1
|
Heckman RW, Pereira CG, Aspinwall MJ, Juenger TE. Physiological Responses of C 4 Perennial Bioenergy Grasses to Climate Change: Causes, Consequences, and Constraints. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:737-769. [PMID: 38424068 DOI: 10.1146/annurev-arplant-070623-093952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
C4 perennial bioenergy grasses are an economically and ecologically important group whose responses to climate change will be important to the future bioeconomy. These grasses are highly productive and frequently possess large geographic ranges and broad environmental tolerances, which may contribute to the evolution of ecotypes that differ in physiological acclimation capacity and the evolution of distinct functional strategies. C4 perennial bioenergy grasses are predicted to thrive under climate change-C4 photosynthesis likely evolved to enhance photosynthetic efficiency under stressful conditions of low [CO2], high temperature, and drought-although few studies have examined how these species will respond to combined stresses or to extremes of temperature and precipitation. Important targets for C4 perennial bioenergy production in a changing world, such as sustainability and resilience, can benefit from combining knowledge of C4 physiology with recent advances in crop improvement, especially genomic selection.
Collapse
Affiliation(s)
- Robert W Heckman
- Rocky Mountain Research Station, US Department of Agriculture Forest Service, Cedar City, Utah, USA;
| | - Caio Guilherme Pereira
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA;
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | - Thomas E Juenger
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA;
| |
Collapse
|
2
|
Choi S, Prabhakar PK, Chowdhury R, Pendergast TH, Urbanowicz BR, Maranas C, Devos KM. A single amino acid change led to structural and functional differentiation of PvHd1 to control flowering in switchgrass. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5532-5546. [PMID: 37402629 PMCID: PMC10540729 DOI: 10.1093/jxb/erad255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/03/2023] [Indexed: 07/06/2023]
Abstract
Switchgrass, a forage and bioenergy crop, occurs as two main ecotypes with different but overlapping ranges of adaptation. The two ecotypes differ in a range of characteristics, including flowering time. Flowering time determines the duration of vegetative development and therefore biomass accumulation, a key trait in bioenergy crops. No causal variants for flowering time differences between switchgrass ecotypes have, as yet, been identified. In this study, we mapped a robust flowering time quantitative trait locus (QTL) on chromosome 4K in a biparental F2 population and characterized the flowering-associated transcription factor gene PvHd1, an ortholog of CONSTANS in Arabidopsis and Heading date 1 in rice, as the underlying causal gene. Protein modeling predicted that a serine to glycine substitution at position 35 (p.S35G) in B-Box domain 1 greatly altered the global structure of the PvHd1 protein. The predicted variation in protein compactness was supported in vitro by a 4 °C shift in denaturation temperature. Overexpressing the PvHd1-p.35S allele in a late-flowering CONSTANS-null Arabidopsis mutant rescued earlier flowering, whereas PvHd1-p.35G had a reduced ability to promote flowering, demonstrating that the structural variation led to functional divergence. Our findings provide us with a tool to manipulate the timing of floral transition in switchgrass cultivars and, potentially, expand their cultivation range.
Collapse
Affiliation(s)
- Soyeon Choi
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Pradeep K Prabhakar
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Ratul Chowdhury
- Chemical Engineering, Penn State University, State College, PA 16801, USA
| | - Thomas H Pendergast
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA 30602, USA
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA 30602, USA
| | - Breeanna R Urbanowicz
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Costas Maranas
- Chemical Engineering, Penn State University, State College, PA 16801, USA
| | - Katrien M Devos
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA 30602, USA
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
3
|
Edwards JA, Saran UB, Bonnette J, MacQueen A, Yin J, Nguyen TU, Schmutz J, Grimwood J, Pennacchio LA, Daum C, Glavina Del Rio T, Fritschi FB, Lowry DB, Juenger TE. Genetic determinants of switchgrass-root-associated microbiota in field sites spanning its natural range. Curr Biol 2023; 33:1926-1938.e6. [PMID: 37080198 DOI: 10.1016/j.cub.2023.03.078] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 02/03/2023] [Accepted: 03/27/2023] [Indexed: 04/22/2023]
Abstract
A fundamental goal in plant microbiome research is to determine the relative impacts of host and environmental effects on root microbiota composition, particularly how host genotype impacts bacterial community composition. Most studies characterizing the effect of plant genotype on root microbiota undersample host genetic diversity and grow plants outside of their native ranges, making the associations between host and microbes difficult to interpret. Here, we characterized the root microbiota of a large diversity panel of switchgrass, a North American native C4 bioenergy crop, in three field locations spanning its native range. Our data, composed of 1,961 samples, suggest that field location is the primary determinant of microbiome composition; however, substantial heritable variation is widespread across bacterial taxa, especially those in the Sphingomonadaceae family. Despite diverse compositions, relatively few highly prevalent taxa make up the majority of the switchgrass root microbiota, a large fraction of which is shared across sites. Local genotypes preferentially recruit/filter for local microbes, supporting the idea of affinity between local plants and their microbiota. Using genome-wide association, we identified loci impacting the abundance of >400 microbial strains and found an enrichment of genes involved in immune responses, signaling pathways, and secondary metabolism. We found loci associated with over half of the core microbiota (i.e., microbes in >80% of samples), regardless of field location. Finally, we show a genetic relationship between a basal plant immunity pathway and relative abundances of root microbiota. This study brings us closer to harnessing and manipulating beneficial microbial associations via host genetics.
Collapse
Affiliation(s)
- Joseph A Edwards
- Department of Integrative Biology, University of Texas, Austin, 2415 Speedway, Austin, TX 78712, USA.
| | - Usha Bishnoi Saran
- Department of Integrative Biology, University of Texas, Austin, 2415 Speedway, Austin, TX 78712, USA
| | - Jason Bonnette
- Department of Integrative Biology, University of Texas, Austin, 2415 Speedway, Austin, TX 78712, USA
| | - Alice MacQueen
- Department of Integrative Biology, University of Texas, Austin, 2415 Speedway, Austin, TX 78712, USA
| | - Jun Yin
- Department of Integrative Biology, University of Texas, Austin, 2415 Speedway, Austin, TX 78712, USA
| | - Tu Uyen Nguyen
- Department of Integrative Biology, University of Texas, Austin, 2415 Speedway, Austin, TX 78712, USA
| | - Jeremy Schmutz
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, 601 Genome Way Northwest, Huntsville, AL 35806, USA; Joint Genome Institute, Lawrence Berkeley National Laboratory, 91R183 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Jane Grimwood
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, 601 Genome Way Northwest, Huntsville, AL 35806, USA
| | - Len A Pennacchio
- Joint Genome Institute, Lawrence Berkeley National Laboratory, 91R183 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Chris Daum
- Joint Genome Institute, Lawrence Berkeley National Laboratory, 91R183 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Tijana Glavina Del Rio
- Joint Genome Institute, Lawrence Berkeley National Laboratory, 91R183 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Felix B Fritschi
- Department of Plant Science and Technology, University of Missouri, Agriculture Bldg, 52, Columbia, MO 65201, USA
| | - David B Lowry
- Department of Plant Biology, Michigan State University, 612 Wilson Road, Rm 166, East Lansing, MI 48824, USA
| | - Thomas E Juenger
- Department of Integrative Biology, University of Texas, Austin, 2415 Speedway, Austin, TX 78712, USA.
| |
Collapse
|
4
|
Liu H, Liu X, Chang X, Chen F, Lin Z, Zhang L. Large-scale analyses of angiosperm Flowering Locus T genes reveal duplication and functional divergence in monocots. FRONTIERS IN PLANT SCIENCE 2023; 13:1039500. [PMID: 36684773 PMCID: PMC9847362 DOI: 10.3389/fpls.2022.1039500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
FLOWERING LOCUS T (FT) are well-known key genes for initiating flowering in plants. Delineating the evolutionary history and functional diversity of FT genes is important for understanding the diversification of flowering time and how plants adapt to the changing surroundings. We performed a comprehensive phylogenetic analysis of FT genes in 47 sequenced flowering plants and the 1,000 Plant Transcriptomes (1KP) database with a focus on monocots, especially cereals. We revealed the evolutionary history of FT genes. The FT genes in monocots can be divided into three clades (I, II, and III), whereas only one monophyletic group was detected in early angiosperms, magnoliids, and eudicots. Multiple rounds of whole-genome duplications (WGD) events followed by gene retention contributed to the expansion and variation of FT genes in monocots. Amino acid sites in the clade II and III genes were preferentially under high positive selection, and some sites located in vital domain regions are known to change functions when mutated. Clade II and clade III genes exhibited high variability in important regions and functional divergence compared with clade I genes; thus, clade I is more conserved than clade II and III. Genes in clade I displayed higher expression levels in studied organs and tissues than the clade II and III genes. The co-expression modules showed that some of the FT genes might have experienced neofunctionalization and subfunctionalization, such as the acquisition of environmental resistance. Overall, FT genes in monocots might form three clades by the ancient gene duplication, and each clade was subsequently subjected to different selection pressures and amino acid substitutions, which eventually led to different expression patterns and functional diversification. Our study provides a global picture of FT genes' evolution in monocots, paving a road for investigating FT genes' function in future.
