1
|
Zhao S, Yan F, Liu Y, Sun M, Wang Y, Li J, Zhang X, Yang X, Wang Q. Glycine max acyl-acyl carrier protein thioesterase B gene overexpression alters lipid content and fatty acid profile of Arabidopsis seeds. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23001. [PMID: 38228091 DOI: 10.1071/fp23001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 12/20/2023] [Indexed: 01/18/2024]
Abstract
The fatty acyl-acyl carrier protein thioesterase B (FATB ) gene, involved in the synthesis of saturated fatty acids, plays an important role in the content of fatty acid and composition of seed storage lipids. However, the role of FATB in soybeans (Glycine max ) has been poorly characterised. This paper presents a preliminary bioinformatics and molecular biological investigation of 10 hypothetical FATB members. The results revealed that GmFATB1B , GmFATB2A and GmFATB2B contain many response elements involved in defense and stress responses and meristem tissue expression. Moreover, the coding sequences of GmFATB1A and GmFATB1B were significantly longer than those of the other genes. Their expression varied in different organs of soybean plants during growth, with GmFATB2A and GmFATB2B showing higher relative expression. In addition, subcellular localisation analysis revealed that they were mainly present in chloroplasts. Overexpression of GmFATB1A , GmFATB1B , GmFATB2A and GmFATB2B in transgenic Arabidopsis thaliana plants increased the seed oil content by 10.3%, 12.5%, 7.5% and 8.4%, respectively, compared to that in the wild-type and led to significant increases in palmitic and stearic acid content. Thus, this research has increased our understanding of the FATB family in soybeans and provides a theoretical basis for subsequent improvements in soybean quality.
Collapse
Affiliation(s)
- Shihui Zhao
- College of Plant Science, Jilin University, Changchun, China
| | - Fan Yan
- College of Plant Science, Jilin University, Changchun, China
| | - Yajing Liu
- College of Plant Science, Jilin University, Changchun, China
| | - Monan Sun
- College of Plant Science, Jilin University, Changchun, China
| | - Ying Wang
- College of Plant Science, Jilin University, Changchun, China
| | - Jingwen Li
- College of Plant Science, Jilin University, Changchun, China
| | - Xinsheng Zhang
- College of Plant Science, Jilin University, Changchun, China
| | - Xuguang Yang
- College of Plant Science, Jilin University, Changchun, China
| | - Qingyu Wang
- College of Plant Science, Jilin University, Changchun, China
| |
Collapse
|
2
|
Guédon Y, Caraglio Y, Granier C, Lauri PÉ, Muller B. Identifying Developmental Patterns in Structured Plant Phenotyping Data. Methods Mol Biol 2022; 2395:199-225. [PMID: 34822155 DOI: 10.1007/978-1-0716-1816-5_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Technological breakthroughs concerning both sensors and robotized plant phenotyping platforms have totally renewed the plant phenotyping paradigm in the last two decades. This has impacted both the nature and the throughput of data with the availability of data at high-throughput from the tissular to the whole plant scale. Sensor outputs often take the form of 2D or 3D images or time series of such images from which traits are extracted while organ shapes, shoot or root system architectures can be deduced. Despite this change of paradigm, many phenotyping studies often ignore the structure of the plant and therefore loose the information conveyed by the temporal and spatial patterns emerging from this structure. The developmental patterns of plants often take the form of succession of well-differentiated phases, stages or zones depending on the temporal, spatial or topological indexing of data. This entails the use of hierarchical statistical models for their identification.The objective here is to show potential approaches for analyzing structured plant phenotyping data using state-of-the-art methods combining probabilistic modeling, statistical inference and pattern recognition. This approach is illustrated using five different examples at various scales that combine temporal and topological index parameters, and development and growth variables obtained using prospective or retrospective measurements.
