1
|
Higgins K, Nyabashi V, Anderson S. Conservation of imprinted expression across genotypes is correlated with consistency of imprinting across endosperm development in maize. G3 (BETHESDA, MD.) 2025; 15:jkaf028. [PMID: 39948030 PMCID: PMC12005164 DOI: 10.1093/g3journal/jkaf028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 01/28/2025] [Indexed: 04/18/2025]
Abstract
Imprinted expression is an essential process for seed viability affecting hundreds of genes in Zea mays endosperm; however, most studies have examined just one time point for analysis. The focus on single time points can limit our ability to identify imprinted genes and our ability to draw conclusions for the role of imprinting in endosperm. In this study, we examine imprinted expression across 4 time points ranging from the transition to endoreduplication from mitotic division through the beginning of programmed cell death. Additionally, we assessed imprinting variation across 8 diverse maize lines, 6 of which have never before been assessed for imprinting. Through this analysis, we identify over 700 imprinted genes with varying consistency across time points including 255 genes imprinted at every time point and 105 genes displaying transient imprinting. We find a correlation between high consistency of imprinting across time and high conservation of parental bias across 8 diverse maize lines reciprocally crossed with B73. Additionally, we identify evidence of imprinting for 3 zein genes that are critical for nutrient accumulation in the endosperm, suggesting that imprinting may play a more important role in seed composition than previously thought. Taken together, this study provides a more holistic view of imprinting variation across time and across genotypes in maize and enables us to more thoroughly investigate the complex imprinting landscape.
Collapse
Affiliation(s)
- Kaitlin Higgins
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50010, USA
| | - Vital Nyabashi
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50010, USA
| | - Sarah Anderson
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50010, USA
| |
Collapse
|
2
|
Cheng X, Zhang S, E Z, Yang Z, Cao S, Zhang R, Niu B, Li QF, Zhou Y, Huang XY, Liu QQ, Chen C. Maternally expressed FERTILIZATION-INDEPENDENT ENDOSPERM1 regulates seed dormancy and aleurone development in rice. THE PLANT CELL 2024; 37:koae304. [PMID: 39549266 DOI: 10.1093/plcell/koae304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 10/15/2024] [Accepted: 11/05/2024] [Indexed: 11/18/2024]
Abstract
Seed dormancy, an essential trait for plant adaptation, is determined by the embryo itself and the surrounding tissues. Here, we found that rice (Oryza sativa) FERTILIZATION-INDEPENDENT ENDOSPERM1 (OsFIE1) regulates endosperm-imposed dormancy and the dorsal aleurone thickness in a manner dependent on the parent of origin. Maternally expressed OsFIE1 suppresses gibberellin (GA) biosynthesis in the endosperm by depositing trimethylation of lysine 27 on histone H3 (H3K27me3) marks on GA biosynthesis-related genes, thus inhibiting germination and aleurone differentiation. Knockout of rice GA 20-oxidase1 (OsGA20ox1) alleviated the phenotypic defects in osfie1. The aleurone-positive determinant Crinkly 4 (OsCR4) is another target of the OsFIE1-containing Polycomb repressive complex 2 (PRC2). We found that OsFIE1 plays an important role in genomic imprinting in the endosperm of germinating seeds, particularly for paternally expressed genes associated with H3K27me3. The increased aleurone thickness of osfie1 substantially improved grain nutritional quality, indicating that the osfie1 gene may be utilized for breeding nutrient-enriched rice. The findings provide insights into the essential roles of PRC2-mediated H3K27me3 methylation in the acquisition of seed dormancy and endosperm cell differentiation in rice.
Collapse
Affiliation(s)
- Xiaojun Cheng
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Su Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Zhiguo E
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311499, China
| | - Zongju Yang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Sijia Cao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Rui Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Baixiao Niu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Qian-Feng Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Yong Zhou
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Xin-Yuan Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Sanya Institute of Nanjing Agricultural University, Sanya 572022, China
| | - Qiao-Quan Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Chen Chen
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
3
|
Soliman HK, Coughlan JM. United by conflict: Convergent signatures of parental conflict in angiosperms and placental mammals. J Hered 2024; 115:625-642. [PMID: 38366852 PMCID: PMC11498613 DOI: 10.1093/jhered/esae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/13/2024] [Indexed: 02/18/2024] Open
Abstract
Endosperm in angiosperms and placenta in eutherians are convergent innovations for efficient embryonic nutrient transfer. Despite advantages, this reproductive strategy incurs metabolic costs that maternal parents disproportionately shoulder, leading to potential inter-parental conflict over optimal offspring investment. Genomic imprinting-parent-of-origin-biased gene expression-is fundamental for endosperm and placenta development and has convergently evolved in angiosperms and mammals, in part, to resolve parental conflict. Here, we review the mechanisms of genomic imprinting in these taxa. Despite differences in the timing and spatial extent of imprinting, these taxa exhibit remarkable convergence in the molecular machinery and genes governing imprinting. We then assess the role of parental conflict in shaping evolution within angiosperms and eutherians using four criteria: 1) Do differences in the extent of sibling relatedness cause differences in the inferred strength of parental conflict? 2) Do reciprocal crosses between taxa with different inferred histories of parental conflict exhibit parent-of-origin growth effects? 3) Are these parent-of-origin growth effects caused by dosage-sensitive mechanisms and do these loci exhibit signals of positive selection? 4) Can normal development be restored by genomic perturbations that restore stoichiometric balance in the endosperm/placenta? Although we find evidence for all criteria in angiosperms and eutherians, suggesting that parental conflict may help shape their evolution, many questions remain. Additionally, myriad differences between the two taxa suggest that their respective biologies may shape how/when/where/to what extent parental conflict manifests. Lastly, we discuss outstanding questions, highlighting the power of comparative work in quantifying the role of parental conflict in evolution.
Collapse
Affiliation(s)
- Hagar K Soliman
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT 06511, United States
- Department of Biotechnology, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Jenn M Coughlan
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT 06511, United States
| |
Collapse
|
4
|
Khouider S, Gehring M. Parental dialectic: Epigenetic conversations in endosperm. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102591. [PMID: 38944896 PMCID: PMC11392645 DOI: 10.1016/j.pbi.2024.102591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/21/2024] [Accepted: 06/07/2024] [Indexed: 07/02/2024]
Abstract
Endosperm is a major evolutionary innovation of flowering plants, and its proper development critically impacts seed growth and viability. Epigenetic regulators have a key function in parental control of endosperm development. Notably, epigenetic regulation of parental genome dosage is a major determinant of seed development success, and disruption of this balance can produce inviable seed, as observed in some interploidy and interspecific crosses. These postzygotic reproduction barriers are also a potent driver of speciation. The molecular machinery and regulatory architecture governing endosperm development is proposed to have evolved under parental conflict. In this review, we emphasize parental conflict as a dialectic conflict and discuss recent findings about the epigenetic molecular machinery that mediates parental conflict in the endosperm.
Collapse
Affiliation(s)
- Souraya Khouider
- Whitehead Institute for Biomedical Research, Cambridge MA 02142, USA
| | - Mary Gehring
- Whitehead Institute for Biomedical Research, Cambridge MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge MA 02139, USA.
| |
Collapse
|
5
|
Muthusamy M, Pandian S, Shin EK, An HK, Sohn SI. Unveiling the imprinted dance: how parental genomes orchestrate seed development and hybrid success. FRONTIERS IN PLANT SCIENCE 2024; 15:1455685. [PMID: 39399543 PMCID: PMC11466797 DOI: 10.3389/fpls.2024.1455685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/11/2024] [Indexed: 10/15/2024]
Abstract
Parental epigenetic asymmetries, which contribute to the monoallelic expression of genes known as imprints, play a critical role in seed development in flowering plants. Primarily, differential DNA methylation patterns and histone modifications on parental alleles form the molecular basis of gene imprinting. Plants predominantly exhibit this non-Mendelian inheritance phenomenon in the endosperm and the early embryo of developing seeds. Imprinting is crucial for regulating nutrient allocation, maintaining seed development, resolving parental conflict, and facilitating evolutionary adaptation. Disruptions in imprinted gene expression, mediated by epigenetic regulators and parental ploidy levels, can lead to endosperm-based hybridization barriers and hybrid dysfunction, ultimately reducing genetic diversity in plant populations. Conversely, imprinting helps maintain genetic stability within plant populations. Imprinted genes likely influence seed development in various ways, including ensuring proper endosperm development, influencing seed dormancy, and regulating seed size. However, the functions of most imprinted genes, the evolutionary significance of imprinting, and the long-term consequences of imprinting disruptions on plant development and adaptation need further exploration. Thus, it is clear that research on imprinting has immense potential for improving our understanding of plant development and ultimately enhancing key agronomic traits. This review decodes the possible genetic and epigenetic regulatory factors underpinning genomic imprinting and their positive and negative consequences on seed development. This study also forecasts the potential implications of exploiting gene imprinting for crop improvement programs.