Collapse
Affiliation(s)
- Hongling Liu
- Hainan Institute of Zhejiang University, Sanya, China
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Xing Liu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaojun Chang
- Laboratory of Medicinal Plant Biotechnology, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fei Chen
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| | - Zhenguo Lin
- Department of Biology, Saint Louis University, St Louis, MO, United States
| | - Liangsheng Zhang
- Hainan Institute of Zhejiang University, Sanya, China
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Weng X, Haque T, Zhang L, Razzaque S, Lovell JT, Palacio-Mejía JD, Duberney P, Lloyd-Reilley J, Bonnette J, Juenger TE. A Pleiotropic Flowering Time QTL Exhibits Gene-by-Environment Interaction for Fitness in a Perennial Grass. Mol Biol Evol 2022; 39:msac203. [PMID: 36149808 PMCID: PMC9550986 DOI: 10.1093/molbev/msac203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Appropriate flowering time is a crucial adaptation impacting fitness in natural plant populations. Although the genetic basis of flowering variation has been extensively studied, its mechanisms in nonmodel organisms and its adaptive value in the field are still poorly understood. Here, we report new insights into the genetic basis of flowering time and its effect on fitness in Panicum hallii, a native perennial grass. Genetic mapping in populations derived from inland and coastal ecotypes identified flowering time quantitative trait loci (QTL) and many exhibited extensive QTL-by-environment interactions. Patterns of segregation within recombinant hybrids provide strong support for directional selection driving ecotypic divergence in flowering time. A major QTL on chromosome 5 (q-FT5) was detected in all experiments. Fine-mapping and expression studies identified a gene with orthology to a rice FLOWERING LOCUS T-like 9 (PhFTL9) as the candidate underlying q-FT5. We used a reciprocal transplant experiment to test for local adaptation and the specific impact of q-FT5 on performance. We did not observe local adaptation in terms of fitness tradeoffs when contrasting ecotypes in home versus away habitats. However, we observed that the coastal allele of q-FT5 conferred a fitness advantage only in its local habitat but not at the inland site. Sequence analyses identified an excess of low-frequency polymorphisms at the PhFTL9 promoter in the inland lineage, suggesting a role for either selection or population expansion on promoter evolution. Together, our findings demonstrate the genetic basis of flowering variation in a perennial grass and provide evidence for conditional neutrality underlying flowering time divergence.
Collapse
Affiliation(s)
- Xiaoyu Weng
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Taslima Haque
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Li Zhang
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Samsad Razzaque
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - John T Lovell
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Juan Diego Palacio-Mejía
- Corporación Colombiana de Investigación Agropecuaria – AGROSAVIA, Centro de Investigación Tibaitatá. Kilómetro 14 vía Mosquera-Bogotá, Mosquera. Código postal 250047, Colombia
| | - Perla Duberney
- Kika de la Garza Plant Materials Center, USDA-NRCS, Kingsville, TX, USA
| | | | - Jason Bonnette
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Thomas E Juenger
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
6
|
Zhang L, MacQueen A, Weng X, Behrman KD, Bonnette J, Reilley JL, Rouquette FM, Fay PA, Wu Y, Fritschi FB, Mitchell RB, Lowry DB, Boe AR, Juenger TE. The genetic basis for panicle trait variation in switchgrass (Panicum virgatum). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2577-2592. [PMID: 35780149 PMCID: PMC9325832 DOI: 10.1007/s00122-022-04096-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/31/2022] [Indexed: 06/15/2023]
Abstract
We investigate the genetic basis of panicle architecture in switchgrass in two mapping populations across a latitudinal gradient, and find many stable, repeatable genetic effects and limited genetic interactions with the environment. Grass species exhibit large diversity in panicle architecture influenced by genes, the environment, and their interaction. The genetic study of panicle architecture in perennial grasses is limited. In this study, we evaluate the genetic basis of panicle architecture including panicle length, primary branching number, and secondary branching number in an outcrossed switchgrass QTL population grown across ten field sites in the central USA through multi-environment mixed QTL analysis. We also evaluate genetic effects in a diversity panel of switchgrass grown at three of the ten field sites using genome-wide association (GWAS) and multivariate adaptive shrinkage. Furthermore, we search for candidate genes underlying panicle traits in both of these independent mapping populations. Overall, 18 QTL were detected in the QTL mapping population for the three panicle traits, and 146 unlinked genomic regions in the diversity panel affected one or more panicle trait. Twelve of the QTL exhibited consistent effects (i.e., no QTL by environment interactions or no QTL × E), and most (four of six) of the effects with QTL × E exhibited site-specific effects. Most (59.3%) significant partially linked diversity panel SNPs had significant effects in all panicle traits and all field sites and showed pervasive pleiotropy and limited environment interactions. Panicle QTL co-localized with significant SNPs found using GWAS, providing additional power to distinguish between true and false associations in the diversity panel.
Collapse
Affiliation(s)
- Li Zhang
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA.
| | - Alice MacQueen
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Xiaoyu Weng
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Kathrine D Behrman
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Jason Bonnette
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | - John L Reilley
- Kika de la Garza Plant Materials Center, National Resources Conservation Service, US Department of Agriculture, Kingsville, TX, 78363, USA
| | - Francis M Rouquette
- Texas A&M AgriLife Research and Extension Center, Texas A&M University, Overton, TX, 75684, USA
| | - Philip A Fay
- Grassland, Soil and Water Research Laboratory, Agricultural Research Service, US Department of Agriculture, Temple, TX, 76502, USA
| | - Yanqi Wu
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Felix B Fritschi
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Robert B Mitchell
- Wheat, Sorghum, and Forage Research Unit, Agricultural Research Service, US Department of Agriculture, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - David B Lowry
- Department of Plant Biology and DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA
| | - Arvid R Boe
- Departmentof Agronomy, Horticulture & Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Thomas E Juenger
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
7
|
He F, Zhang F, Jiang X, Long R, Wang Z, Chen Y, Li M, Gao T, Yang T, Wang C, Kang J, Chen L, Yang Q. A Genome-Wide Association Study Coupled With a Transcriptomic Analysis Reveals the Genetic Loci and Candidate Genes Governing the Flowering Time in Alfalfa ( Medicago sativa L.). FRONTIERS IN PLANT SCIENCE 2022; 13:913947. [PMID: 35898229 PMCID: PMC9310038 DOI: 10.3389/fpls.2022.913947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
The transition to flowering at the right time is very important for adapting to local conditions and maximizing alfalfa yield. However, the understanding of the genetic basis of the alfalfa flowering time remains limited. There are few reliable genes or markers for selection, which hinders progress in genetic research and molecular breeding of this trait in alfalfa. We sequenced 220 alfalfa cultivars and conducted a genome-wide association study (GWAS) involving 875,023 single-nucleotide polymorphisms (SNPs). The phenotypic analysis showed that the breeding status and geographical origin strongly influenced the alfalfa flowering time. Our GWAS revealed 63 loci significantly related to the flowering time. Ninety-five candidate genes were detected at these SNP loci within 40 kb (20 kb up- and downstream). Thirty-six percent of the candidate genes are involved in development and pollen tube growth, indicating that these genes are key genetic mechanisms of alfalfa growth and development. The transcriptomic analysis showed that 1,924, 2,405, and 3,779 differentially expressed genes (DEGs) were upregulated across the three growth stages, while 1,651, 2,613, and 4,730 DEGs were downregulated across the stages. Combining the results of our GWAS and transcriptome analysis, in total, 38 candidate genes (7 differentially expressed during the bud stage, 13 differentially expressed during the initial flowering stage, and 18 differentially expressed during the full flowering stage) were identified. Two SNPs located in the upstream region of the Msa0888690 gene (which is involved in isop renoids) were significantly related to flowering. The two significant SNPs within the upstream region of Msa0888690 existed as four different haplotypes in this panel. The genes identified in this study represent a series of candidate targets for further research investigating the alfalfa flowering time and could be used for alfalfa molecular breeding.
Collapse
Affiliation(s)
- Fei He
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fan Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xueqian Jiang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ruicai Long
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhen Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yishi Chen
- Center for Monitoring of Agricultural Ecological Environment and Quality Inspection of Agricultural Products of Tianjin, Tianjin, China
| | - Mingna Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ting Gao
- Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, China
| | - Tianhui Yang
- Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, China
| | - Chuan Wang
- Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, China
| | - Junmei Kang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lin Chen
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingchuan Yang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
8
|
Sutherland J, Bell T, Trexler RV, Carlson JE, Lasky JR. Host genomic influence on bacterial composition in the switchgrass rhizosphere. Mol Ecol 2022; 31:3934-3950. [PMID: 35621390 PMCID: PMC10150372 DOI: 10.1111/mec.16549] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 11/28/2022]
Abstract
Host genetic variation can shape the diversity and composition of associated microbiomes, which may reciprocally influence host traits and performance. While the genetic basis of phenotypic diversity of plant populations in nature has been studied, comparatively little research has investigated the genetics of host effects on their associated microbiomes. Switchgrass (Panicum virgatum) is a highly outcrossing, perennial, grass species with substantial locally adaptive diversity across its native North American range. Here, we compared 383 switchgrass accessions in a common garden to determine the host genotypic influence on rhizosphere bacterial composition. We hypothesized that the composition and diversity of rhizosphere bacterial assemblages would differentiate due to genotypic differences between hosts (potentially due to root phenotypes and associated life history variation). We observed higher alpha diversity of bacteria associated with upland ecotypes and tetraploids, compared to lowland ecotypes and octoploids, respectively. Alpha diversity correlated negatively with flowering time and plant height, indicating that bacterial composition varies along switchgrass life history axes. Narrow-sense heritability (h2 ) of the relative abundance of twenty-one core bacterial families was observed. Overall compositional differences among tetraploids, due to genetic variation, supports wide-spread genotypic influence on the rhizosphere microbiome. Tetraploids were only considered due to complexities associated with the octoploid genomes. Lastly, a genome-wide association study identified 1,861 single-nucleotide polymorphisms associated with 110 families and genes containing them related to potential regulatory functions. Our findings suggest that switchgrass genomic and life-history variation influences bacterial composition in the rhizosphere, potentially due to host adaptation to local environments.