Collapse
Affiliation(s)
- Yann Guédon
- AGAP, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Yves Caraglio
- AMAP, Univ Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France.
| | - Christine Granier
- AGAP, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Pierre-Éric Lauri
- ABSys, Univ Montpellier, CIHEAM-IAMM, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Bertrand Muller
- LEPSE, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
3
|
González R, Butković A, Rivarez MPS, Elena SF. Natural variation in Arabidopsis thaliana rosette area unveils new genes involved in plant development. Sci Rep 2020; 10:17600. [PMID: 33077802 PMCID: PMC7788084 DOI: 10.1038/s41598-020-74723-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/06/2020] [Indexed: 11/08/2022] Open
Abstract
Growth is a complex trait influenced by multiple genes that act at different moments during the development of an organism. This makes it difficult to spot its underlying genetic mechanisms. Since plant growth is intimately related to the effective leaf surface area (ELSA), identifying genes controlling this trait will shed light on our understanding of plant growth. To find new genes with a significant contribution to plant growth, here we used the natural variation in Arabidopsis thaliana to perform a genome-wide association study of ELSA. To do this, the projected rosette area of 710 worldwide distributed natural accessions was measured and analyzed using the genome-wide efficient mixed model association algorithm. From this analysis, ten genes were identified having SNPs with a significant association with ELSA. To validate the implication of these genes into A. thaliana growth, six of them were further studied by phenotyping knock-out mutant plants. It was observed that rem1.2, orc1a, ppd1, and mcm4 mutants showed different degrees of reduction in rosette size, thus confirming the role of these genes in plant growth. Our study identified genes already known to be involved in plant growth but also assigned this role, for the first time, to other genes.
Collapse
Affiliation(s)
- Rubén González
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-Universitat de València, Parc Cientific UV, Catedrático Agustín Escardino 9, Paterna, 46980, Valencia, Spain.
| | - Anamarija Butković
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-Universitat de València, Parc Cientific UV, Catedrático Agustín Escardino 9, Paterna, 46980, Valencia, Spain
| | - Mark Paul Selda Rivarez
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-Universitat de València, Parc Cientific UV, Catedrático Agustín Escardino 9, Paterna, 46980, Valencia, Spain
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia
| | - Santiago F Elena
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-Universitat de València, Parc Cientific UV, Catedrático Agustín Escardino 9, Paterna, 46980, Valencia, Spain
- The Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM, 87501, USA
| |
Collapse
|
4
|
Proteomic and transcriptomic profiling of aerial organ development in Arabidopsis. Sci Data 2020; 7:334. [PMID: 33037224 PMCID: PMC7547660 DOI: 10.1038/s41597-020-00678-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/14/2020] [Indexed: 01/20/2023] Open
Abstract
Plant growth and development are regulated by a tightly controlled interplay between cell division, cell expansion and cell differentiation during the entire plant life cycle from seed germination to maturity and seed propagation. To explore some of the underlying molecular mechanisms in more detail, we selected different aerial tissue types of the model plant Arabidopsis thaliana, namely rosette leaf, flower and silique/seed and performed proteomic, phosphoproteomic and transcriptomic analyses of sequential growth stages using tandem mass tag-based mass spectrometry and RNA sequencing. With this exploratory multi-omics dataset, development dynamics of photosynthetic tissues can be investigated from different angles. As expected, we found progressive global expression changes between growth stages for all three omics types and often but not always corresponding expression patterns for individual genes on transcript, protein and phosphorylation site level. The biggest difference between proteomic- and transcriptomic-based expression information could be observed for seed samples. Proteomic and transcriptomic data is available via ProteomeXchange and ArrayExpress with the respective identifiers PXD018814 and E-MTAB-7978.
Collapse
|
5
|
Boudon F, Persello S, Jestin A, Briand AS, Grechi I, Fernique P, Guédon Y, Léchaudel M, Lauri PÉ, Normand F. V-Mango: a functional-structural model of mango tree growth, development and fruit production. ANNALS OF BOTANY 2020; 126:745-763. [PMID: 32391865 PMCID: PMC7489065 DOI: 10.1093/aob/mcaa089] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/06/2020] [Indexed: 05/28/2023]
Abstract
BACKGROUND AND AIMS Mango (Mangifera indica L.) is the fifth most widely produced fruit in the world. Its cultivation, mainly in tropical and sub-tropical regions, raises a number of issues such as the irregular fruit production across years, phenological asynchronisms that lead to long periods of pest and disease susceptibility, and the heterogeneity of fruit quality and maturity at harvest. To address these issues, we developed an integrative functional-structural plant model that synthesizes knowledge about the vegetative and reproductive development of the mango tree and opens up the possible simulation of cultivation practices. METHODS We designed a model of architectural development in order to precisely characterize the intricate developmental processes of the mango tree. The appearance of botanical entities was decomposed into elementary stochastic events describing occurrence, intensity and timing of development. These events were determined by structural (position and fate of botanical entities) and temporal (appearance dates) factors. Daily growth and development of growth units and inflorescences were modelled using empirical distributions and thermal time. Fruit growth was determined using an ecophysiological model that simulated carbon- and water-related processes at the fruiting branch scale. KEY RESULTS The model simulates the dynamics of the population of growth units, inflorescences and fruits at the tree scale during a growing cycle. Modelling the effects of structural and temporal factors makes it possible to simulate satisfactorily the complex interplays between vegetative and reproductive development. The model allowed the characterization of the susceptibility of mango tree to pests and the investigatation of the influence of tree architecture on fruit growth. CONCLUSIONS This integrative functional-structural model simulates mango tree vegetative and reproductive development over successive growing cycles, allowing a precise characterization of tree phenology and fruit growth and production. The next step is to integrate the effects of cultivation practices, such as pruning, into the model.
