play important roles in maintaining gene flow in natural populations inhabiting fragmented landscapes. In the prairies, forests are restricted to riparian areas along river systems which act as important dispersal corridors for forest dependent species across large expanses of unsuitable grassland habitat. However, natural and anthropogenic barriers within riparian systems have fragmented these forested habitats. In this study, we used microsatellite markers to assess the fine-scale genetic structure of a forest-dependent species, the black-capped chickadee (Poecile atricapillus), along 10 different river systems in Southern Alberta. Using a landscape genetic approach, landscape features (e.g., land cover) were found to have a significant effect on patterns of genetic differentiation. Populations are genetically structured as a result of natural breaks in continuous habitat at small spatial scales, but the artificial barriers we tested do not appear to restrict gene flow. Dispersal between rivers is impeded by grasslands, evident from isolation of nearby populations (~ 50 km apart), but also within river systems by large treeless canyons (>100 km). Significant population genetic differentiation within some rivers corresponded with zones of different cottonwood (riparian poplar) tree species and their hybrids. This study illustrates the importance of considering the impacts of habitat fragmentation at small spatial scales as well as other ecological processes to gain a better understanding of how organisms respond to their environmental connectivity. Here, even in a common and widespread songbird with high dispersal potential, small breaks in continuous habitats strongly influenced the spatial patterns of genetic variation.
Collapse
|