Collapse
Affiliation(s)
- Jeremy Sutherland
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, USA.,Intercollege Graduate Degree Program in Bioinformatics and Genomics, The Pennsylvania State University, University Park, PA, USA.,Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Terrence Bell
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, USA.,Intercollege Graduate Degree Program in Bioinformatics and Genomics, The Pennsylvania State University, University Park, PA, USA.,Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, PA, USA
| | - Ryan V Trexler
- Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, PA, USA.,Department of Ecosystem Science and Management, The Pennsylvania State University, University Park, PA, USA
| | - John E Carlson
- Intercollege Graduate Degree Program in Bioinformatics and Genomics, The Pennsylvania State University, University Park, PA, USA.,Department of Ecosystem Science and Management, The Pennsylvania State University, University Park, PA, USA
| | - Jesse R Lasky
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
9
|
Jiang X, Yang T, Zhang F, Yang X, Yang C, He F, Long R, Gao T, Jiang Y, Yang Q, Wang Z, Kang J. RAD-Seq-Based High-Density Linkage Maps Construction and Quantitative Trait Loci Mapping of Flowering Time Trait in Alfalfa ( Medicago sativa L.). FRONTIERS IN PLANT SCIENCE 2022; 13:899681. [PMID: 35720570 PMCID: PMC9199863 DOI: 10.3389/fpls.2022.899681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/25/2022] [Indexed: 06/15/2023]
Abstract
Alfalfa (Medicago sativa L.) is a perennial forage crop known as the "Queen of Forages." To dissect the genetic mechanism of flowering time (FT) in alfalfa, high-density linkage maps were constructed for both parents of an F1 mapping population derived from a cross between Cangzhou (P1) and ZhongmuNO.1 (P2), consisting of 150 progenies. The FT showed a transgressive segregation pattern in the mapping population. A total of 13,773 single-nucleotide polymorphism markers was obtained by using restriction-site associated DNA sequencing and distributed on 64 linkage groups, with a total length of 3,780.49 and 4,113.45 cM and an average marker interval of 0.58 and 0.59 cM for P1 and P2 parent, respectively. Quantitative trait loci (QTL) analyses were performed using the least square means of each year as well as the best linear unbiased prediction values across 4 years. Sixteen QTLs for FT were detected for P1 and 22 QTLs for P2, accounting for 1.40-16.04% of FT variation. RNA-Seq analysis at three flowering stages identified 5,039, 7,058, and 7,996 genes that were differentially expressed between two parents, respectively. Based on QTL mapping, DEGs analysis, and functional annotation, seven candidate genes associated with flowering time were finally detected. This study discovered QTLs and candidate genes for alfalfa FT, making it a useful resource for breeding studies on this essential crop.
Collapse
Affiliation(s)
- Xueqian Jiang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tianhui Yang
- Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, China
| | - Fan Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xijiang Yang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Changfu Yang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fei He
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ruicai Long
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ting Gao
- Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, China
| | - Yiwei Jiang
- Department of Agronomy, Purdue University, West Lafayette, IN, United States
| | - Qingchuan Yang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhen Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junmei Kang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
10
|
Songsomboon K, Crawford R, Crawford J, Hansen J, Cummings J, Mattson N, Bergstrom GC, Viands DR. Genome-Wide Associations with Resistance to Bipolaris Leaf Spot (Bipolaris oryzae (Breda de Haan) Shoemaker) in a Northern Switchgrass Population (Panicum virgatum L.). PLANTS 2022; 11:plants11101362. [PMID: 35631787 PMCID: PMC9144872 DOI: 10.3390/plants11101362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 11/18/2022]
Abstract
Switchgrass (Panicum virgatum L.), a northern native perennial grass, suffers from yield reduction from Bipolaris leaf spot caused by Bipolaris oryzae (Breda de Haan) Shoemaker. This study aimed to determine the resistant populations via multiple phenotyping approaches and identify potential resistance genes from genome-wide association studies (GWAS) in the switchgrass northern association panel. The disease resistance was evaluated from both natural (field evaluations in Ithaca, New York and Phillipsburg, Philadelphia) and artificial inoculations (detached leaf and leaf disk assays). The most resistant populations based on a combination of three phenotyping approaches—detached leaf, leaf disk, and mean from two locations—were ‘SW788’, ‘SW806’, ‘SW802’, ‘SW793’, ‘SW781’, ‘SW797’, ‘SW798’, ‘SW803’, ‘SW795’, ‘SW805’. The GWAS from the association panel showed 27 significant SNPs on 12 chromosomes: 1K, 2K, 2N, 3K, 3N, 4N, 5K, 5N, 6N, 7K, 7N, and 9N. These markers accumulatively explained the phenotypic variance of the resistance ranging from 3.28 to 26.52%. Within linkage disequilibrium of 20 kb, these SNP markers linked with the potential resistance genes included the genes encoding for NBS-LRR, PPR, cell-wall related proteins, homeostatic proteins, anti-apoptotic proteins, and ABC transporter.
Collapse
Affiliation(s)
- Kittikun Songsomboon
- Section of Plant Breeding and Genetics, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA; (R.C.); (J.C.); (J.H.); (D.R.V.)
- Correspondence:
| | - Ryan Crawford
- Section of Plant Breeding and Genetics, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA; (R.C.); (J.C.); (J.H.); (D.R.V.)
| | - Jamie Crawford
- Section of Plant Breeding and Genetics, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA; (R.C.); (J.C.); (J.H.); (D.R.V.)
| | - Julie Hansen
- Section of Plant Breeding and Genetics, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA; (R.C.); (J.C.); (J.H.); (D.R.V.)
| | | | - Neil Mattson
- Section of Horticulture, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA;
| | - Gary C. Bergstrom
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA;
| | - Donald R. Viands
- Section of Plant Breeding and Genetics, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA; (R.C.); (J.C.); (J.H.); (D.R.V.)
| |
Collapse
|
11
|
Xie K, Wang Y, Bai X, Ye Z, Zhang C, Sun F, Zhang C, Xi Y. Overexpression of PvSTK1 gene from Switchgrass (Panicum virgatum L.) affects flowering time and development of floral organ in transgenic Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 178:93-104. [PMID: 35276599 DOI: 10.1016/j.plaphy.2022.02.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
Flowering means that the plant enters the reproductive growth stage, which is a crucial stage in the plant life cycle. Delaying flowering time to prolong vegetative growth is an important method to increase biomass yield and saccharification efficiency in switchgrass, It is of great significance to study the molecular mechanism of plant flowering and regulate the process of plant flowering in the process of biomass production. In this study, we identified 55 serine/threonine-protein kinase genes related to flower development from the switchgrass transcriptome database. Simultaneously, we cloned one of them, PvSTK1, whose expression level and differential fold were significantly higher than other members. PvSTK1 is located on chromosome 8N and its protein was in the cell membrane, cytoplasm, and nucleus. The spatio-temporal expression analysis of the PvSTK1 in switchgrass displayed that the PvSTK1 is crucial in vegetative period, however, not in the transition to reproductive period. Overexpression of PvSTK1 in Arabidopsis resulted in down-regulation of flower-promoting genes and up-regulation of flower-suppressing genes, thereby delaying flowering. In addition, PvSTK1 caused atrophy of the ovules of the florets at the base of the inflorescence, leading to sterility of the florets. The function of PvSTK1 is to inhibit the development of floral organs, and its overexpression can prolong its vegetative period. In the future, overexpression of the PvSTK1 gene in switchgrass will change the flowering time and increase yield and utilization efficiency of biomass.
Collapse
Affiliation(s)
- Kunliang Xie
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Yongfeng Wang
- School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Xinchen Bai
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Zi Ye
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Chuqiu Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Fengli Sun
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Chao Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Yajun Xi
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
12
|
Wang J, Lv X, Feng L, Dong A, Liang D, Wu R. A Tracing Model for the Evolutionary Equilibrium of Octoploids. Front Genet 2022; 12:794907. [PMID: 35154248 PMCID: PMC8831725 DOI: 10.3389/fgene.2021.794907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/30/2021] [Indexed: 11/19/2022] Open
Abstract
Testing Hardy-Weinberg equilibrium (HWE) is a fundamental approach for inferring population diversity and evolution, but its application to octoploids containing eight chromosome sets has not well been justified. We derive a mathematical model to trace how genotype frequencies transmit from parental to offspring generations in the natural populations of autooctoploids. We find that octoploids, including autooctolpoids undergoing double reduction, attach asymptotic HWE (aHWE) after 15 generations of random mating, in a contrast to diploids where one generation can assure exact equilibrium and, also, different from tetraploids that use 5 generations to reach aHWE. We develop a statistical procedure for testing aHWE in octoploids and apply it to analyze a real data set from octoploid switchgrass distributed in two ecologically different regions, demonstrating the usefulness of the test procedure. Our model provides a tool for studying the population genetic diversity of octoploids, inferring their evolutionary history, and identifying the ecological relationship of octoploid-genome structure with environmental adaptation.