Collapse
Affiliation(s)
- Frédéric Boudon
- CIRAD, UMR AGAP, 34098 Montpellier, France
- AGAP, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Séverine Persello
- CIRAD, UMR AGAP, 34098 Montpellier, France
- AGAP, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- CIRAD, UPR HortSys, 97455 Saint-Pierre, La Réunion,France
- HortSys, Univ Montpellier, CIRAD, Montpellier, France
| | - Alexandra Jestin
- CIRAD, UMR AGAP, 34098 Montpellier, France
- AGAP, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- CIRAD, UPR HortSys, 97455 Saint-Pierre, La Réunion,France
- HortSys, Univ Montpellier, CIRAD, Montpellier, France
| | - Anne-Sarah Briand
- CIRAD, UMR AGAP, 34098 Montpellier, France
- AGAP, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- CIRAD, UPR HortSys, 97455 Saint-Pierre, La Réunion,France
- HortSys, Univ Montpellier, CIRAD, Montpellier, France
| | - Isabelle Grechi
- CIRAD, UPR HortSys, 97455 Saint-Pierre, La Réunion,France
- HortSys, Univ Montpellier, CIRAD, Montpellier, France
| | - Pierre Fernique
- CIRAD, UMR AGAP, 34098 Montpellier, France
- AGAP, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Yann Guédon
- CIRAD, UMR AGAP, 34098 Montpellier, France
- AGAP, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Mathieu Léchaudel
- CIRAD, UMR QualiSud, 97130 Capesterre-Belle-Eau, Guadeloupe, France
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, Université de La Réunion, Montpellier, France
| | - Pierre-Éric Lauri
- UMR ABSys, INRAE, CIRAD, CIHEAM-IAMM, Institut Agro, Univ Montpellier, Montpellier, France
| | - Frédéric Normand
- CIRAD, UPR HortSys, 97455 Saint-Pierre, La Réunion,France
- HortSys, Univ Montpellier, CIRAD, Montpellier, France
| |
Collapse
|
6
|
Labadie M, Denoyes B, Guédon Y. Identifying phenological phases in strawberry using multiple change-point models. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5687-5701. [PMID: 31328226 PMCID: PMC6812722 DOI: 10.1093/jxb/erz331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 07/10/2019] [Indexed: 05/11/2023]
Abstract
Plant development studies often generate data in the form of multivariate time series, each variable corresponding to a count of newly emerged organs for a given development process. These phenological data often exhibit highly structured patterns, and the aim of this study was to identify such patterns in cultivated strawberry. Six strawberry genotypes were observed weekly for their course of emergence of flowers, leaves, and stolons during 7 months. We assumed that these phenological series take the form of successive phases, synchronous between individuals. We applied univariate multiple change-point models for the identification of flowering, vegetative development, and runnering phases, and multivariate multiple change-point models for the identification of consensus phases for these three development processes. We showed that the flowering and the runnering processes are the main determinants of the phenological pattern. On this basis, we propose a typology of the six genotypes in the form of a hierarchical classification. This study introduces a new longitudinal data modeling approach for the identification of phenological phases in plant development. The focus was on development variables but the approach can be directly extended to growth variables and to multivariate series combining growth and development variables.