Collapse
Affiliation(s)
| | | | | | | | - Soo-In Sohn
- Biosafety Division, Department of Agricultural Biotechnology, National Institute of
Agricultural Sciences, Rural Development Administration, Jeonju, Republic of Korea
| |
Collapse
|
6
|
Pal AK, Gandhivel VHS, Nambiar AB, Shivaprasad PV. Upstream regulator of genomic imprinting in rice endosperm is a small RNA-associated chromatin remodeler. Nat Commun 2024; 15:7807. [PMID: 39242590 PMCID: PMC11379814 DOI: 10.1038/s41467-024-52239-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 08/29/2024] [Indexed: 09/09/2024] Open
Abstract
Genomic imprinting is observed in endosperm, a placenta-like seed tissue, where transposable elements (TEs) and repeat-derived small RNAs (sRNAs) mediate epigenetic changes in plants. In imprinting, uniparental gene expression arises due to parent-specific epigenetic marks on one allele but not on the other. The importance of sRNAs and their regulation in endosperm development or in imprinting is poorly understood in crops. Here we show that a previously uncharacterized CLASSY (CLSY)-family chromatin remodeler named OsCLSY3 is essential for rice endosperm development and imprinting, acting as an upstream player in the sRNA pathway. Comparative transcriptome and genetic analysis indicated its endosperm-preferred expression and its likely paternal imprinted nature. These important features are modulated by RNA-directed DNA methylation (RdDM) of tandemly arranged TEs in its promoter. Upon perturbation of OsCLSY3 in transgenic lines, we observe defects in endosperm development and a loss of around 70% of all sRNAs. Interestingly, well-conserved endosperm-specific sRNAs (siren) that are vital for reproductive fitness in angiosperms are also dependent on OsCLSY3. We observed that many imprinted genes and seed development-associated genes are under the control of OsCLSY3. These results support an essential role of OsCLSY3 in rice endosperm development and imprinting, and propose similar regulatory strategies involving CLSY3 homologs among other cereals.
Collapse
Affiliation(s)
- Avik Kumar Pal
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
| | - Vivek Hari-Sundar Gandhivel
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
| | - Amruta B Nambiar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
| | - P V Shivaprasad
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India.
| |
Collapse
|
7
|
Huang C, Cheng Y, Hu Y, Fang L, Si Z, Chen J, Cao Y, Guan X, Zhang T. Dynamic patterns of gene expressional and regulatory variations in cotton heterosis. FRONTIERS IN PLANT SCIENCE 2024; 15:1450963. [PMID: 39166253 PMCID: PMC11333441 DOI: 10.3389/fpls.2024.1450963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 07/24/2024] [Indexed: 08/22/2024]
Abstract
Purpose Although the application of heterosis has significantly increased crop yield over the past century, the mechanisms underlying this phenomenon still remain obscure. Here, we applied transcriptome sequencing to unravel the impacts of parental expression differences and transcriptomic reprogramming in cotton heterosis. Methods A high-quality transcriptomic atlas covering 15 developmental stages and tissues was constructed for XZM2, an elite hybrid of upland cotton (Gossypium hirsutum L.), and its parental lines, CRI12 and J8891. This atlas allowed us to identify gene expression differences between the parents and to characterize the transcriptomic reprogramming that occurs in the hybrid. Results Our analysis revealed abundant gene expression differences between the parents, with pronounced tissue specificity; a total of 1,112 genes exhibited single-parent expression in at least one tissue. It also illuminated transcriptomic reprogramming in the hybrid XZM2, which included both additive and non-additive expression patterns. Coexpression networks between parents and hybrid constructed via weighted gene coexpression network analysis identified modules closely associated with fiber development. In particular, key regulatory hub genes involved in fiber development showed high-parent dominant or over dominant patterns in the hybrid, potentially driving the emergence of heterosis. Finally, high-depth resequencing data was generated and allele-specific expression patterns examined in the hybrid, enabling the dissection of cis- and trans-regulation contributions to the observed expression differences. Conclusion Parental transcriptional differences and transcriptomic reprogramming in the hybrid, especially the non-additive upregulation of key genes, play an important role in shaping heterosis. Collectively, these findings provide new insights into the molecular basis of heterosis in cotton.
Collapse
Affiliation(s)
- Chujun Huang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yu Cheng
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yan Hu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Lei Fang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Zhanfeng Si
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jinwen Chen
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yiwen Cao
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Xueying Guan
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Tianzhen Zhang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| |
Collapse
|
8
|
Tonosaki K, Susaki D, Morinaka H, Ono A, Nagata H, Furuumi H, Nonomura KI, Sato Y, Sugimoto K, Comai L, Hatakeyama K, Kawakatsu T, Kinoshita T. Multilayered epigenetic control of persistent and stage-specific imprinted genes in rice endosperm. NATURE PLANTS 2024; 10:1231-1245. [PMID: 39080502 DOI: 10.1038/s41477-024-01754-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 07/01/2024] [Indexed: 08/22/2024]
Abstract
In angiosperms, epigenetic profiles for genomic imprinting are established before fertilization. However, the causal relationships between epigenetic modifications and imprinted expression are not fully understood. In this study, we classified 'persistent' and 'stage-specific' imprinted genes on the basis of time-course transcriptome analysis in rice (Oryza sativa) endosperm and compared them to epigenetic modifications at a single time point. While the levels of epigenetic modifications are relatively low in stage-specific imprinted genes, they are considerably higher in persistent imprinted genes. Overall trends revealed that the maternal alleles of maternally expressed imprinted genes are activated by DNA demethylation, while the maternal alleles of paternally expressed imprinted genes with gene body methylation (gbM) are silenced by DNA demethylation and H3K27me3 deposition, and these regions are associated with an enriched motif related to Tc/Mar-Stowaway. Our findings provide insight into the stability of genomic imprinting and the potential variations associated with endosperm development, different cell types and parental genotypes.
Collapse
Grants
- 20K15504 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 22K15145 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 23H04749 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 23H04756 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 23K23585 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 22H05175 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 21H02170 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 22H02320 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
Collapse
Affiliation(s)
- Kaoru Tonosaki
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, Japan.
- Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan.
| | - Daichi Susaki
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Hatsune Morinaka
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Akemi Ono
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Hiroki Nagata
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Hiroyasu Furuumi
- Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Ken-Ichi Nonomura
- Plant Cytogenetics, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Yutaka Sato
- Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Luca Comai
- Department of Plant Biology and Genome Center, University of California, Davis, CA, USA
| | | | - Taiji Kawakatsu
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan.
| | - Tetsu Kinoshita
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, Japan.
| |
Collapse
|
9
|
Yadav A, Mathan J, Dubey AK, Singh A. The Emerging Role of Non-Coding RNAs (ncRNAs) in Plant Growth, Development, and Stress Response Signaling. Noncoding RNA 2024; 10:13. [PMID: 38392968 PMCID: PMC10893181 DOI: 10.3390/ncrna10010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Plant species utilize a variety of regulatory mechanisms to ensure sustainable productivity. Within this intricate framework, numerous non-coding RNAs (ncRNAs) play a crucial regulatory role in plant biology, surpassing the essential functions of RNA molecules as messengers, ribosomal, and transfer RNAs. ncRNAs represent an emerging class of regulators, operating directly in the form of small interfering RNAs (siRNAs), microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs). These ncRNAs exert control at various levels, including transcription, post-transcription, translation, and epigenetic. Furthermore, they interact with each other, contributing to a variety of biological processes and mechanisms associated with stress resilience. This review primarily concentrates on the recent advancements in plant ncRNAs, delineating their functions in growth and development across various organs such as root, leaf, seed/endosperm, and seed nutrient development. Additionally, this review broadens its scope by examining the role of ncRNAs in response to environmental stresses such as drought, salt, flood, heat, and cold in plants. This compilation offers updated information and insights to guide the characterization of the potential functions of ncRNAs in plant growth, development, and stress resilience in future research.
Collapse
Affiliation(s)
- Amit Yadav
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA;
| | - Jyotirmaya Mathan
- Sashi Bhusan Rath Government Autonomous Women’s College, Brahmapur 760001, India;
| | - Arvind Kumar Dubey
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA;
| | - Anuradha Singh
- Department of Plant, Soil and Microbial Science, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
10
|
Li X, Liu Q, Liu J. Long Non-Coding RNAs: Discoveries, Mechanisms, and Research Strategies in Seeds. Genes (Basel) 2023; 14:2214. [PMID: 38137035 PMCID: PMC10742540 DOI: 10.3390/genes14122214] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Seeds provide nutrients for the embryo and allow for dormancy in stressed environments to better adapt the plant to its environment. In addition, seeds are an essential source of food for human survival and are the basis for the formation of food production and quality. Therefore, the research on the genetic mechanism of seed development and germination will provide a theoretical basis and technical support for the improvement of crop yield and quality. Recent studies have shown that long non-coding RNAs (lncRNAs) occupy a pivotal position in seed development and germination. In this review, we describe the key processes in seed biology and examine discoveries and insights made in seed lncRNA, with emphasis on lncRNAs that regulate seed biology through multiple mechanisms. Given that thousands of lncRNAs are present in the seed transcriptome, characterization has lagged far behind identification. We provide an overview of research strategies and approaches including some exciting new techniques that may uncover the function of lncRNAs in seed. Finally, we discuss the challenges facing the field and the opening questions. All in all, we hope to provide a clear perspective on discoveries of seed lncRNA by linking discoveries, mechanisms, and technologies.