Collapse
Affiliation(s)
- Jing Wang
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xuemin Lv
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Li Feng
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Ang Dong
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Dan Liang
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- *Correspondence: Dan Liang, ; Rongling Wu,
| | - Rongling Wu
- Departments of Public Health Sciences and Statistics, Center for Statistical Genetics, The Pennsylvania State University, Hershey, PA, United States
- *Correspondence: Dan Liang, ; Rongling Wu,
| |
Collapse
|
13
|
Zhang Z, Zheng Y, Zhang J, Wang N, Wang Y, Liu W, Bai S, Xie W. High-Altitude Genetic Selection and Genome-Wide Association Analysis of Yield-Related Traits in Elymus sibiricus L. Using SLAF Sequencing. FRONTIERS IN PLANT SCIENCE 2022; 13:874409. [PMID: 35800604 PMCID: PMC9253694 DOI: 10.3389/fpls.2022.874409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 05/26/2022] [Indexed: 05/04/2023]
Abstract
The genetic adaptations to harsh climatic conditions in high altitudes and genetic basis of important agronomic traits are poorly understood in Elymus sibiricus L. In this study, an association population of 210 genotypes was used for population structure, selective sweep analysis, and genome-wide association study (GWAS) based on 88,506 single nucleotide polymorphisms (SNPs). We found 965 alleles under the natural selection of high altitude, which included 7 hub genes involved in the response to UV, and flavonoid and anthocyanin biosynthetic process based on the protein-protein interaction (PPI) analysis. Using a mixed linear model (MLM), the GWAS test identified a total of 1,825 significant loci associated with 12 agronomic traits. Based on the gene expression data of two wheat cultivars and the PPI analysis, we finally identified 12 hub genes. Especially, in plant height traits, the top hub gene (TOPLESS protein) encoding auxins and jasmonic acid signaling pathway, shoot apical meristem specification, and xylem and phloem pattern formation was highly overexpressed. These genes might play essential roles in controlling the growth and development of E. sibiricus. Therefore, this study provides fundamental insights relevant to hub genes and will benefit molecular breeding and improvement in E. sibiricus and other Elymus species.
Collapse
Affiliation(s)
- Zongyu Zhang
- The State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Yuying Zheng
- The State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Junchao Zhang
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| | - Na Wang
- The State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Yanrong Wang
- The State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Wenhui Liu
- Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan Plateau, Qinghai Academy of Animal Science and Veterinary Medicine, Xining, China
| | - Shiqie Bai
- Sichuan Academy of Grassland Science, Chengdu, China
| | - Wengang Xie
- The State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
- *Correspondence: Wengang Xie,
| |
Collapse
|
14
|
Yang D, Li F, Wang J, Dong A, Wu R. A framework to model a web of linkage disequilibria for natural allotetraploid populations. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dengcheng Yang
- Center for Computational Biology College of Biological Sciences and Technology Beijing Forestry University Beijing China
| | - Fan Li
- Center for Computational Biology College of Biological Sciences and Technology Beijing Forestry University Beijing China
| | - Jing Wang
- Center for Computational Biology College of Biological Sciences and Technology Beijing Forestry University Beijing China
| | - Ang Dong
- Center for Computational Biology College of Biological Sciences and Technology Beijing Forestry University Beijing China
| | - Rongling Wu
- Center for Computational Biology College of Biological Sciences and Technology Beijing Forestry University Beijing China
- Center for Statistical Genetics Departments of Public Health Sciences and Statistics The Pennsylvania State University Hershey PA USA
| |
Collapse
|
15
|
Poudel HP, Tilhou NW, Sanciangco MD, Vaillancourt B, Kaeppler SM, Buell CR, Casler MD. Genetic loci associated with winter survivorship in diverse lowland switchgrass populations. THE PLANT GENOME 2021; 14:e20159. [PMID: 34661986 DOI: 10.1002/tpg2.20159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
High winter mortality limits biomass yield of lowland switchgrass (Panicum virgatum L.) planted in the northern latitudes of North America. Breeding of cold tolerant switchgrass cultivars requires many years due to its perennial growth habit and the unpredictable winter selection pressure that is required to identify winter-hardy individuals. Identification of causal genetic variants for winter survivorship would accelerate the improvement of switchgrass biomass production. The objective of this study was to identify allelic variation associated with winter survivorship in lowland switchgrass populations using bulk segregant analysis (BSA). Twenty-nine lowland switchgrass populations were evaluated for winter survival at two locations in southern Wisconsin and 21 populations with differential winter survivorship were used for BSA. A maximum of 10% of the individuals (8-20) were bulked to create survivor and nonsurvivor DNA pools from each population and location. The DNA pools were evaluated using exome capture sequencing, and allele frequencies were used to conduct statistical tests. The BSA tests revealed nine quatitative trait loci (QTL) from tetraploid populations and seven QTL from octoploid populations. Many QTL were population-specific, but some were identified in multiple populations that originated across a broad geographic landscape. Four QTL (at positions 88 Mb on chromosome 2N, 115 Mb on chromosome 5K, and 1 and 100 Mb on chromosome 9N) were potentially the most useful QTL. Markers associated with winter survivorship in this study can be used to accelerate breeding cycles of lowland switchgrass populations and should lead to improvements in adaptation within USDA hardiness zones 4 and 5.
Collapse
Affiliation(s)
- Hari P Poudel
- Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Neal W Tilhou
- Dep. of Agronomy, Univ. of Wisconsin-Madison, Madison, WI, USA
| | | | | | | | - C Robin Buell
- Dep. of Plant Biology, Michigan State Univ., East Lansing, MI, USA
| | | |
Collapse
|
16
|
Recursive Test of Hardy-Weinberg Equilibrium in Tetraploids. Trends Genet 2021; 37:504-513. [DOI: 10.1016/j.tig.2020.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/15/2020] [Accepted: 11/17/2020] [Indexed: 02/08/2023]
|
17
|
Soto-Cerda BJ, Aravena G, Cloutier S. Genetic dissection of flowering time in flax (Linum usitatissimum L.) through single- and multi-locus genome-wide association studies. Mol Genet Genomics 2021; 296:877-891. [PMID: 33903955 DOI: 10.1007/s00438-021-01785-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/09/2021] [Indexed: 01/19/2023]
Abstract
In a rapidly changing climate, flowering time (FL) adaptation is important to maximize seed yield in flax (Linum usitatissimum L.). However, our understanding of the genetic mechanism underlying FL in this multipurpose crop remains limited. With the aim of dissecting the genetic architecture of FL in flax, a genome-wide association study (GWAS) was performed on 200 accessions of the flax core collection evaluated in four environments. Two single-locus and six multi-locus models were applied using 70,935 curated single nucleotide polymorphism (SNP) markers. A total of 40 quantitative trait nucleotides (QTNs) associated with 27 quantitative trait loci (QTL) were identified in at least two environments. The number of QTL with positive-effect alleles in accessions was significantly correlated with FL (r = 0.77 to 0.82), indicating principally additive gene actions. Nine QTL were significant in at least three of the four environments accounting for 3.06-14.71% of FL variation. These stable QTL spanned regions that harbored 27 Arabidopsis thaliana and Oryza sativa FL-related orthologous genes including FLOWERING LOCUS T (Lus10013532), FLOWERING LOCUS D (Lus10028817), transcriptional regulator SUPERMAN (Lus10021215), and gibberellin 2-beta-dioxygenase 2 (Lus10037816). In silico gene expression analysis of the 27 FL candidate gene orthologous suggested that they might play roles in the transition from vegetative to reproductive phase, flower development and fertilization. Our results provide new insights into the QTL architecture of flowering time in flax, identify potential candidate genes for further studies, and demonstrate the effectiveness of combining different GWAS models for the genetic dissection of complex traits.
Collapse
Affiliation(s)
- Braulio J Soto-Cerda
- Agriaquaculture Nutritional Genomic Center (CGNA), Las Heras 350, 4781158, Temuco, Chile.
| | - Gabriela Aravena
- Agriaquaculture Nutritional Genomic Center (CGNA), Las Heras 350, 4781158, Temuco, Chile
| | - Sylvie Cloutier
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada.
| |
Collapse
|
18
|
Jiang L, Ren X, Wu R. Computational characterization of double reduction in autotetraploid natural populations. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1703-1709. [PMID: 33295001 DOI: 10.1111/tpj.15126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Population genetic theory has been well developed for diploid species, but its extension to study genetic diversity, variation and evolution in autopolyploids, a class of polyploids derived from the genome doubling of a single ancestral species, requires the incorporation of multisomic inheritance. Double reduction, which is characteristic of autopolyploidy, has long been believed to shape the evolutionary consequence of organisms in changing environments. Here, we develop a computational model for testing and estimating double reduction and its genomic distribution in autotetraploids. The model is implemented with the expectation-maximization (EM) algorithm to dissect unobservable allelic recombinations among multiple chromosomes, enabling the simultaneous estimation of allele frequencies and double reduction in natural populations. The framework fills an important gap in the population genetic theory of autopolyploids.
Collapse
Affiliation(s)
- Libo Jiang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Xiangyu Ren
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Rongling Wu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- Center for Statistical Genetics, Departments of Public Health Sciences and Statistics, Pennsylvania State University, Hershey, PA, 17033, USA
| |
Collapse
|
19
|
Genomic mechanisms of climate adaptation in polyploid bioenergy switchgrass. Nature 2021; 590:438-444. [PMID: 33505029 PMCID: PMC7886653 DOI: 10.1038/s41586-020-03127-1] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 12/16/2020] [Indexed: 01/30/2023]
Abstract
Long-term climate change and periodic environmental extremes threaten food and fuel security1 and global crop productivity2-4. Although molecular and adaptive breeding strategies can buffer the effects of climatic stress and improve crop resilience5, these approaches require sufficient knowledge of the genes that underlie productivity and adaptation6-knowledge that has been limited to a small number of well-studied model systems. Here we present the assembly and annotation of the large and complex genome of the polyploid bioenergy crop switchgrass (Panicum virgatum). Analysis of biomass and survival among 732 resequenced genotypes, which were grown across 10 common gardens that span 1,800 km of latitude, jointly revealed extensive genomic evidence of climate adaptation. Climate-gene-biomass associations were abundant but varied considerably among deeply diverged gene pools. Furthermore, we found that gene flow accelerated climate adaptation during the postglacial colonization of northern habitats through introgression of alleles from a pre-adapted northern gene pool. The polyploid nature of switchgrass also enhanced adaptive potential through the fractionation of gene function, as there was an increased level of heritable genetic diversity on the nondominant subgenome. In addition to investigating patterns of climate adaptation, the genome resources and gene-trait associations developed here provide breeders with the necessary tools to increase switchgrass yield for the sustainable production of bioenergy.