Collapse
Affiliation(s)
- Marc Labadie
- UMR BFP, INRA, Université de Bordeaux, Villenave d’Ornon, France
- CIRAD, UMR AGAP and Université de Montpellier, Montpellier, France
| | - Béatrice Denoyes
- UMR BFP, INRA, Université de Bordeaux, Villenave d’Ornon, France
- Correspondence: or
| | - Yann Guédon
- UMR BFP, INRA, Université de Bordeaux, Villenave d’Ornon, France
- CIRAD, UMR AGAP and Université de Montpellier, Montpellier, France
- Correspondence: or
| |
Collapse
|
7
|
Muller B, Guédon Y, Passot S, Lobet G, Nacry P, Pagès L, Wissuwa M, Draye X. Lateral Roots: Random Diversity in Adversity. TRENDS IN PLANT SCIENCE 2019; 24:810-825. [PMID: 31320193 DOI: 10.1016/j.tplants.2019.05.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 05/24/2019] [Accepted: 05/31/2019] [Indexed: 06/10/2023]
Abstract
Lateral roots are essential for soil foraging and uptake of minerals and water. They feature a large morphological diversity that results from divergent primordia or root growth and development patterns. Besides a structured diversity, resulting from the hierarchical and developmental organization of root systems, there exists a random diversity, occurring between roots of similar age, of the same hierarchical order, and exposed to uniform conditions. The physiological bases and functional consequences of this random diversity are largely ignored. Here we review the evidence for such random diversity throughout the plant kingdom, present innovative approaches based on statistical modeling to account for such diversity, and set the list of its potential benefits in front of a variable and unpredictable soil environment.
Collapse
Affiliation(s)
- Bertrand Muller
- INRA, Supagro, Université Montpellier, UMR 759 Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, 34060 Montpellier, France.
| | - Yann Guédon
- CIRAD, Université Montpellier, UMR 1334 Adaptation Génétique et Amélioration des Plantes, 34398, Montpellier, France
| | - Sixtine Passot
- Université catholique de Louvain, Earth and Life Institute, 1348 Louvain-la-Neuve, Belgium
| | - Guillaume Lobet
- Université catholique de Louvain, Earth and Life Institute, 1348 Louvain-la-Neuve, Belgium; Forschungszentrum Juelich GmbH, IBG3 Agrosphere, 52428 Juelich, Germany
| | - Philippe Nacry
- INRA, Supagro, CNRS, Université Montpellier, UMR 5004 Biochimie et Physiologie Moléculaire des Plantes, 340660 Montpellier, France
| | - Loïc Pagès
- INRA, UR, 1115 Plantes et Systèmes de culture Horticoles, Site Agroparc, 84914 Avignon, France
| | - Matthias Wissuwa
- Japan International Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, 305-8686, Japan
| | - Xavier Draye
- Université catholique de Louvain, Earth and Life Institute, 1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
8
|
van Buer J, Prescher A, Baier M. Cold-priming of chloroplast ROS signalling is developmentally regulated and is locally controlled at the thylakoid membrane. Sci Rep 2019; 9:3022. [PMID: 30816299 PMCID: PMC6395587 DOI: 10.1038/s41598-019-39838-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/29/2019] [Indexed: 12/31/2022] Open
Abstract
24 h exposure to 4 °C primes Arabidopsis thaliana in the pre-bolting rosette stage for several days against full cold activation of the ROS responsive genes ZAT10 and BAP1 and causes stronger cold-induction of pleiotropically stress-regulated genes. Transient over-expression of thylakoid ascorbate peroxidase (tAPX) at 20 °C mimicked and tAPX transcript silencing antagonized cold-priming of ZAT10 expression. The tAPX effect could not be replaced by over-expression of stromal ascorbate peroxidase (sAPX) demonstrating that priming is specific to regulation of tAPX availability and, consequently, regulated locally at the thylakoid membrane. Arabidopsis acquired cold primability in the early rosette stage between 2 and 4 weeks. During further rosette development, primability was widely maintained in the oldest leaves. Later formed and later maturing leaves were not primable demonstrating that priming is stronger regulated with plant age than with leaf age. In 4-week-old plants, which were strongest primable, the memory was fully erasable and lost seven days after priming. In summary, we conclude that cold-priming of chloroplast-to-nucleus ROS signalling by transient post-stress induction of tAPX transcription is a strategy to modify cell signalling for some time without affecting the alertness for activation of cold acclimation responses.