Collapse
Affiliation(s)
| | | | - Jun Liu
- Guangdong Provincial Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (X.L.); (Q.L.)
| |
Collapse
|
11
|
Han B, Li Y, Wu D, Li DZ, Liu A, Xu W. Dynamics of imprinted genes and their epigenetic mechanisms in castor bean seed with persistent endosperm. THE NEW PHYTOLOGIST 2023; 240:1868-1882. [PMID: 37717216 DOI: 10.1111/nph.19265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/25/2023] [Indexed: 09/19/2023]
Abstract
Genomic imprinting refers to parent-of-origin-dependent gene expression and primarily occurs in the endosperm of flowering plants, but its functions and epigenetic mechanisms remain to be elucidated in eudicots. Castor bean, a eudicot with large and persistent endosperm, provides an excellent system for studying the imprinting. Here, we identified 131 imprinted genes in developing endosperms and endosperm at seed germination phase of castor bean, involving into the endosperm development, accumulation of storage compounds and specially seed germination. Our results showed that the transcriptional repression of maternal allele of DNA METHYLTRANSFERASE 1 (MET1) may be required for maternal genome demethylation in the endosperm. DNA methylation analysis showed that only a small fraction of imprinted genes was associated with allele-specific DNA methylation, and most of them were closely associated with constitutively unmethylated regions (UMRs), suggesting a limited role for DNA methylation in controlling genomic imprinting. Instead, histone modifications can be asymmetrically deposited in maternal and paternal genomes in a DNA methylation-independent manner to control expression of most imprinted genes. These results expanded our understanding of the occurrence and biological functions of imprinted genes and showed the evolutionary flexibility of the imprinting machinery and mechanisms in plants.
Collapse
Affiliation(s)
- Bing Han
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Yelan Li
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Di Wu
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Aizhong Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China
| | - Wei Xu
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| |
Collapse
|
12
|
Pinky, Jain R, Yadav A, Sharma R, Dhaka N. Emerging roles of long non-coding RNAs in regulating agriculturally important seed traits. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108019. [PMID: 37714026 DOI: 10.1016/j.plaphy.2023.108019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/26/2023] [Accepted: 09/06/2023] [Indexed: 09/17/2023]
Abstract
Seeds have enormous economic importance as source of calories, nutrition, edible oil, and biofuels. Therefore, seed traits like seed size and shape, weight, micronutrient content, oil content, quality, post-harvest sprouting, etc., are some of the main targets in crop improvement. Designing the strategies for their improvement benefits heavily from understanding the regulatory aspects of seed development. Recent studies indicate that long non-coding RNAs (lncRNAs) are one of the important regulators of seed development. They played a significant role in crop domestication by influencing seed traits. LncRNAs are conventionally defined as non-coding RNAs greater than 200 bp in length but lacking protein coding potential. Here we highlight the emerging pieces of evidence of lncRNA-mediated regulation of seed development through diverse mechanisms, for instance, by acting as target mimics or precursors of regulatory small RNAs or through chromatin remodeling and post-transcriptional repression. We also enumerate the insights from high-throughput transcriptomic studies from developing seeds of cereal, oilseed, biofuel, and pulse crops. We highlight the lncRNA candidates and lncRNA-mediated regulatory networks regulating seed development and related agronomic traits. Further, we discuss the potential of lncRNAs for improvement of agriculturally important seed traits through marker-assisted breeding and/or transgenic approaches.
Collapse
Affiliation(s)
- Pinky
- Department of Biotechnology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana, India
| | - Rubi Jain
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Abhinandan Yadav
- Department of Biotechnology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana, India
| | - Rita Sharma
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Rajasthan, India
| | - Namrata Dhaka
- Department of Biotechnology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana, India.
| |
Collapse
|
13
|
Pachamuthu K, Borges F. Epigenetic control of transposons during plant reproduction: From meiosis to hybrid seeds. CURRENT OPINION IN PLANT BIOLOGY 2023; 75:102419. [PMID: 37480640 DOI: 10.1016/j.pbi.2023.102419] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/23/2023] [Accepted: 06/20/2023] [Indexed: 07/24/2023]
Abstract
The regulation of transposable elements (TEs) requires overlapping epigenetic modifications that must be reinforced every cell division and generation. In plants, this is achieved by multiple pathways including small RNAs, DNA methylation, and repressive histone marks that act together to control TE expression and activity throughout the entire life cycle. However, transient TE activation is observed during reproductive transitions as a result of epigenome reprogramming, thus providing windows of opportunity for TE proliferation and epigenetic novelty. Ultimately, these events may originate complex TE-driven transcriptional networks or cell-to-cell communication strategies via mobile small RNAs. In this review, we discuss recent findings and current understanding of TE regulation during sexual plant reproduction, and its implications for fertility, early seed development, and epigenetic inheritance.
Collapse
Affiliation(s)
- Kannan Pachamuthu
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France. https://twitter.com/@KannanPachamut1
| | - Filipe Borges
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France.
| |
Collapse
|
14
|
Coughlan JM. The role of hybrid seed inviability in angiosperm speciation. AMERICAN JOURNAL OF BOTANY 2023; 110:1-14. [PMID: 36801827 DOI: 10.1002/ajb2.16135] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 05/11/2023]
Abstract
Understanding which reproductive barriers contribute to speciation is essential to understanding the diversity of life on earth. Several contemporary examples of strong hybrid seed inviability (HSI) between recently diverged species suggest that HSI may play a fundamental role in plant speciation. Yet, a broader synthesis of HSI is needed to clarify its role in diversification. Here, I review the incidence and evolution of HSI. Hybrid seed inviability is common and evolves rapidly, suggesting that it may play an important role early in speciation. The developmental mechanisms that underlie HSI involve similar developmental trajectories in endosperm, even between evolutionarily deeply diverged incidents of HSI. In hybrid endosperm, HSI is often accompanied by whole-scale gene misexpression, including misexpression of imprinted genes which have a key role in endosperm development. I explore how an evolutionary perspective can clarify the repeated and rapid evolution of HSI. In particular, I evaluate the evidence for conflict between maternal and paternal interests in resource allocation to offspring (i.e., parental conflict). I highlight that parental conflict theory generates explicit predictions regarding the expected hybrid phenotypes and genes responsible for HSI. While much phenotypic evidence supports a role of parental conflict in the evolution of HSI, an understanding of the underlying molecular mechanisms of this barrier is essential to test parental conflict theory. Lastly, I explore what factors may influence the strength of parental conflict in natural plant populations as an explanation for why rates of HSI may differ between plant groups and the consequences of strong HSI in secondary contact.
Collapse
Affiliation(s)
- Jenn M Coughlan
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06511, USA
| |
Collapse
|
15
|
Ando A, Kirkbride RC, Qiao H, Chen ZJ. Endosperm and Maternal-specific expression of EIN2 in the endosperm affects endosperm cellularization and seed size in Arabidopsis. Genetics 2023; 223:iyac161. [PMID: 36282525 PMCID: PMC9910398 DOI: 10.1093/genetics/iyac161] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/05/2022] [Indexed: 11/13/2022] Open
Abstract
Seed size is related to plant evolution and crop yield and is affected by genetic mutations, imprinting, and genome dosage. Imprinting is a widespread epigenetic phenomenon in mammals and flowering plants. ETHYLENE INSENSITIVE2 (EIN2) encodes a membrane protein that links the ethylene perception to transcriptional regulation. Interestingly, during seed development EIN2 is maternally expressed in Arabidopsis and maize, but the role of EIN2 in seed development is unknown. Here, we show that EIN2 is expressed specifically in the endosperm, and the maternal-specific EIN2 expression affects temporal regulation of endosperm cellularization. As a result, seed size increases in the genetic cross using the ein2 mutant as the maternal parent or in the ein2 mutant. The maternal-specific expression of EIN2 in the endosperm is controlled by DNA methylation but not by H3K27me3 or by ethylene and several ethylene pathway genes tested. RNA-seq analysis in the endosperm isolated by laser-capture microdissection show upregulation of many endosperm-expressed genes such as AGAMOUS-LIKEs (AGLs) in the ein2 mutant or when the maternal EIN2 allele is not expressed. EIN2 does not interact with DNA and may act through ETHYLENE INSENSITIVE3 (EIN3), a DNA-binding protein present in sporophytic tissues, to activate target genes like AGLs, which in turn mediate temporal regulation of endosperm cellularization and seed size. These results provide mechanistic insights into endosperm and maternal-specific expression of EIN2 on endosperm cellularization and seed development, which could help improve seed production in plants and crops.