Collapse
|
20
|
Zhang F, Kang J, Long R, Yu LX, Sun Y, Wang Z, Zhao Z, Zhang T, Yang Q. Construction of high-density genetic linkage map and mapping quantitative trait loci (QTL) for flowering time in autotetraploid alfalfa (Medicago sativa L.) using genotyping by sequencing. THE PLANT GENOME 2020; 13:e20045. [PMID: 33217205 DOI: 10.1002/tpg2.20045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 06/13/2020] [Indexed: 06/11/2023]
Abstract
Flowering time is an important agronomic trait of alfalfa (Medicago sativa L.). Managing flowering time can produce economic benefits for farmers. To understand the genetic basis of this trait, quantitative trait loci (QTL) mapping was conducted in a full-sib population that consisted of 392 individuals segregating based on flowering time. High density linkage maps were constructed using single nucleotide polymorphism (SNP) markers generated by genotyping-by-sequencing (GBS). The linkage maps contained 3,818 SNP markers on 64 linkage groups in two parents. The average marker density was 4.33 cM for Parent 1 (P1) and 1.47 cM for Parent 2 (P2). Phenotypic data for flowering time was collected for three years at one location. Twenty-eight QTLs were identified associated with flowering time. Eleven QTLs explained more than 10% of the phenotypic variation. Among them, five main effect QTLs located on linkage group (LG) 7D of P1 and five main effect QTLs located on LG 6D of P2 were identified. Three QTLs were co-located with other QTLs. The identified linked markers to QTLs could be used for marker-assisted selection in breeding programs to develop new alfalfa varieties to modulate flowering time.
Collapse
Affiliation(s)
- Fan Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junmei Kang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ruicai Long
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Long-Xi Yu
- Plant Germplasm Introduction and Testing Research, United States Department of Agriculture-Agricultural Research Service, Prosser, WA, USA
| | - Yan Sun
- Grassland Science Department, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhen Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhongxiang Zhao
- Cangzhou Academy of Agriculture and Forestry Sciences, Cangzhou, China
| | - Tiejun Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingchuan Yang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
21
|
Ishikawa A, Kitano J. Diversity in reproductive seasonality in the three-spined stickleback, Gasterosteus aculeatus. ACTA ACUST UNITED AC 2020; 223:223/Suppl_1/jeb208975. [PMID: 32034046 DOI: 10.1242/jeb.208975] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The annual timing of reproduction is a key life history trait with a large effect on fitness. Populations often vary in the timing and duration of reproduction to adapt to different seasonality of ecological and environmental variables between habitats. However, little is known about the molecular genetic mechanisms underlying interpopulation variation in reproductive seasonality. Here, we demonstrate that the three-spined stickleback (Gasterosteus aculeatus) is a good model for molecular genetic analysis of variations in reproductive seasonality. We first compiled data on reproductive seasons of diverse ecotypes, covering marine-anadromous, lake and stream ecotypes, of three-spined stickleback inhabiting a wide range of latitudes. Our analysis showed that both ecotype and latitude significantly contribute to variation in reproductive seasons. Stream ecotypes tend to start breeding earlier and end later than other ecotypes. Populations from lower latitudes tend to start breeding earlier than those from higher latitudes in all three ecotypes. Additionally, stream ecotypes tend to have extended breeding seasons at lower latitudes than at higher latitudes, leading to nearly year-round reproduction in the most southern stream populations. A review of recent progress in our understanding of the physiological mechanisms underlying seasonal reproduction in the three-spined stickleback indicates that photoperiod is an important external cue that stimulates and/or suppresses reproduction in this species. Taking advantage of genomic tools available for this species, the three-spined stickleback will be a good model to investigate what kinds of genes and mutations underlie variations in the physiological signalling pathways that regulate reproduction in response to photoperiod.
Collapse
Affiliation(s)
- Asano Ishikawa
- Ecological Genetics Laboratory, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan .,Department of Genetics, Graduate University for Advanced Studies (SOKENDAI), Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Jun Kitano
- Ecological Genetics Laboratory, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan.,Department of Genetics, Graduate University for Advanced Studies (SOKENDAI), Yata 1111, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
22
|
QTL × environment interactions underlie adaptive divergence in switchgrass across a large latitudinal gradient. Proc Natl Acad Sci U S A 2019; 116:12933-12941. [PMID: 31182579 PMCID: PMC6600931 DOI: 10.1073/pnas.1821543116] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Understanding how individual genetic loci contribute to trait variation across geographic space is of fundamental importance for understanding evolutionary adaptations. Our study demonstrates that most loci underlying locally adaptive trait variation have beneficial effects in some geographic regions while conferring little or no detectable cost in other parts of the geographic range of switchgrass over two field seasons of study. Thus, loci that contribute to local adaptation vary in the degree to which they are costly in alternative environments but typically confer greater benefits than costs. Further, our study suggests that breeding locally adapted varieties of switchgrass will be a boon to the biofuel industry, as locally adaptive loci could be combined to increase local yields in switchgrass. Local adaptation is the process by which natural selection drives adaptive phenotypic divergence across environmental gradients. Theory suggests that local adaptation results from genetic trade-offs at individual genetic loci, where adaptation to one set of environmental conditions results in a cost to fitness in alternative environments. However, the degree to which there are costs associated with local adaptation is poorly understood because most of these experiments rely on two-site reciprocal transplant experiments. Here, we quantify the benefits and costs of locally adaptive loci across 17° of latitude in a four-grandparent outbred mapping population in outcrossing switchgrass (Panicum virgatum L.), an emerging biofuel crop and dominant tallgrass species. We conducted quantitative trait locus (QTL) mapping across 10 sites, ranging from Texas to South Dakota. This analysis revealed that beneficial biomass (fitness) QTL generally incur minimal costs when transplanted to other field sites distributed over a large climatic gradient over the 2 y of our study. Therefore, locally advantageous alleles could potentially be combined across multiple loci through breeding to create high-yielding regionally adapted cultivars.
Collapse
|
23
|
Genomic Prediction for Winter Survival of Lowland Switchgrass in the Northern USA. G3-GENES GENOMES GENETICS 2019; 9:1921-1931. [PMID: 30971392 PMCID: PMC6553536 DOI: 10.1534/g3.119.400094] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The lowland ecotype of switchgrass has generated considerable interest because of its higher biomass yield and late flowering characteristics compared to the upland ecotype. However, lowland ecotypes planted in northern latitudes exhibit very low winter survival. Implementation of genomic selection could potentially enhance switchgrass breeding for winter survival by reducing generation time while eliminating the dependence on weather. The objectives of this study were to assess the potential of genomic selection for winter survival in lowland switchgrass by combining multiple populations in the training set and applying the selected model in two independent testing datasets for validation. Marker data were generated using exome capture sequencing. Validation was conducted using (1) indirect indicators of winter adaptation based on geographic and climatic variables of accessions from different source locations and (2) winter survival estimates of the phenotype. The prediction accuracies were significantly higher when the training dataset comprising all populations was used in fivefold cross validation but its application was not useful in the independent validation dataset. Nevertheless, modeling for population heterogeneity improved the prediction accuracy to some extent but the genetic relationship between the training and validation populations was found to be more influential. The predicted winter survival of lowland switchgrass indicated latitudinal and longitudinal variability, with the northeast USA the region for most cold tolerant lowland populations. Our results suggested that GS could provide valuable opportunities for improving winter survival and accelerate the lowland switchgrass breeding programs toward the development of cold tolerant cultivars suitable for northern latitudes.
Collapse
|
24
|
Clifton‐Brown J, Harfouche A, Casler MD, Dylan Jones H, Macalpine WJ, Murphy‐Bokern D, Smart LB, Adler A, Ashman C, Awty‐Carroll D, Bastien C, Bopper S, Botnari V, Brancourt‐Hulmel M, Chen Z, Clark LV, Cosentino S, Dalton S, Davey C, Dolstra O, Donnison I, Flavell R, Greef J, Hanley S, Hastings A, Hertzberg M, Hsu T, Huang LS, Iurato A, Jensen E, Jin X, Jørgensen U, Kiesel A, Kim D, Liu J, McCalmont JP, McMahon BG, Mos M, Robson P, Sacks EJ, Sandu A, Scalici G, Schwarz K, Scordia D, Shafiei R, Shield I, Slavov G, Stanton BJ, Swaminathan K, Taylor G, Torres AF, Trindade LM, Tschaplinski T, Tuskan GA, Yamada T, Yeon Yu C, Zalesny RS, Zong J, Lewandowski I. Breeding progress and preparedness for mass-scale deployment of perennial lignocellulosic biomass crops switchgrass, miscanthus, willow and poplar. GLOBAL CHANGE BIOLOGY. BIOENERGY 2019; 11:118-151. [PMID: 30854028 PMCID: PMC6392185 DOI: 10.1111/gcbb.12566] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/18/2018] [Indexed: 05/07/2023]
Abstract
Genetic improvement through breeding is one of the key approaches to increasing biomass supply. This paper documents the breeding progress to date for four perennial biomass crops (PBCs) that have high output-input energy ratios: namely Panicum virgatum (switchgrass), species of the genera Miscanthus (miscanthus), Salix (willow) and Populus (poplar). For each crop, we report on the size of germplasm collections, the efforts to date to phenotype and genotype, the diversity available for breeding and on the scale of breeding work as indicated by number of attempted crosses. We also report on the development of faster and more precise breeding using molecular breeding techniques. Poplar is the model tree for genetic studies and is furthest ahead in terms of biological knowledge and genetic resources. Linkage maps, transgenesis and genome editing methods are now being used in commercially focused poplar breeding. These are in development in switchgrass, miscanthus and willow generating large genetic and phenotypic data sets requiring concomitant efforts in informatics to create summaries that can be accessed and used by practical breeders. Cultivars of switchgrass and miscanthus can be seed-based synthetic populations, semihybrids or clones. Willow and poplar cultivars are commercially deployed as clones. At local and regional level, the most advanced cultivars in each crop are at technology readiness levels which could be scaled to planting rates of thousands of hectares per year in about 5 years with existing commercial developers. Investment in further development of better cultivars is subject to current market failure and the long breeding cycles. We conclude that sustained public investment in breeding plays a key role in delivering future mass-scale deployment of PBCs.