Collapse
Affiliation(s)
- Jörn van Buer
- Plant Physiology, Freie Universität Berlin, Dahlem Centre of Plant Sciences, Königin-Luise-Straße 12-16, 14195, Berlin, Germany
| | - Andreas Prescher
- Plant Physiology, Freie Universität Berlin, Dahlem Centre of Plant Sciences, Königin-Luise-Straße 12-16, 14195, Berlin, Germany
| | - Margarete Baier
- Plant Physiology, Freie Universität Berlin, Dahlem Centre of Plant Sciences, Königin-Luise-Straße 12-16, 14195, Berlin, Germany.
| |
Collapse
|
9
|
Duruflé H, Ranocha P, Mbadinga Mbadinga DL, Déjean S, Bonhomme M, San Clemente H, Viudes S, Eljebbawi A, Delorme-Hinoux V, Sáez-Vásquez J, Reichheld JP, Escaravage N, Burrus M, Dunand C. Phenotypic Trait Variation as a Response to Altitude-Related Constraints in Arabidopsis Populations. FRONTIERS IN PLANT SCIENCE 2019; 10:430. [PMID: 31024596 PMCID: PMC6465555 DOI: 10.3389/fpls.2019.00430] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 03/21/2019] [Indexed: 05/12/2023]
Abstract
UNLABELLED Natural variations help in identifying genetic mechanisms of morphologically and developmentally complex traits. Mountainous habitats provide an altitudinal gradient where one species encounters different abiotic conditions. We report the study of 341 individuals of Arabidopsis thaliana derived from 30 natural populations not belonging to the 1001 genomes, collected at increasing altitudes, between 200 and 1800 m in the Pyrenees. Class III peroxidases and ribosomal RNA sequences were used as markers to determine the putative genetic relationships among these populations along their altitudinal gradient. Using Bayesian-based statistics and phylogenetic analyses, these Pyrenean populations appear with significant divergence from the other regional accessions from 1001 genome (i.e., from north Spain or south France). Individuals of these populations exhibited varying phenotypic changes, when grown at sub-optimal temperature (22 vs. 15°C). These phenotypic variations under controlled conditions reflected intraspecific morphological variations. This study could bring new information regarding the west European population structure of A. thaliana and its phenotypic variations at different temperatures. The integrative analysis combining genetic, phenotypic variation and environmental datasets is used to analyze the acclimation of population in response to temperature changes. Regarding their geographical proximity and environmental diversity, these populations represent a tool of choice for studying plant response to temperature variation. HIGHLIGHTS -Studying the natural diversity of A. thaliana in the Pyrenees mountains helps to understand European population structure and to evaluate the phenotypic trait variation in response to climate change.
Collapse
Affiliation(s)
- Harold Duruflé
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Castanet Tolosan, France
| | - Philippe Ranocha
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Castanet Tolosan, France
| | - Duchesse Lacour Mbadinga Mbadinga
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Castanet Tolosan, France
| | - Sébastien Déjean
- Institut de Mathématiques de Toulouse, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Maxime Bonhomme
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Castanet Tolosan, France
| | - Hélène San Clemente
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Castanet Tolosan, France
| | - Sébastien Viudes
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Castanet Tolosan, France
| | - Ali Eljebbawi
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Castanet Tolosan, France
| | - Valerie Delorme-Hinoux
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, Perpignan, France
- Laboratoire Génome et Développement des Plantes, CNRS, Perpignan, France
| | - Julio Sáez-Vásquez
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, Perpignan, France
- Laboratoire Génome et Développement des Plantes, CNRS, Perpignan, France
| | - Jean-Philippe Reichheld
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, Perpignan, France
- Laboratoire Génome et Développement des Plantes, CNRS, Perpignan, France
| | - Nathalie Escaravage
- Université Toulouse 3 Paul Sabatier, CNRS, ENFA, UMR5174 EDB (Laboratoire Évolution & Diversité Biologique), Toulouse, France
| | - Monique Burrus
- Université Toulouse 3 Paul Sabatier, CNRS, ENFA, UMR5174 EDB (Laboratoire Évolution & Diversité Biologique), Toulouse, France
| | - Christophe Dunand
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Castanet Tolosan, France
- *Correspondence: Christophe Dunand,
| |
Collapse
|
10
|