Collapse
Affiliation(s)
- Atsumi Ando
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Ryan C Kirkbride
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Hong Qiao
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Z Jeffrey Chen
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
16
|
Li T, Yin L, Stoll CE, Lisch D, Zhao M. Conserved noncoding sequences and de novo Mutator insertion alleles are imprinted in maize. PLANT PHYSIOLOGY 2023; 191:299-316. [PMID: 36173333 PMCID: PMC9806621 DOI: 10.1093/plphys/kiac459] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 08/30/2022] [Indexed: 05/20/2023]
Abstract
Genomic imprinting is an epigenetic phenomenon in which differential allele expression occurs in a parent-of-origin-dependent manner. Imprinting in plants is tightly linked to transposable elements (TEs), and it has been hypothesized that genomic imprinting may be a consequence of demethylation of TEs. Here, we performed high-throughput sequencing of ribonucleic acids from four maize (Zea mays) endosperms that segregated newly silenced Mutator (Mu) transposons and identified 110 paternally expressed imprinted genes (PEGs) and 139 maternally expressed imprinted genes (MEGs). Additionally, two potentially novel paternally suppressed MEGs are associated with de novo Mu insertions. In addition, we find evidence for parent-of-origin effects on expression of 407 conserved noncoding sequences (CNSs) in maize endosperm. The imprinted CNSs are largely localized within genic regions and near genes, but the imprinting status of the CNSs are largely independent of their associated genes. Both imprinted CNSs and PEGs have been subject to relaxed selection. However, our data suggest that although MEGs were already subject to a higher mutation rate prior to their being imprinted, imprinting may be the cause of the relaxed selection of PEGs. In addition, although DNA methylation is lower in the maternal alleles of both the maternally and paternally expressed CNSs (mat and pat CNSs), the difference between the two alleles in H3K27me3 levels was only observed in pat CNSs. Together, our findings point to the importance of both transposons and CNSs in genomic imprinting in maize.
Collapse
Affiliation(s)
- Tong Li
- Department of Biology, Miami University, Oxford, Ohio 45056, USA
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, P.R. China
| | - Liangwei Yin
- Department of Biology, Miami University, Oxford, Ohio 45056, USA
| | - Claire E Stoll
- Department of Biology, Miami University, Oxford, Ohio 45056, USA
| | - Damon Lisch
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA
| | - Meixia Zhao
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611, USA
| |
Collapse
|
17
|
Jia Z, Gao P, Yin F, Quilichini TD, Sheng H, Song J, Yang H, Gao J, Chen T, Yang B, Kochian LV, Zou J, Patterson N, Yang Q, Gillmor CS, Datla R, Li Q, Xiang D. Asymmetric gene expression in grain development of reciprocal crosses between tetraploid and hexaploid wheats. Commun Biol 2022; 5:1412. [PMID: 36564439 PMCID: PMC9789062 DOI: 10.1038/s42003-022-04374-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Production of viable progeny from interploid crosses requires precise regulation of gene expression from maternal and paternal chromosomes, yet the transcripts contributed to hybrid seeds from polyploid parent species have rarely been explored. To investigate the genome-wide maternal and paternal contributions to polyploid grain development, we analyzed the transcriptomes of developing embryos, from zygote to maturity, alongside endosperm in two stages of development, using reciprocal crosses between tetraploid and hexaploid wheats. Reciprocal crosses between species with varied levels of ploidy displayed broad impacts on gene expression, including shifts in alternative splicing events in select crosses, as illustrated by active splicing events, enhanced protein synthesis and chromatin remodeling. Homoeologous gene expression was repressed on the univalent D genome in pentaploids, but this suppression was attenuated in crosses with a higher ploidy maternal parent. Imprinted genes were identified in endosperm and early embryo tissues, supporting predominant maternal effects on early embryogenesis. By systematically investigating the complex transcriptional networks in reciprocal-cross hybrids, this study presents a framework for understanding the genomic incompatibility and transcriptome shock that results from interspecific hybridization and uncovers the transcriptional impacts on hybrid seeds created from agriculturally-relevant polyploid species.
Collapse
Affiliation(s)
- Zhen Jia
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Peng Gao
- grid.25152.310000 0001 2154 235XGlobal Institute for Food Security, University of Saskatchewan, Saskatoon, SK S7N 4J8 Canada
| | - Feifan Yin
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China ,grid.35155.370000 0004 1790 4137Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, 430070 Wuhan, China
| | - Teagen D. Quilichini
- grid.24433.320000 0004 0449 7958Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9 Canada
| | - Huajin Sheng
- grid.25152.310000 0001 2154 235XGlobal Institute for Food Security, University of Saskatchewan, Saskatoon, SK S7N 4J8 Canada
| | - Jingpu Song
- grid.24433.320000 0004 0449 7958Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9 Canada
| | - Hui Yang
- grid.24433.320000 0004 0449 7958Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9 Canada
| | - Jie Gao
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Ting Chen
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Bo Yang
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Leon V. Kochian
- grid.25152.310000 0001 2154 235XGlobal Institute for Food Security, University of Saskatchewan, Saskatoon, SK S7N 4J8 Canada
| | - Jitao Zou
- grid.24433.320000 0004 0449 7958Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9 Canada
| | - Nii Patterson
- grid.24433.320000 0004 0449 7958Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9 Canada
| | - Qingyong Yang
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China ,grid.35155.370000 0004 1790 4137Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, 430070 Wuhan, China
| | - C. Stewart Gillmor
- grid.512574.0Langebio, Unidad de Genómica Avanzada, Centro de Investigación y Estudios Avanzados del IPN (CINVESTAV-IPN), Irapuato, Guanajuato, 36821 México
| | - Raju Datla
- grid.25152.310000 0001 2154 235XGlobal Institute for Food Security, University of Saskatchewan, Saskatoon, SK S7N 4J8 Canada
| | - Qiang Li
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Daoquan Xiang
- grid.24433.320000 0004 0449 7958Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9 Canada
| |
Collapse
|
18
|
Raj SRG, Nadarajah K. QTL and Candidate Genes: Techniques and Advancement in Abiotic Stress Resistance Breeding of Major Cereals. Int J Mol Sci 2022; 24:6. [PMID: 36613450 PMCID: PMC9820233 DOI: 10.3390/ijms24010006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
At least 75% of the world's grain production comes from the three most important cereal crops: rice (Oryza sativa), wheat (Triticum aestivum), and maize (Zea mays). However, abiotic stressors such as heavy metal toxicity, salinity, low temperatures, and drought are all significant hazards to the growth and development of these grains. Quantitative trait locus (QTL) discovery and mapping have enhanced agricultural production and output by enabling plant breeders to better comprehend abiotic stress tolerance processes in cereals. Molecular markers and stable QTL are important for molecular breeding and candidate gene discovery, which may be utilized in transgenic or molecular introgression. Researchers can now study synteny between rice, maize, and wheat to gain a better understanding of the relationships between the QTL or genes that are important for a particular stress adaptation and phenotypic improvement in these cereals from analyzing reports on QTL and candidate genes. An overview of constitutive QTL, adaptive QTL, and significant stable multi-environment and multi-trait QTL is provided in this article as a solid framework for use and knowledge in genetic enhancement. Several QTL, such as DRO1 and Saltol, and other significant success cases are discussed in this review. We have highlighted techniques and advancements for abiotic stress tolerance breeding programs in cereals, the challenges encountered in introgressing beneficial QTL using traditional breeding techniques such as mutation breeding and marker-assisted selection (MAS), and the in roads made by new breeding methods such as genome-wide association studies (GWASs), the clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 system, and meta-QTL (MQTL) analysis. A combination of these conventional and modern breeding approaches can be used to apply the QTL and candidate gene information in genetic improvement of cereals against abiotic stresses.
Collapse
Affiliation(s)
| | - Kalaivani Nadarajah
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| |
Collapse
|
19
|
Nagata H, Ono A, Tonosaki K, Kawakatsu T, Sato Y, Yano K, Kishima Y, Kinoshita T. Temporal changes in transcripts of miniature inverted-repeat transposable elements during rice endosperm development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1035-1047. [PMID: 35128739 PMCID: PMC9314911 DOI: 10.1111/tpj.15698] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/19/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
The repression of transcription from transposable elements (TEs) by DNA methylation is necessary to maintain genome integrity and prevent harmful mutations. However, under certain circumstances, TEs may escape from the host defense system and reactivate their transcription. In Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa), DNA demethylases target the sequences derived from TEs in the central cell, the progenitor cell for the endosperm in the female gametophyte. Genome-wide DNA demethylation is also observed in the endosperm after fertilization. In the present study, we used a custom microarray to survey the transcripts generated from TEs during rice endosperm development and at selected time points in the embryo as a control. The expression patterns of TE transcripts are dynamically up- and downregulated during endosperm development, especially those of miniature inverted-repeat TEs (MITEs). Some TE transcripts were directionally controlled, whereas the other DNA transposons and retrotransposons were not. We also discovered the NUCLEAR FACTOR Y binding motif, CCAAT, in the region near the 5' terminal inverted repeat of Youren, one of the transcribed MITEs in the endosperm. Our results uncover dynamic changes in TE activity during endosperm development in rice.