Collapse
Affiliation(s)
- John Clifton‐Brown
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | - Antoine Harfouche
- Department for Innovation in Biological, Agrofood and Forest systemsUniversity of TusciaViterboItaly
| | | | - Huw Dylan Jones
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | | | | | - Lawrence B. Smart
- Horticulture Section, School of Integrative Plant ScienceCornell UniversityGenevaNew York
| | - Anneli Adler
- SweTree Technologies ABUmeåSweden
- Institute of Crop Production EcologySwedish University of Agricultural SciencesUppsalaSweden
| | - Chris Ashman
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | - Danny Awty‐Carroll
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | | | - Sebastian Bopper
- Department of Seed Science and Technology, Institute of Plant Breeding, Seed Science and Population GeneticsUniversity of HohenheimStuttgartGermany
| | - Vasile Botnari
- Institute of Genetics, Physiology and Plant Protection (IGFPP) of Academy of Sciences of MoldovaChisinauMoldova
| | | | - Zhiyong Chen
- Insitute of MiscanthusHunan Agricultural UniversityHunan ChangshaChina
| | - Lindsay V. Clark
- Department of Crop Sciences & Center for Advanced Bioenergy and Bioproducts Innovation, 279 Edward R Madigan LaboratoryUniversity of IllinoisUrbanaIllinois
| | - Salvatore Cosentino
- Dipartimento di Agricoltura Alimentazione e AmbienteUniversità degli Studi di CataniaCataniaItaly
| | - Sue Dalton
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | - Chris Davey
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | - Oene Dolstra
- Plant BreedingWageningen University & ResearchWageningenThe Netherlands
| | - Iain Donnison
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | | | - Joerg Greef
- Julius Kuhn‐Institut (JKI)Bundesforschungsinstitut fur KulturpflanzenBraunschweigGermany
| | | | - Astley Hastings
- Institute of Biological and Environmental ScienceUniversity of AberdeenAberdeenUK
| | | | - Tsai‐Wen Hsu
- Taiwan Endemic Species Research Institute (TESRI)Nantou CountyTaiwan
| | - Lin S. Huang
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | - Antonella Iurato
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | - Elaine Jensen
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | - Xiaoli Jin
- Department of Agronomy & The Key Laboratory of Crop Germplasm Resource of Zhejiang ProvinceZhejiang UniversityHangzhouChina
| | - Uffe Jørgensen
- Department of AgroecologyAarhus University Centre for Circular BioeconomyTjeleDenmark
| | - Andreas Kiesel
- Department of Biobased Products and Energy Crops, Institute of Crop ScienceUniversity of HohenheimStuttgartGermany
| | - Do‐Soon Kim
- Department of Plant Sciences, Research Institute of Agriculture & Life Sciences, CALSSeoul National UniversitySeoulKorea
| | - Jianxiu Liu
- Institute of BotanyJiangsu Province and Chinese Academy of SciencesNanjingChina
| | - Jon P. McCalmont
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | - Bernard G. McMahon
- Natural Resources Research InstituteUniversity of Minnesota – DuluthDuluthMinnesota
| | | | - Paul Robson
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | - Erik J. Sacks
- Department of Crop Sciences & Center for Advanced Bioenergy and Bioproducts Innovation, 279 Edward R Madigan LaboratoryUniversity of IllinoisUrbanaIllinois
| | - Anatolii Sandu
- Institute of Genetics, Physiology and Plant Protection (IGFPP) of Academy of Sciences of MoldovaChisinauMoldova
| | - Giovanni Scalici
- Dipartimento di Agricoltura Alimentazione e AmbienteUniversità degli Studi di CataniaCataniaItaly
| | - Kai Schwarz
- Julius Kuhn‐Institut (JKI)Bundesforschungsinstitut fur KulturpflanzenBraunschweigGermany
| | - Danilo Scordia
- Dipartimento di Agricoltura Alimentazione e AmbienteUniversità degli Studi di CataniaCataniaItaly
| | - Reza Shafiei
- James Hutton InstituteUniversity of DundeeDundeeUK
| | | | | | | | | | - Gail Taylor
- Biological SciencesUniversity of SouthamptonSouthamptonUK
| | - Andres F. Torres
- Plant BreedingWageningen University & ResearchWageningenThe Netherlands
| | - Luisa M. Trindade
- Plant BreedingWageningen University & ResearchWageningenThe Netherlands
| | - Timothy Tschaplinski
- The Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTennessee
| | - Gerald A. Tuskan
- The Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTennessee
| | - Toshihiko Yamada
- Field Science Centre for the Northern BiosphereHokkaido UniversitySapporoJapan
| | - Chang Yeon Yu
- College of Agriculture and Life Sciences 2Kangwon National UniversityChuncheonSouth Korea
| | | | - Junqin Zong
- Institute of BotanyJiangsu Province and Chinese Academy of SciencesNanjingChina
| | - Iris Lewandowski
- Department of Biobased Products and Energy Crops, Institute of Crop ScienceUniversity of HohenheimStuttgartGermany
| |
Collapse
|
25
|
Cui X, Cen H, Guan C, Tian D, Liu H, Zhang Y. Photosynthesis capacity diversified by leaf structural and physiological regulation between upland and lowland switchgrass in different growth stages. FUNCTIONAL PLANT BIOLOGY : FPB 2019; 47:38-49. [PMID: 31578165 DOI: 10.1071/fp19086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
Understanding and enhancing switchgrass (Panicum virgatum L.) photosynthesis will help to improve yield and quality for bio-industrial applications on cellulosic biofuel production. In the present study, leaf anatomical traits and physiological characteristics related to photosynthetic capacity of both lowland and upland switchgrass were recorded from four varieties across the vegetative, elongation and reproductive growth stages. Compared with the upland varieties, the lowland switchgrass showed 37-59, 22-64 and 27-73% higher performance on height, stem and leaf over all three growth stages. Leaf anatomical traits indicated that the leaves of lowland varieties provided more space for carbon assimilation and transportation caused by enhanced cell proliferation with more bundles sheath cells and larger contact areas between the bundle sheath and mesophyll cells (CAMB), which lead to the 32-72% higher photosynthetic capacity found in the lowland varieties during vegetative and elongation growth. However, photosynthetic capacity became 22-51% higher in the upland varieties during the reproductive stage, which is attributed to more photosynthetic pigment. In conclusion, lowland varieties gain a photosynthetic advantage with enhanced bundle sheath cell proliferation, while the upland varieties preserved more photosynthetic pigments. Our study provides new insights for improving the yield in crops by enhancing photosynthesis with anatomical and physiological strategies.
Collapse
Affiliation(s)
- Xin Cui
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Huifang Cen
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Cong Guan
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Danyang Tian
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Huayue Liu
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yunwei Zhang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China; and Corresponding author.
| |
Collapse
|
26
|
Ramstein GP, Evans J, Nandety A, Saha MC, Brummer EC, Kaeppler SM, Buell CR, Casler MD. Candidate Variants for Additive and Interactive Effects on Bioenergy Traits in Switchgrass ( Panicum virgatum L.) Identified by Genome-Wide Association Analyses. THE PLANT GENOME 2018; 11:180002. [PMID: 30512032 DOI: 10.3835/plantgenome2018.01.0002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Switchgrass ( L.) is a promising herbaceous energy crop, but further gains in biomass yield and quality must be achieved to enable a viable bioenergy industry. Developing DNA markers can contribute to such progress, but depiction of genetic bases should be reliable, involving simple additive marker effects and also interactions with genetic backgrounds (e.g., ecotypes) or synergies with other markers. We analyzed plant height, C content, N content, and mineral concentration in a diverse panel consisting of 512 genotypes of upland and lowland ecotypes. We performed association analyses based on exome capture sequencing and tested 439,170 markers for marginal effects, 83,290 markers for marker × ecotype interactions, and up to 311,445 marker pairs for pairwise interactions. Analyses of pairwise interactions focused on subsets of marker pairs preselected on the basis of marginal marker effects, gene ontology annotation, and pairwise marker associations. Our tests identified 12 significant effects. Homology and gene expression information corroborated seven effects and indicated plausible causal pathways: flowering time and lignin synthesis for plant height; plant growth and senescence for C content and mineral concentration. Four pairwise interactions were detected, including three interactions preselected on the basis of pairwise marker correlations. Furthermore, a marker × ecotype interaction and a pairwise interaction were confirmed in an independent switchgrass panel. Our analyses identified reliable candidate variants for important bioenergy traits. Moreover, they exemplified the importance of interactive effects for depicting genetic bases and illustrated the usefulness of preselecting marker pairs for identifying pairwise marker interactions in association studies.