Koch G, Rolland G, Dauzat M, Bédiée A, Baldazzi V, Bertin N, Guédon Y, Granier C. Are compound leaves more complex than simple ones? A multi-scale analysis. ANNALS OF BOTANY 2018; 122:1173-1185. [PMID: 29982438 PMCID: PMC6324747 DOI: 10.1093/aob/mcy116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 06/06/2018] [Indexed: 06/08/2023]
Abstract
Background and Aims The question of which cellular mechanisms determine the variation in leaf size has been addressed mainly in plants with simple leaves. It is addressed here in tomato taking into consideration the expected complexity added by the several lateral appendages making up the compound leaf, the leaflets. Methods Leaf and leaflet areas, epidermal cell number and areas, and endoreduplication (co-) variations were analysed in Solanum lycopersicum considering heteroblastic series in a wild type (Wva106) and an antisense mutant, the Pro35S:Slccs52AAS line, and upon drought treatments. All plants were grown in an automated phenotyping platform, PHENOPSIS, adapted to host plants grown in 7 L pots. Key Results Leaf area, leaflet area and cell number increased with leaf rank until reaching a plateau. In contrast, cell area slightly decreased and endoreduplication did not follow any trend. In the transgenic line, leaf area, leaflet areas and cell number of basal leaves were lower than in the wild type, but higher in upper leaves. Reciprocally, cell area was higher in basal leaves and lower in upper leaves. When scaled up at the whole sympodial unit, all these traits did not differ significantly between the transgenic line and the wild type. In response to drought, leaf area was reduced, with a clear dose effect that was also reported for all size-related traits, including endoreduplication. Conclusions These results provide evidence that all leaflets have the same cellular phenotypes as the leaf they belong to. Consistent with results reported for simple leaves, they show that cell number rather than cell size determines the final leaf areas and that endoreduplication can be uncoupled from leaf and cell sizes. Finally, they re-question a whole-plant control of cell division and expansion in leaves when the Wva106 and the Pro35S:Slccs52AAS lines are compared.
Collapse
Affiliation(s)
- Garance Koch
- LEPSE, Université de Montpellier, INRA, Montpellier SupAgro, Montpellier, France
- INRA, UR PSH, Avignon, France
| | - Gaëlle Rolland
- LEPSE, Université de Montpellier, INRA, Montpellier SupAgro, Montpellier, France
| | - Myriam Dauzat
- LEPSE, Université de Montpellier, INRA, Montpellier SupAgro, Montpellier, France
| | - Alexis Bédiée
- LEPSE, Université de Montpellier, INRA, Montpellier SupAgro, Montpellier, France
| | - Valentina Baldazzi
- INRA, UR PSH, Avignon, France
- ISA, INRA, CNRS, Université Côte d’Azur, France
- BIOCORE, Inria, INRA, CNRS, UPMC Université de Paris 06, Université Côte d’Azur, France
| | | | - Yann Guédon
- AGAP, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Christine Granier
- LEPSE, Université de Montpellier, INRA, Montpellier SupAgro, Montpellier, France
- AGAP, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| |
Collapse
|
11
|
Vendemiatti E, Zsögön A, Silva GFFE, de Jesus FA, Cutri L, Figueiredo CRF, Tanaka FAO, Nogueira FTS, Peres LEP. Loss of type-IV glandular trichomes is a heterochronic trait in tomato and can be reverted by promoting juvenility. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 259:35-47. [PMID: 28483052 DOI: 10.1016/j.plantsci.2017.03.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 02/21/2017] [Accepted: 03/01/2017] [Indexed: 05/27/2023]
Abstract
Glandular trichomes are structures with widespread distribution and deep ecological significance. In the Solanum genus, type-IV glandular trichomes provide resistance to insect pests. The occurrence of these structures is, however, poorly described and controversial in cultivated tomato (Solanum lycopersicum). Optical and scanning electron microscopy were used to screen a series of well-known commercial tomato cultivars, revealing the presence of type-IV trichomes on embryonic (cotyledons) and juvenile leaves. A tomato line overexpressing the microRNA miR156, known to promote heterochronic development, and mutants affecting KNOX and CLAVATA3 genes possessed type-IV trichomes in adult leaves. A re-analysis of the Woolly (Wo) mutant, previously described as enhancing glandular trichome density, showed that this effect only occurs at the juvenile phase of vegetative development. Our results suggest the existence of at least two levels of regulation of multicellular trichome formation in tomato: one enhancing different types of trichomes, such as that controlled by the WOOLLY gene, and another dependent on developmental stage, which is fundamental for type-IV trichome formation. Their combined manipulation could represent an avenue for biotechnological engineering of trichome development in plants.