Collapse
Affiliation(s)
- Hiroki Nagata
- Kihara Institute for Biological Research, Yokohama City University641‐12 MaiokaTotsuka, YokohamaKanagawa244‐0813Japan
| | - Akemi Ono
- Kihara Institute for Biological Research, Yokohama City University641‐12 MaiokaTotsuka, YokohamaKanagawa244‐0813Japan
| | - Kaoru Tonosaki
- Kihara Institute for Biological Research, Yokohama City University641‐12 MaiokaTotsuka, YokohamaKanagawa244‐0813Japan
- Faculty of AgricultureIwate University3‐18‐8 UedaMoriokaIwate020‐8550Japan
| | - Taiji Kawakatsu
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization3‐1‐3 Kan‐nondaiTsukubaIbaraki305‐8604Japan
| | - Yutaka Sato
- Genetic Strains Research CenterNational Institute of GeneticsMishima, Shizuoka411‐8540Japan
| | - Kentaro Yano
- Department of Life SciencesSchool of Agriculture, Meiji University1‐1‐1 Higashi‐mitaKawasaki214‐8571Japan
| | - Yuji Kishima
- Research Faculty of AgricultureHokkaido UniversityKita‐9 Nishi‐9Kita‐ku, Sapporo060‐8589Japan
| | - Tetsu Kinoshita
- Kihara Institute for Biological Research, Yokohama City University641‐12 MaiokaTotsuka, YokohamaKanagawa244‐0813Japan
| |
Collapse
|
20
|
Transgenerational Genetic Effects Help Explain Latitudinal Variation in Seed Mass and Germination Timing in Plantago lanceolata. PLANTS 2022; 11:plants11040522. [PMID: 35214858 PMCID: PMC8880339 DOI: 10.3390/plants11040522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 11/28/2022]
Abstract
We know little about the underlying genetic control of phenotypic patterns of seed traits across large-scale geographic and environmental gradients. Such knowledge is important for understanding the evolution of populations within species and for improving species conservation. Therefore, to test for genetic variation in Plantago lanceolata, we made reciprocal crosses between northern and southern genotypes that span the species’ range in Europe. The results provide evidence of transgenerational genetic effects on seed mass and germination timing. Northern mothers produced larger seeds with delayed germination, in contrast to southern mothers, which produced smaller seeds with accelerated germination. A maternal latitude affected both the seed coat, solely maternal tissue, and embryo/endosperm tissues. Thus, latitudinal variation in seed size and germination timing can be explained, in part, by the direct influence of maternal genotype, independent of zygotic genes that parents pass directly to the embryo and endosperm. Data suggest that researchers exploring the existence and evolution of large-scale geographic variation within species test for transgenerational genetic effects. In addition, data suggest that transgenerational control of seed traits should be considered when developing procedures designed to facilitate species conservation and restoration.
Collapse
|
21
|
Matilla AJ. Exploring Breakthroughs in Three Traits Belonging to Seed Life. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11040490. [PMID: 35214823 PMCID: PMC8875957 DOI: 10.3390/plants11040490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/02/2022] [Accepted: 02/09/2022] [Indexed: 05/06/2023]
Abstract
Based on prior knowledge and with the support of new methodology, solid progress in the understanding of seed life has taken place over the few last years. This update reflects recent advances in three key traits of seed life (i.e., preharvest sprouting, genomic imprinting, and stored-mRNA). The first breakthrough refers to cloning of the mitogen-activated protein kinase-kinase 3 (MKK3) gene in barley and wheat. MKK3, in cooperation with ABA signaling, controls seed dormancy. This advance has been determinant in producing improved varieties that are resistant to preharvest sprouting. The second advance concerns to uniparental gene expression (i.e., imprinting). Genomic imprinting primarily occurs in the endosperm. Although great advances have taken place in the last decade, there is still a long way to go to complete the puzzle regarding the role of genomic imprinting in seed development. This trait is probably one of the most important epigenetic facets of developing endosperm. An example of imprinting regulation is polycomb repressive complex 2 (PRC2). The mechanism of PRC2 recruitment to target endosperm with specific genes is, at present, robustly studied. Further progress in the knowledge of recruitment of PRC2 epigenetic machinery is considered in this review. The third breakthrough referred to in this update involves stored mRNA. The role of the population of this mRNA in germination is far from known. Its relations to seed aging, processing bodies (P bodies), and RNA binding proteins (RBPs), and how the stored mRNA is targeted to monosomes, are aspects considered here. Perhaps this third trait is the one that will require greater experimental dedication in the future. In order to make progress, herein are included some questions that are needed to be answered.
Collapse
Affiliation(s)
- Angel J Matilla
- Departamento de Biología Funcional (Área Fisiología Vegetal), Facultad de Farmacia, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
22
|
Lu D, Zhai J, Xi M. Regulation of DNA Methylation During Plant Endosperm Development. Front Genet 2022; 13:760690. [PMID: 35222527 PMCID: PMC8867698 DOI: 10.3389/fgene.2022.760690] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/17/2022] [Indexed: 11/21/2022] Open
Abstract
The endosperm is a vital storage tissue in plant seeds. It provides nutrients to the embryos or the seedlings during seed development and germination. Although the genetic information in the endosperm cannot be passed directly to the next generation, its inherited epigenetic marks affect gene expression and its development and, consequently, embryo and seed growth. DNA methylation is a major form of epigenetic modification that can be investigated to understand the epigenome changes during reproductive development. Therefore, it is of great significance to explore the effects of endosperm DNA methylation on crop yield and traits. In this review, we discuss the changes in DNA methylation and the resulting imprinted gene expression levels during plant endosperm development, as well as their effects on seed development.
Collapse
Affiliation(s)
- Dongdong Lu
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, China
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, China
| | - Jixian Zhai
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, China
- *Correspondence: Jixian Zhai, ; Mengli Xi,
| | - Mengli Xi
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, China
- *Correspondence: Jixian Zhai, ; Mengli Xi,
| |
Collapse
|
23
|
Cao S, Wang L, Han T, Ye W, Liu Y, Sun Y, Moose SP, Song Q, Chen ZJ. Small RNAs mediate transgenerational inheritance of genome-wide trans-acting epialleles in maize. Genome Biol 2022; 23:53. [PMID: 35139883 PMCID: PMC8827192 DOI: 10.1186/s13059-022-02614-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 01/17/2022] [Indexed: 12/13/2022] Open
Abstract
Background Hybridization and backcrossing are commonly used in animal and plant breeding to induce heritable variation including epigenetic changes such as paramutation. However, the molecular basis for hybrid-induced epigenetic memory remains elusive. Results Here, we report that hybridization between the inbred parents B73 and Mo17 induces trans-acting hypermethylation and hypomethylation at thousands of loci; several hundreds (~ 3%) are transmitted through six backcrossing and three selfing generations. Notably, many transgenerational methylation patterns resemble epialleles of the nonrecurrent parent, despite > 99% of overall genomic loci are converted to the recurrent parent. These epialleles depend on 24-nt siRNAs, which are eliminated in the isogenic hybrid Mo17xB73:mop1-1 that is defective in siRNA biogenesis. This phenomenon resembles paramutation-like events and occurs in both intraspecific (Mo17xB73) and interspecific (W22xTeosinte) hybrid maize populations. Moreover, siRNA abundance and methylation levels of these epialleles can affect expression of their associated epigenes, many of which are related to stress responses. Conclusion Divergent siRNAs between the hybridizing parents can induce trans-acting epialleles in the hybrids, while the induced epigenetic status is maintained for transgenerational inheritance during backcross and hybrid breeding, which alters epigene expression to enhance growth and adaptation. These genetic and epigenetic principles may apply broadly from plants to animals. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-022-02614-0.
Collapse
Affiliation(s)
- Shuai Cao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
| | - Longfei Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
| | - Tongwen Han
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
| | - Wenxue Ye
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
| | - Yang Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
| | - Yi Sun
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, China
| | - Stephen P Moose
- Department of Crop Sciences, University of Illinois, Urbana, IL, 61801, USA
| | - Qingxin Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China.
| | - Z Jeffrey Chen
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
24
|
El-Sappah AH, Yan K, Huang Q, Islam MM, Li Q, Wang Y, Khan MS, Zhao X, Mir RR, Li J, El-Tarabily KA, Abbas M. Comprehensive Mechanism of Gene Silencing and Its Role in Plant Growth and Development. FRONTIERS IN PLANT SCIENCE 2021; 12:705249. [PMID: 34589097 PMCID: PMC8475493 DOI: 10.3389/fpls.2021.705249] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/10/2021] [Indexed: 05/19/2023]
Abstract
Gene silencing is a negative feedback mechanism that regulates gene expression to define cell fate and also regulates metabolism and gene expression throughout the life of an organism. In plants, gene silencing occurs via transcriptional gene silencing (TGS) and post-transcriptional gene silencing (PTGS). TGS obscures transcription via the methylation of 5' untranslated region (5'UTR), whereas PTGS causes the methylation of a coding region to result in transcript degradation. In this review, we summarized the history and molecular mechanisms of gene silencing and underlined its specific role in plant growth and crop production.