Collapse
|
27
|
Taylor M, Tornqvist CE, Zhao X, Grabowski P, Doerge R, Ma J, Volenec J, Evans J, Ramstein GP, Sanciangco MD, Buell CR, Casler MD, Jiang Y. Genome-Wide Association Study in Pseudo-F 2 Populations of Switchgrass Identifies Genetic Loci Affecting Heading and Anthesis Dates. FRONTIERS IN PLANT SCIENCE 2018; 9:1250. [PMID: 30271414 PMCID: PMC6146286 DOI: 10.3389/fpls.2018.01250] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 08/06/2018] [Indexed: 06/01/2023]
Abstract
Switchgrass (Panicum virgatum) is a native prairie grass and valuable bio-energy crop. The physiological change from juvenile to reproductive adult can draw important resources away from growth into producing reproductive structures, thereby limiting the growth potential of early flowering plants. Delaying the flowering of switchgrass is one approach by which to increase total biomass. The objective of this research was to identify genetic variants and candidate genes for controlling heading and anthesis in segregating switchgrass populations. Four pseudo-F2 populations (two pairs of reciprocal crosses) were developed from lowland (late flowering) and upland (early flowering) ecotypes, and heading and anthesis dates of these populations were collected in Lafayette, IN and DeKalb, IL in 2015 and 2016. Across 2 years, there was a 34- and 73-day difference in heading and a 52- and 75-day difference in anthesis at the Lafayette and DeKalb locations, respectively. A total of 37,901 single nucleotide polymorphisms obtained by exome capture sequencing of the populations were used in a genome-wide association study (GWAS) that identified five significant signals at three loci for heading and two loci for anthesis. Among them, a homolog of FLOWERING LOCUS T on chromosome 5b associated with heading date was identified at the Lafayette location across 2 years. A homolog of ARABIDOPSIS PSEUDO-RESPONSE REGULATOR 5, a light modulator in the circadian clock associated with heading date was detected on chromosome 8a across locations and years. These results demonstrate that genetic variants related to floral development could lend themselves to a long-term goal of developing late flowering varieties of switchgrass with high biomass yield.
Collapse
Affiliation(s)
- Megan Taylor
- Department of Agronomy, Purdue University, West Lafayette, IN, United States
| | - Carl-Erik Tornqvist
- U.S. Department of Energy, Great Lakes Bioenergy Research Center and Department of Agronomy, University of Wisconsin-Madison, Madison, WI, United States
| | - Xiongwei Zhao
- Department of Agronomy, Purdue University, West Lafayette, IN, United States
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Paul Grabowski
- U.S. Dairy Forage Research Center, United States Department of Agriculture-Agricultural Research Service, Madison, WI, United States
| | - Rebecca Doerge
- Department of Agronomy, Purdue University, West Lafayette, IN, United States
- Department of Biology and Department of Statistics, Mellon College of Science, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Jianxin Ma
- Department of Agronomy, Purdue University, West Lafayette, IN, United States
| | - Jeffrey Volenec
- Department of Agronomy, Purdue University, West Lafayette, IN, United States
| | - Joseph Evans
- U.S. Department of Energy, Great Lakes Bioenergy Research Center and Department of Plant Biology, Michigan State University, East Lansing, MI, United States
| | - Guillaume P. Ramstein
- U.S. Department of Energy, Great Lakes Bioenergy Research Center and Department of Agronomy, University of Wisconsin-Madison, Madison, WI, United States
| | - Millicent D. Sanciangco
- U.S. Department of Energy, Great Lakes Bioenergy Research Center and Department of Plant Biology, Michigan State University, East Lansing, MI, United States
| | - C. Robin Buell
- U.S. Department of Energy, Great Lakes Bioenergy Research Center and Department of Plant Biology, Michigan State University, East Lansing, MI, United States
| | - Michael D. Casler
- U.S. Department of Energy, Great Lakes Bioenergy Research Center and Department of Agronomy, University of Wisconsin-Madison, Madison, WI, United States
- U.S. Dairy Forage Research Center, United States Department of Agriculture-Agricultural Research Service, Madison, WI, United States
| | - Yiwei Jiang
- Department of Agronomy, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
28
|
Tornqvist CE, Taylor M, Jiang Y, Evans J, Buell CR, Kaeppler SM, Casler MD. Quantitative Trait Locus Mapping for Flowering Time in a Lowland × Upland Switchgrass Pseudo-F2 Population. THE PLANT GENOME 2018; 11. [PMID: 30025023 DOI: 10.3835/plantgenome2017.10.0093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Flowering is an important developmental event in switchgrass (), as the time to complete the life cycle affects overall biomass accumulation. The objective of this study was to generate a linkage map using single nucleotide polymorphism (SNP) markers to identify quantitative trait loci (QTL) associated with flowering time. A pseudo-F population was created by crossing two siblings derived from an initial cross between the lowland population Ellsworth and the upland cultivar Summer. Heading and anthesis dates were collected for 2 yr at two locations: DeKalb, IL and Lafayette, IN. Nine QTL for flowering time were detected, two of which were heading-associated, four anthesis-associated, and three associated with both heading and anthesis. One QTL on linkage group (LG) 2a was detected for heading and anthesis in each location and year when environments were analyzed separately, and in a combined analysis across both locations and years. The effect on heading and anthesis of the QTL on LG 2a ranged from 4 to 13 and 5 to 9 d, respectively, depending on environment. Our findings validate QTL for switchgrass flowering time from previous research and identified additional QTL. Based on the switchgrass reference genome version 1.1, flowering time gene homologs reside near the LG 2a QTL and include PSEUDO RESPONSE REGULATOR 5, SUPPRESSOR OF FRIGIDA 4, and APETALA 1, respectively involved in the circadian clock, vernalization, and floral meristem identity. Markers linked to the QTL can be used to improve the efficiency of breeding switchgrass for delayed flowering to increase biomass yield.
Collapse
|
29
|
Bahri BA, Daverdin G, Xu X, Cheng JF, Barry KW, Brummer EC, Devos KM. Natural variation in genes potentially involved in plant architecture and adaptation in switchgrass (Panicum virgatum L.). BMC Evol Biol 2018; 18:91. [PMID: 29898656 PMCID: PMC6000970 DOI: 10.1186/s12862-018-1193-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 05/15/2018] [Indexed: 11/24/2022] Open
Abstract
Background Advances in genomic technologies have expanded our ability to accurately and exhaustively detect natural genomic variants that can be applied in crop improvement and to increase our knowledge of plant evolution and adaptation. Switchgrass (Panicum virgatum L.), an allotetraploid (2n = 4× = 36) perennial C4 grass (Poaceae family) native to North America and a feedstock crop for cellulosic biofuel production, has a large potential for genetic improvement due to its high genotypic and phenotypic variation. In this study, we analyzed single nucleotide polymorphism (SNP) variation in 372 switchgrass genotypes belonging to 36 accessions for 12 genes putatively involved in biomass production to investigate signatures of selection that could have led to ecotype differentiation and to population adaptation to geographic zones. Results A total of 11,682 SNPs were mined from ~ 15 Gb of sequence data, out of which 251 SNPs were retained after filtering. Population structure analysis largely grouped upland accessions into one subpopulation and lowland accessions into two additional subpopulations. The most frequent SNPs were in homozygous state within accessions. Sixty percent of the exonic SNPs were non-synonymous and, of these, 45% led to non-conservative amino acid changes. The non-conservative SNPs were largely in linkage disequilibrium with one haplotype being predominantly present in upland accessions while the other haplotype was commonly present in lowland accessions. Tajima’s test of neutrality indicated that PHYB, a gene involved in photoperiod response, was under positive selection in the switchgrass population. PHYB carried a SNP leading to a non-conservative amino acid change in the PAS domain, a region that acts as a sensor for light and oxygen in signal transduction. Conclusions Several non-conservative SNPs in genes potentially involved in plant architecture and adaptation have been identified and led to population structure and genetic differentiation of ecotypes in switchgrass. We suggest here that PHYB is a key gene involved in switchgrass natural selection. Further analyses are needed to determine whether any of the non-conservative SNPs identified play a role in the differential adaptation of upland and lowland switchgrass. Electronic supplementary material The online version of this article (10.1186/s12862-018-1193-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bochra A Bahri
- Institute of Plant Breeding, Genetics and Genomics (Department of Crop and Soil Sciences), and Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA. .,Laboratory of Bioaggressors and Integrated Protection in Agriculture, The National Agronomic Institute of Tunisia, University of Carthage, 43 Avenue Charles-Nicolle, 1082, Tunis, Tunisia.