Collapse
Affiliation(s)
- Eloisa Vendemiatti
- Departament of Biological Sciences, Escola Superior de Agricultura "Luiz de Queiroz", University of São Paulo (USP), Av. Pádua Dias, 11, CP 09, 13418-900, Piracicaba, SP, Brazil
| | - Agustin Zsögön
- Departament of Plant Biology, Universidade Federal de Viçosa (UFV), Av. Peter Henry Rolfs s/n, 36570-900, Viçosa, MG, Brazil
| | - Geraldo Felipe Ferreira E Silva
- Departament of Biological Sciences, Escola Superior de Agricultura "Luiz de Queiroz", University of São Paulo (USP), Av. Pádua Dias, 11, CP 09, 13418-900, Piracicaba, SP, Brazil
| | - Frederico Almeida de Jesus
- Departament of Biological Sciences, Escola Superior de Agricultura "Luiz de Queiroz", University of São Paulo (USP), Av. Pádua Dias, 11, CP 09, 13418-900, Piracicaba, SP, Brazil
| | - Lucas Cutri
- Departament of Biological Sciences, Escola Superior de Agricultura "Luiz de Queiroz", University of São Paulo (USP), Av. Pádua Dias, 11, CP 09, 13418-900, Piracicaba, SP, Brazil
| | - Cassia Regina Fernandes Figueiredo
- Departament of Biological Sciences, Escola Superior de Agricultura "Luiz de Queiroz", University of São Paulo (USP), Av. Pádua Dias, 11, CP 09, 13418-900, Piracicaba, SP, Brazil
| | - Francisco André Ossamu Tanaka
- Departament of Phytopathology, Escola Superior de Agricultura "Luiz de Queiroz", University of São Paulo (USP),Av. Pádua Dias, 11, CP 09, 13418-900, Piracicaba, SP, Brazil
| | - Fábio Tebaldi Silveira Nogueira
- Departament of Biological Sciences, Escola Superior de Agricultura "Luiz de Queiroz", University of São Paulo (USP), Av. Pádua Dias, 11, CP 09, 13418-900, Piracicaba, SP, Brazil
| | - Lázaro Eustáquio Pereira Peres
- Departament of Biological Sciences, Escola Superior de Agricultura "Luiz de Queiroz", University of São Paulo (USP), Av. Pádua Dias, 11, CP 09, 13418-900, Piracicaba, SP, Brazil.
| |
Collapse
|
12
|
Perrotte J, Guédon Y, Gaston A, Denoyes B. Identification of successive flowering phases highlights a new genetic control of the flowering pattern in strawberry. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5643-5655. [PMID: 27664957 PMCID: PMC5066487 DOI: 10.1093/jxb/erw326] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The genetic control of the switch between seasonal and perpetual flowering has been deciphered in various perennial species. However, little is known about the genetic control of the dynamics of perpetual flowering, which changes abruptly at well-defined time instants during the growing season. Here, we characterize the perpetual flowering pattern and identify new genetic controls of this pattern in the cultivated strawberry. Twenty-one perpetual flowering strawberry genotypes were phenotyped at the macroscopic scale for their course of emergence of inflorescences and stolons during the growing season. A longitudinal analysis based on the segmentation of flowering rate profiles using multiple change-point models was conducted. The flowering pattern of perpetual flowering genotypes takes the form of three or four successive phases: an autumn-initiated flowering phase, a flowering pause, and a single stationary perpetual flowering phase or two perpetual flowering phases, the second one being more intense. The genetic control of flowering was analysed by quantitative trait locus mapping of flowering traits based on these flowering phases. We showed that the occurrence of a fourth phase of intense flowering is controlled by a newly identified locus, different from the locus FaPFRU, controlling the switch between seasonal and perpetual flowering behaviour. The role of this locus was validated by the analysis of data obtained previously during six consecutive years.
Collapse
Affiliation(s)
- Justine Perrotte
- UMR 1332 BFP, INRA, Univ. Bordeaux, F-33140 Villenave d'Ornon, France Ciref, Maison Jeannette, 24140 Douville, France
| | - Yann Guédon
- CIRAD, UMR AGAP and Inria, Virtual Plants, 34095 Montpellier, France
| | - Amèlia Gaston
- UMR 1332 BFP, INRA, Univ. Bordeaux, F-33140 Villenave d'Ornon, France
| | - Béatrice Denoyes
- UMR 1332 BFP, INRA, Univ. Bordeaux, F-33140 Villenave d'Ornon, France
| |
Collapse
|