Collapse
Affiliation(s)
- Ahmed H. El-Sappah
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| | - Kuan Yan
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| | - Qiulan Huang
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
- College of Tea Science, Yibin University, Yibin, China
| | | | - Quanzi Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Yu Wang
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| | - Muhammad Sarwar Khan
- Center of Agriculture Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | - Xianming Zhao
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| | - Reyazul Rouf Mir
- Division of Genetics and Plant Breeding, Faculty of Agriculture (FoA), Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST–K), Sopore, India
| | - Jia Li
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
- Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
| | - Manzar Abbas
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| |
Collapse
|
25
|
Jiang H, Guo D, Ye J, Gao Y, Liu H, Wang Y, Xue M, Yan Q, Chen J, Duan L, Li G, Li X, Xie L. Genome-wide analysis of genomic imprinting in the endosperm and allelic variation in flax. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1697-1710. [PMID: 34228847 DOI: 10.1111/tpj.15411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Genomic imprinting is an epigenetic phenomenon that causes biased expression of maternally and paternally inherited alleles. In flowering plants, genomic imprinting predominantly occurs in the triploid endosperm and plays a vital role in seed development. In this study, we identified 248 candidate imprinted genes including 114 maternally expressed imprinted genes (MEGs) and 134 paternally expressed imprinted genes (PEGs) in flax (Linum usitatissimum L.) endosperm using deep RNA sequencing. These imprinted genes were neither clustered in specific chromosomal regions nor well conserved among flax and other plant species. MEGs tended to be expressed specifically in the endosperm, whereas the expression of PEGs was not tissue-specific. Imprinted single nucleotide polymorphisms differentiated 200 flax cultivars into the oil flax, oil-fiber dual purpose flax and fiber flax subgroups, suggesting that genomic imprinting contributed to intraspecific variation in flax. The nucleotide diversity of imprinted genes in the oil flax subgroup was significantly higher than that in the fiber flax subgroup, indicating that some imprinted genes underwent positive selection during flax domestication from oil flax to fiber flax. Moreover, imprinted genes that underwent positive selection were related to flax functions. Thirteen imprinted genes related to flax seed size and weight were identified using a candidate gene-based association study. Therefore, our study provides information for further exploration of the function and genomic variation of imprinted genes in the flax population.
Collapse
Affiliation(s)
- Haixia Jiang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Dongliang Guo
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Jiali Ye
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanfang Gao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Huiqing Liu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Yue Wang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Min Xue
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Qingcheng Yan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Jiaxun Chen
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Lepeng Duan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Gongze Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Xiao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Liqiong Xie
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| |
Collapse
|
26
|
Rodrigues JA, Hsieh PH, Ruan D, Nishimura T, Sharma MK, Sharma R, Ye X, Nguyen ND, Nijjar S, Ronald PC, Fischer RL, Zilberman D. Divergence among rice cultivars reveals roles for transposition and epimutation in ongoing evolution of genomic imprinting. Proc Natl Acad Sci U S A 2021; 118:e2104445118. [PMID: 34272287 PMCID: PMC8307775 DOI: 10.1073/pnas.2104445118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Parent-of-origin-dependent gene expression in mammals and flowering plants results from differing chromatin imprints (genomic imprinting) between maternally and paternally inherited alleles. Imprinted gene expression in the endosperm of seeds is associated with localized hypomethylation of maternally but not paternally inherited DNA, with certain small RNAs also displaying parent-of-origin-specific expression. To understand the evolution of imprinting mechanisms in Oryza sativa (rice), we analyzed imprinting divergence among four cultivars that span both japonica and indica subspecies: Nipponbare, Kitaake, 93-11, and IR64. Most imprinted genes are imprinted across cultivars and enriched for functions in chromatin and transcriptional regulation, development, and signaling. However, 4 to 11% of imprinted genes display divergent imprinting. Analyses of DNA methylation and small RNAs revealed that endosperm-specific 24-nt small RNA-producing loci show weak RNA-directed DNA methylation, frequently overlap genes, and are imprinted four times more often than genes. However, imprinting divergence most often correlated with local DNA methylation epimutations (9 of 17 assessable loci), which were largely stable within subspecies. Small insertion/deletion events and transposable element insertions accompanied 4 of the 9 locally epimutated loci and associated with imprinting divergence at another 4 of the remaining 8 loci. Correlating epigenetic and genetic variation occurred at key regulatory regions-the promoter and transcription start site of maternally biased genes, and the promoter and gene body of paternally biased genes. Our results reinforce models for the role of maternal-specific DNA hypomethylation in imprinting of both maternally and paternally biased genes, and highlight the role of transposition and epimutation in rice imprinting evolution.
Collapse
Affiliation(s)
- Jessica A Rodrigues
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| | - Ping-Hung Hsieh
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| | - Deling Ruan
- Department of Plant Pathology, University of California, Davis, CA 95616
| | - Toshiro Nishimura
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| | - Manoj K Sharma
- Department of Plant Pathology, University of California, Davis, CA 95616
| | - Rita Sharma
- Department of Plant Pathology, University of California, Davis, CA 95616
| | - XinYi Ye
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| | - Nicholas D Nguyen
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| | - Sukhranjan Nijjar
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| | - Pamela C Ronald
- Department of Plant Pathology, University of California, Davis, CA 95616
- The Genome Center, University of California, Davis, CA 95616
| | - Robert L Fischer
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720;
| | - Daniel Zilberman
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720;
- Department of Cell and Developmental Biology, The John Innes Centre, Norwich NR4 7UH, United Kingdom
| |
Collapse
|
27
|
Xu X, E Z, Zhang D, Yun Q, Zhou Y, Niu B, Chen C. OsYUC11-mediated auxin biosynthesis is essential for endosperm development of rice. PLANT PHYSIOLOGY 2021; 185:934-950. [PMID: 33793908 PMCID: PMC8133553 DOI: 10.1093/plphys/kiaa057] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 11/18/2020] [Indexed: 05/06/2023]
Abstract
Auxin is a phytohormone essential for plant development. However, our understanding of auxin-regulated endosperm development remains limited. Here, we described rice YUCCA (YUC) flavin-containing monooxygenase encoding gene OsYUC11 as a key contributor to auxin biosynthesis in rice (Oryza sativa) endosperm. Grain filling or storage product accumulation was halted by mutation of OsYUC11, but the deficiencies could be recovered by the exogenous application of auxin. A rice transcription factor (TF) yeast library was screened, and 41 TFs that potentially bind to the OsYUC11 promoter were identified, of which OsNF-YB1, a member of the nuclear factor Y family, is predominantly expressed in the endosperm. Both osyuc11 and osnf-yb1 mutants exhibited reduced seed size and increased chalkiness, accompanied by a reduction in indole-3-acetic acid biosynthesis. OsNF-YB1 can bind the OsYUC11 promoter to induce gene expression in vivo. We also found that OsYUC11 was a dynamically imprinted gene that predominantly expressed the paternal allele in the endosperm up to 10 d after fertilization (DAF) but then became a non-imprinted gene at 15 DAF. A functional maternal allele of OsYUC11 was able to recover the paternal defects of this gene. Overall, the findings indicate that OsYUC11-mediated auxin biosynthesis is essential for endosperm development in rice.
Collapse
Affiliation(s)
- Xinyu Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Zhiguo E
- Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Dongping Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Qianbin Yun
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Yong Zhou
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Baixiao Niu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Chen Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
28
|
Tonosaki K, Ono A, Kunisada M, Nishino M, Nagata H, Sakamoto S, Kijima ST, Furuumi H, Nonomura KI, Sato Y, Ohme-Takagi M, Endo M, Comai L, Hatakeyama K, Kawakatsu T, Kinoshita T. Mutation of the imprinted gene OsEMF2a induces autonomous endosperm development and delayed cellularization in rice. THE PLANT CELL 2021; 33:85-103. [PMID: 33751094 PMCID: PMC8136911 DOI: 10.1093/plcell/koaa006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 10/29/2020] [Indexed: 05/22/2023]
Abstract
In angiosperms, endosperm development comprises a series of developmental transitions controlled by genetic and epigenetic mechanisms that are initiated after double fertilization. Polycomb repressive complex 2 (PRC2) is a key component of these mechanisms that mediate histone H3 lysine 27 trimethylation (H3K27me3); the action of PRC2 is well described in Arabidopsis thaliana but remains uncertain in cereals. In this study, we demonstrate that mutation of the rice (Oryza sativa) gene EMBRYONIC FLOWER2a (OsEMF2a), encoding a zinc-finger containing component of PRC2, causes an autonomous endosperm phenotype involving proliferation of the central cell nuclei with separate cytoplasmic domains, even in the absence of fertilization. Detailed cytological and transcriptomic analyses revealed that the autonomous endosperm can produce storage compounds, starch granules, and protein bodies specific to the endosperm. These events have not been reported in Arabidopsis. After fertilization, we observed an abnormally delayed developmental transition in the endosperm. Transcriptome and H3K27me3 ChIP-seq analyses using endosperm from the emf2a mutant identified downstream targets of PRC2. These included >100 transcription factor genes such as type-I MADS-box genes, which are likely required for endosperm development. Our results demonstrate that OsEMF2a-containing PRC2 controls endosperm developmental programs before and after fertilization.