| | - Guillaume Daverdin
- Institute of Plant Breeding, Genetics and Genomics (Department of Crop and Soil Sciences), and Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA.,Present address: Vinson Edward Ltd, Faversham, ME13 8UP, UK
| | - Xiangyang Xu
- Institute of Plant Breeding, Genetics and Genomics (Department of Crop and Soil Sciences), and Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA.,Present address: USDA-ARS, Wheat, Peanut and Other Field Crops Research Unit, Stillwater, OK, 74075, USA
| | - Jan-Fang Cheng
- DOE Joint Genome Institute, Walnut Creek, California, CA, 94598, USA
| | - Kerrie W Barry
- DOE Joint Genome Institute, Walnut Creek, California, CA, 94598, USA
| | - E Charles Brummer
- Plant Breeding Center, Plant Sciences Department, University of California, Davis, CA, 95616, USA
| | - Katrien M Devos
- Institute of Plant Breeding, Genetics and Genomics (Department of Crop and Soil Sciences), and Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
30
|
Evans J, Sanciangco MD, Lau KH, Crisovan E, Barry K, Daum C, Hundley H, Jenkins J, Kennedy M, Kunde-Ramamoorthy G, Vaillancourt B, Acharya A, Schmutz J, Saha M, Kaeppler SM, Brummer EC, Casler MD, Buell CR. Extensive Genetic Diversity is Present within North American Switchgrass Germplasm. THE PLANT GENOME 2018; 11. [PMID: 29505643 DOI: 10.3835/plantgenome2017.06.0055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Switchgrass ( is a perennial native North American grass present in two ecotypes: upland, found primarily in the northern range of switchgrass habitats, and lowland, found largely in the southern reaches of switchgrass habitats. Previous studies focused on a diversity panel of primarily northern switchgrass, so to expand our knowledge of genetic diversity in a broader set of North American switchgrass, exome capture sequence data were generated for 632 additional, primarily lowland individuals. In total, over 37 million single nucleotide polymorphisms (SNPs) were identified and a set of 1.9 million high-confidence SNPs were obtained from 1169 individuals from 140 populations (67 upland, 65 lowland, 8 admixed) were used in downstream analyses of genetic diversity and population structure. Seven separate population groups were identified with moderate genetic differentiation [mean fixation index (Fst) estimate of 0.06] between the lowland and the upland populations. Ecotype-specific and population-specific SNPs were identified for use in germplasm evaluations. Relative to rice ( L.), maize ( L.), soybean [ (L.) Merr.], and Gaertn., analyses of nucleotide diversity revealed a high degree of genetic diversity (0.0135) across all individuals, consistent with the outcrossing mode of reproduction and the polyploidy of switchgrass. This study supports the hypothesis that repeated glaciation events, ploidy barriers, and restricted gene flow caused by flowering time differences have resulted in distinct gene pools across ecotypes and geographic regions. These data provide a resource to associate alleles with traits of interest for forage, restoration, and biofuel feedstock efforts in switchgrass.
Collapse
|
31
|
Palmer NA, Saathoff AJ, Scully ED, Tobias CM, Twigg P, Madhavan S, Schmer M, Cahoon R, Sattler SE, Edmé SJ, Mitchell RB, Sarath G. Seasonal below-ground metabolism in switchgrass. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:1059-1075. [PMID: 29030891 DOI: 10.1111/tpj.13742] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/26/2017] [Accepted: 09/29/2017] [Indexed: 05/25/2023]
Abstract
Switchgrass (Panicum virgatum), a perennial, polyploid, C4 warm-season grass is among the foremost herbaceous species being advanced as a source of biomass for biofuel end uses. At the end of every growing season, the aerial tissues senesce, and the below-ground rhizomes become dormant. Future growth is dependent on the successful over-wintering of the rhizomes. Although the importance of rhizome health to overall year-upon-year plant productivity has been long recognized, there is limited information on seasonal changes occurring during dormancy at both the transcriptome and metabolite levels. Here, global changes in transcriptomes and metabolites were investigated over two growing seasons in rhizomes harvested from field-grown plants. The objectives were: (a) synthesize information on cellular processes that lead to dormancy; and (b) provide models that could account for major metabolic pathways present in dormant switchgrass rhizomes. Overall, metabolism during dormancy appeared to involve discrete but interrelated events. One was a response to abscisic acid that resulted in dehydration, increases in osmolytes and upregulation of autophagic processes, likely through the target of rapamycin complex and sucrose non-fermentative-related kinase-based signaling cascades. Another was a recalibration of energy transduction through apparent reductions in mitochondrial oxidative phosphorylation, increases in substrate level generation of ATP and reducing equivalents, and recycling of N and possibly CO2 through refixation. Lastly, transcript abundances indicated that cold-related signaling was also occurring. Altogether, these data provide a detailed overview of rhizome metabolism, especially during dormancy, which can be exploited in the future to improve winter survival in switchgrass.
Collapse
Affiliation(s)
- Nathan A Palmer
- Wheat, Sorghum, and Forage Research Unit, USDA-ARS, Lincoln, NE, 68583, USA
- Department of Agronomy and Horticulture, University of Nebraska at Lincoln, Lincoln, NE, 68583, USA
| | - Aaron J Saathoff
- Wheat, Sorghum, and Forage Research Unit, USDA-ARS, Lincoln, NE, 68583, USA
- Department of Agronomy and Horticulture, University of Nebraska at Lincoln, Lincoln, NE, 68583, USA
| | - Erin D Scully
- Stored Product Insect and Engineering Research Unit, USDA-Agricultural Research Service Center for Grain and Animal Health, Manhattan, KS, 66502, USA
| | - Christian M Tobias
- Crop Improvement and Genetics Research, USDA-ARS, Albany, CA, 94710, USA
| | - Paul Twigg
- Biology Department, University of Nebraska at Kearney, Kearney, NE, 68849, USA
| | | | - Marty Schmer
- Agroecosystem Management Research Unit, USDA-ARS, Lincoln, NE, 68583, USA
- Department of Agronomy and Horticulture, University of Nebraska at Lincoln, Lincoln, NE, 68583, USA
| | - Rebecca Cahoon
- Department of Biochemistry, University of Nebraska at Lincoln, Lincoln, NE, 68588, USA
| | - Scott E Sattler
- Wheat, Sorghum, and Forage Research Unit, USDA-ARS, Lincoln, NE, 68583, USA
- Department of Agronomy and Horticulture, University of Nebraska at Lincoln, Lincoln, NE, 68583, USA
| | - Serge J Edmé
- Wheat, Sorghum, and Forage Research Unit, USDA-ARS, Lincoln, NE, 68583, USA
- Department of Agronomy and Horticulture, University of Nebraska at Lincoln, Lincoln, NE, 68583, USA
| | - Robert B Mitchell
- Wheat, Sorghum, and Forage Research Unit, USDA-ARS, Lincoln, NE, 68583, USA
- Department of Agronomy and Horticulture, University of Nebraska at Lincoln, Lincoln, NE, 68583, USA
| | - Gautam Sarath
- Wheat, Sorghum, and Forage Research Unit, USDA-ARS, Lincoln, NE, 68583, USA
- Department of Agronomy and Horticulture, University of Nebraska at Lincoln, Lincoln, NE, 68583, USA
| |
Collapse
|
32
|
|
33
|
Johnson CR, Millwood RJ, Tang Y, Gou J, Sykes RW, Turner GB, Davis MF, Sang Y, Wang ZY, Stewart CN. Field-grown miR156 transgenic switchgrass reproduction, yield, global gene expression analysis, and bioconfinement. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:255. [PMID: 29213314 PMCID: PMC5707911 DOI: 10.1186/s13068-017-0939-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/19/2017] [Indexed: 05/09/2023]
Abstract
BACKGROUND Genetic engineering has been effective in altering cell walls for biofuel production in the bioenergy crop, switchgrass (Panicum virgatum). However, regulatory issues arising from gene flow may prevent commercialization of engineered switchgrass in the eastern United States where the species is native. Depending on its expression level, microRNA156 (miR156) can reduce, delay, or eliminate flowering, which may serve to decrease transgene flow. In this unique field study of transgenic switchgrass that was permitted to flower, two low (T14 and T35) and two medium (T27 and T37) miR156-overexpressing 'Alamo' lines with the transgene under the control of the constitutive maize (Zea mays) ubiquitin 1 promoter, along with nontransgenic control plants, were grown in eastern Tennessee over two seasons. RESULTS miR156 expression was positively associated with decreased and delayed flowering in switchgrass. Line T27 did not flower during the 2-year study. Line T37 did flower, but not all plants produced panicles. Flowering was delayed in T37, resulting in 70.6% fewer flowers than controls during the second field year with commensurate decreased seed yield: 1205 seeds per plant vs. 18,539 produced by each control. These results are notable given that line T37 produced equivalent vegetative aboveground biomass to the controls. miR156 transcript abundance of field-grown plants was congruent with greenhouse results. The five miR156 SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) target genes had suppressed expression in one or more of the transgenic lines. Line T27, which had the highest miR156 overexpression, showed significant downregulation for all five SPL genes. On the contrary, line T35 had the lowest miR156 overexpression and had no significant change in any of the five SPL genes. CONCLUSIONS Because of the research field's geographical features, this study was the first instance of any genetically engineered trait in switchgrass, in which experimental plants were allowed to flower in the field in the eastern U.S.; USDA-APHIS-BRS regulators allowed open flowering. We found that medium overexpression of miR156, e.g., line T37, resulted in delayed and reduced flowering accompanied by high biomass production. We propose that induced miR156 expression could be further developed as a transgenic switchgrass bioconfinement tool to enable eventual commercialization.
Collapse
Affiliation(s)
- Chelsea R. Johnson
- Department of Plant Sciences, University of Tennessee, Knoxville, TN USA
| | - Reginald J. Millwood
- Department of Plant Sciences, University of Tennessee, Knoxville, TN USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - Yuhong Tang
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN USA
- Noble Research Institute, Ardmore, OK USA
| | - Jiqing Gou
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN USA
- Noble Research Institute, Ardmore, OK USA
| | - Robert W. Sykes
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN USA
- National Renewable Energy Laboratory, Golden, CO USA
| | - Geoffrey B. Turner
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN USA
- National Renewable Energy Laboratory, Golden, CO USA
| | - Mark F. Davis
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN USA
- National Renewable Energy Laboratory, Golden, CO USA
| | - Yi Sang
- Department of Plant Sciences, University of Tennessee, Knoxville, TN USA
| | - Zeng-Yu Wang
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN USA
- Noble Research Institute, Ardmore, OK USA
| | - C. Neal Stewart
- Department of Plant Sciences, University of Tennessee, Knoxville, TN USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN USA
| |
Collapse
|