Collapse
Affiliation(s)
- Kaoru Tonosaki
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka, Totsuka, Yokohama, Kanagawa 244-0813, Japan
- Department of Plant Biology and Genome Center, University of California, Davis, CA 95616, USA
- Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
- Author for correspondence: (T.Ki.), (K.T.)
| | - Akemi Ono
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka, Totsuka, Yokohama, Kanagawa 244-0813, Japan
| | - Megumi Kunisada
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka, Totsuka, Yokohama, Kanagawa 244-0813, Japan
| | - Megumi Nishino
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka, Totsuka, Yokohama, Kanagawa 244-0813, Japan
| | - Hiroki Nagata
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka, Totsuka, Yokohama, Kanagawa 244-0813, Japan
| | - Shingo Sakamoto
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki 305-8562, Japan
| | - Saku T Kijima
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki 305-8562, Japan
| | - Hiroyasu Furuumi
- Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Ken-Ichi Nonomura
- Plant Cytogenetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Yutaka Sato
- Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Masaru Ohme-Takagi
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Masaki Endo
- Division of Applied Genetics, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8602, Japan
| | - Luca Comai
- Department of Plant Biology and Genome Center, University of California, Davis, CA 95616, USA
| | - Katsunori Hatakeyama
- Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Taiji Kawakatsu
- Division of Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8602, Japan
| | - Tetsu Kinoshita
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka, Totsuka, Yokohama, Kanagawa 244-0813, Japan
- Author for correspondence: (T.Ki.), (K.T.)
| |
Collapse
|
29
|
Liu Y, Jing X, Zhang H, Xiong J, Qiao Y. Identification of Imprinted Genes Based on Homology: An Example of Fragaria vesca. Genes (Basel) 2021; 12:genes12030380. [PMID: 33800118 PMCID: PMC7999015 DOI: 10.3390/genes12030380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/28/2021] [Accepted: 03/04/2021] [Indexed: 01/04/2023] Open
Abstract
Genomic imprinting has drawn increasing attention in plant biology in recent years. At present, hundreds of imprinted genes have been identified in various plants, and some of them have been reported to be evolutionarily conserved in plant species. In this research, 17 candidate genes in Fragaria vesca were obtained based on the homologous imprinted genes in Arabidopsis thaliana and other species. We further constructed reciprocal crosses of diploid strawberry (F. vesca) using the varieties 10-41 and 18-86 as the parents to investigate the conservation of these imprinted genes. Potentially informative single nucleotide polymorphisms (SNPs) were used as molecular markers of two parents obtained from candidate imprinted genes which have been cloned and sequenced. Meanwhile, we analyzed the SNP site variation ratios and parent-of-origin expression patterns of candidate imprinted genes at 10 days after pollination (DAP) endosperm and embryo for the hybrids of reciprocal cross, respectively. A total of five maternally expressed genes (MEGs), i.e., FvARI8, FvKHDP-2, FvDRIP2, FvBRO1, and FvLTP3, were identified in the endosperm, which did not show imprinting in the embryo. Finally, tissues expression analysis indicated that the five imprinted genes excluding FvDRIP2 mainly expressed in the endosperm. This is the first report on imprinted genes of Fragaria, and we provide a simple and rapid method based on homologous conservation to screen imprinted genes. The present study will provide a basis for further study of function and mechanism of genomic imprinting in F. vesca.
Collapse
|
30
|
Liu X, Luo J, Li T, Yang H, Wang P, Su L, Zheng Y, Bao C, Zhou C. SDG711 Is Involved in Rice Seed Development through Regulation of Starch Metabolism Gene Expression in Coordination with Other Histone Modifications. RICE (NEW YORK, N.Y.) 2021; 14:25. [PMID: 33666740 PMCID: PMC7936014 DOI: 10.1186/s12284-021-00467-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 02/17/2021] [Indexed: 05/22/2023]
Abstract
SDG711 is a histone H3K27me2/3 transmethylase in rice, a homolog of CLF in Arabidopsis, and plays key roles in regulating flowering time and panicle development. In this work, we investigated the role of SDG711 in rice seed development. Overexpression and downregulation of SDG711 lead to a decrease and increase in the expression level of genes related to starch accumulation, resulting in smaller seeds or even seed abortion. ChIP assay showed that SDG711-mediated H3K27me3 changed significantly in genes related to endosperm development, and SDG711 can directly bind to the gene body region of several starch synthesis genes and amylase genes. In addition, H3K4me3 and H3K9ac modifications also cooperate with H3K27me3 to regulate the development of the endosperm. Our results suggest that the crosstalk between SDG711-mediated H3K27me3 and H3K4me3, and H3K9ac are involved in starch accumulation to control normal seed development.
Collapse
Affiliation(s)
- Xiaoyun Liu
- Institute for Interdisciplinary Research, Jianghan University, Wuhan, 430056, China.
| | - Junling Luo
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Tiantian Li
- Institute for Systems Biology, Jianghan University, Wuhan, 430056, Hubei, China
| | - Huilan Yang
- Institute for Interdisciplinary Research, Jianghan University, Wuhan, 430056, China
| | - Ping Wang
- Institute for Interdisciplinary Research, Jianghan University, Wuhan, 430056, China
| | - Lufang Su
- Institute for Interdisciplinary Research, Jianghan University, Wuhan, 430056, China
| | - Yu Zheng
- Institute for Interdisciplinary Research, Jianghan University, Wuhan, 430056, China
| | - Chun Bao
- Institute for Interdisciplinary Research, Jianghan University, Wuhan, 430056, China
| | - Chao Zhou
- Key Laboratory of Three Gorges Regional Plant Genetics & Germplasm Enhancement (CTGU) /Biotechnology Research Center, China Three Gorges University, Yichang, 443002, China.
| |
Collapse
|
31
|
Luján-Soto E, Dinkova TD. Time to Wake Up: Epigenetic and Small-RNA-Mediated Regulation during Seed Germination. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10020236. [PMID: 33530470 PMCID: PMC7911344 DOI: 10.3390/plants10020236] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 05/03/2023]
Abstract
Plants make decisions throughout their lifetime based on complex networks. Phase transitions during seed growth are not an exception. From embryo development through seedling growth, several molecular pathways control genome stability, environmental signal transduction and the transcriptional landscape. Particularly, epigenetic modifications and small non-coding RNAs (sRNAs) have been extensively studied as significant handlers of these processes in plants. Here, we review key epigenetic (histone modifications and methylation patterns) and sRNA-mediated regulatory networks involved in the progression from seed maturation to germination, their relationship with seed traits and crosstalk with environmental inputs.
Collapse
|
32
|
Bhadouriya SL, Mehrotra S, Basantani MK, Loake GJ, Mehrotra R. Role of Chromatin Architecture in Plant Stress Responses: An Update. FRONTIERS IN PLANT SCIENCE 2021; 11:603380. [PMID: 33510748 PMCID: PMC7835326 DOI: 10.3389/fpls.2020.603380] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/07/2020] [Indexed: 05/08/2023]
Abstract
Sessile plants possess an assembly of signaling pathways that perceive and transmit environmental signals, ultimately resulting in transcriptional reprogramming. Histone is a key feature of chromatin structure. Numerous histone-modifying proteins act under different environmental stress conditions to help modulate gene expression. DNA methylation and histone modification are crucial for genome reprogramming for tissue-specific gene expression and global gene silencing. Different classes of chromatin remodelers including SWI/SNF, ISWI, INO80, and CHD are reported to act upon chromatin in different organisms, under diverse stresses, to convert chromatin from a transcriptionally inactive to a transcriptionally active state. The architecture of chromatin at a given promoter is crucial for determining the transcriptional readout. Further, the connection between somatic memory and chromatin modifications may suggest a mechanistic basis for a stress memory. Studies have suggested that there is a functional connection between changes in nuclear organization and stress conditions. In this review, we discuss the role of chromatin architecture in different stress responses and the current evidence on somatic, intergenerational, and transgenerational stress memory.
Collapse
Affiliation(s)
- Sneha Lata Bhadouriya
- Department of Biological Sciences, Birla Institute of Technology and Sciences, Sancoale, India
| | - Sandhya Mehrotra
- Department of Biological Sciences, Birla Institute of Technology and Sciences, Sancoale, India
| | - Mahesh K. Basantani
- Institute of Bioscience and Technology, Shri Ramswaroop Memorial University, Lucknow, India
| | - Gary J. Loake
- School of Biological Sciences, Institute of Molecular Plant Sciences, University of Edinburg, Edinburg, United Kingdom
| | - Rajesh Mehrotra
- Department of Biological Sciences, Birla Institute of Technology and Sciences, Sancoale, India
| |
Collapse
|
33
|
Yang L, Xing F, He Q, Tahir ul Qamar M, Chen LL, Xing Y. Conserved Imprinted Genes between Intra-Subspecies and Inter-Subspecies Are Involved in Energy Metabolism and Seed Development in Rice. Int J Mol Sci 2020; 21:ijms21249618. [PMID: 33348666 PMCID: PMC7765902 DOI: 10.3390/ijms21249618] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/10/2020] [Accepted: 12/16/2020] [Indexed: 01/28/2023] Open
Abstract
Genomic imprinting is an epigenetic phenomenon in which a subset of genes express dependent on the origin of their parents. In plants, it is unclear whether imprinted genes are conserved between subspecies in rice. Here we identified imprinted genes from embryo and endosperm 5-7 days after pollination from three pairs of reciprocal hybrids, including inter-subspecies, japonica intra-subspecies, and indica intra-subspecies reciprocal hybrids. A total of 914 imprinted genes, including 546 in inter-subspecies hybrids, 211 in japonica intra-subspecies hybrids, and 286 in indica intra-subspecies hybrids. In general, the number of maternally expressed genes (MEGs) is more than paternally expressed genes (PEGs). Moreover, imprinted genes tend to be in mini clusters. The number of shared genes by R9N (reciprocal crosses between 9311 and Nipponbare) and R9Z (reciprocal crosses between 9311 and Zhenshan 97), R9N and RZN (reciprocal crosses between Zhonghua11 and Nipponbare), R9Z and RZN was 72, 46, and 16. These genes frequently involved in energy metabolism and seed development. Five imprinted genes (Os01g0151700, Os07g0103100, Os10g0340600, Os11g0679700, and Os12g0632800) are commonly detected in all three pairs of reciprocal hybrids and were validated by RT-PCR sequencing. Gene editing of two imprinted genes revealed that both genes conferred grain filling. Moreover, 15 and 27 imprinted genes with diverse functions in rice were shared with Arabidopsis and maize, respectively. This study provided valuable resources for identification of imprinting genes in rice or even in cereals.
Collapse
Affiliation(s)
- Lin Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (L.Y.); (Q.H.)
| | - Feng Xing
- College of Life Science, Xinyang Normal University, Xinyang 464000, China;
| | - Qin He
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (L.Y.); (Q.H.)
| | - Muhammad Tahir ul Qamar
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China;
| | - Ling-Ling Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (L.Y.); (Q.H.)
- Correspondence: (L.-L.C.); (Y.X.)
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (L.Y.); (Q.H.)
- Correspondence: (L.-L.C.); (Y.X.)
| |
Collapse
|
34
|
Bhat MA, Bhat MA, Kumar V, Wani IA, Bashir H, Shah AA, Rahman S, Jan AT. The era of editing plant genomes using CRISPR/Cas: A critical appraisal. J Biotechnol 2020; 324:34-60. [DOI: 10.1016/j.jbiotec.2020.09.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/08/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022]
|
35
|
Niu B, Deng H, Li T, Sharma S, Yun Q, Li Q, E Z, Chen C. OsbZIP76 interacts with OsNF-YBs and regulates endosperm cellularization in rice (Oryza sativa). JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1983-1996. [PMID: 32621654 DOI: 10.1111/jipb.12989] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/03/2020] [Indexed: 05/23/2023]
Abstract
Following double fertilization, plant endosperm nuclei undergo syncytial divisions, followed by synchronous cellularization. Cellularization is a key event during endosperm development, but our understanding of its regulation is limited to Arabidopsis. In this study we show that OsbZIP76 regulates cellularization in rice (Oryza sativa). Activation of OsbZIP76 coincided with the initiation of cellularization, and its knockdown or knockout mutants exhibited precocious cellularization. Genes involved in endosperm development or starch biosynthesis were prematurely activated in the osbzip76 caryopsis. As a putative transcription factor, OsbZIP76 alone lacked transcriptional activation activity; however, it interacted with the nuclear factor Y (NF-Y) family transcription factors OsNF-YB9 and OsNF-YB1 in yeast and in planta. OsbZIP76 and OsNF-YB9 were predominantly expressed in the endosperm and the proteins colocalized. Seeds of osnf-yb1 and osbzip76 mutants showed reduced size and reduced apparent amylose content. The parent-of-origin-dependent expression of OsbZIP76 is variable in different rice accessions. In summary, OsbZIP76 is an endosperm-expressed imprinted gene that regulates endosperm development in rice.
Collapse
Affiliation(s)
- Baixiao Niu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Hui Deng
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Tingting Li
- Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310000, China
| | - Sandeep Sharma
- Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, BHU, Varanasi, 221005, India
| | - Qianbin Yun
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Qianru Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Zhiguo E
- Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310000, China
| | - Chen Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
36
|
Yuan J, Jiao W, Liu Y, Ye W, Wang X, Liu B, Song Q, Chen ZJ. Dynamic and reversible DNA methylation changes induced by genome separation and merger of polyploid wheat. BMC Biol 2020; 18:171. [PMID: 33218336 PMCID: PMC7679994 DOI: 10.1186/s12915-020-00909-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 10/28/2020] [Indexed: 02/07/2023] Open
Abstract
Background Wheat is a powerful genetic model for studying polyploid evolution and crop domestication. Hexaploid bread wheat was formed by two rounds of interspecific hybridization and polyploidization, processes which are often accompanied by genetic and epigenetic changes, including DNA methylation. However, the extent and effect of such changes during wheat evolution, particularly from tetraploid-to-hexaploid wheat, are currently elusive. Results Here we report genome-wide DNA methylation landscapes in extracted tetraploid wheat (ETW, AABB), natural hexaploid wheat (NHW, AABBDD), resynthesized hexaploid wheat (RHW, AABBDD), natural tetraploid wheat (NTW, AABB), and diploid (DD). In the endosperm, levels of DNA methylation, especially in CHG (H=A, T, or C) context, were dramatically decreased in the ETW relative to natural hexaploid wheat; hypo-differentially methylated regions (DMRs) (850,832) were 24-fold more than hyper-DMRs (35,111). Interestingly, those demethylated regions in ETW were remethylated in the resynthesized hexaploid wheat after the addition of the D genome. In ETW, hypo-DMRs correlated with gene expression, and TEs were demethylated and activated, which could be silenced in the hexaploid wheat. In NHW, groups of TEs were dispersed in genic regions of three subgenomes, which may regulate the expression of TE-associated genes. Further, hypo-DMRs in ETW were associated with reduced H3K9me2 levels and increased expression of histone variant genes, suggesting concerted epigenetic changes after separation from the hexaploid. Conclusion Genome merger and separation provoke dynamic and reversible changes in chromatin and DNA methylation. These changes correlate with altered gene expression and TE activity, which may provide insights into polyploid genome and wheat evolution.
Collapse
Affiliation(s)
- Jingya Yuan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
| | - Wu Jiao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
| | - Yanfeng Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
| | - Wenxue Ye
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
| | - Xiue Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchu, 130024, China
| | - Qingxin Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China.
| | - Z Jeffrey Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China. .,Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
37
|
CRISPR-Cas9 system: A genome-editing tool with endless possibilities. J Biotechnol 2020; 319:36-53. [DOI: 10.1016/j.jbiotec.2020.05.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/30/2020] [Accepted: 05/14/2020] [Indexed: 12/27/2022]
|
38
|
Kordyum EL, Mosyakin SL. Endosperm of Angiosperms and Genomic Imprinting. Life (Basel) 2020; 10:E104. [PMID: 32635326 PMCID: PMC7400472 DOI: 10.3390/life10070104] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/28/2020] [Accepted: 06/29/2020] [Indexed: 12/15/2022] Open
Abstract
Modern ideas about the role of epigenetic systems in the regulation of gene expression allow us to understand the mechanisms of vital activities in plants, such as genomic imprinting. It is important that genomic imprinting is known first and foremost for the endosperm, which not only provides an embryo with necessary nutrients, but also plays a special biological role in the formation of seeds and fruits. Available data on genomic imprinting in the endosperm have been obtained only for the triploid endosperm in model plants, which develops after double fertilization in a Polygonum-type embryo sac, the most common type among angiosperms. Here we provide a brief overview of a wide diversity of embryo sacs and endosperm types and ploidy levels, as well as their distribution in the angiosperm families, positioned according to the Angiosperm Phylogeny Group IV (APG IV) phylogenetic classification. Addition of the new, non-model taxa to study gene imprinting in seed development will extend our knowledge about the epigenetic mechanisms underlying angiosperm fertility.
Collapse
Affiliation(s)
- Elizabeth L. Kordyum
- Institute of Botany, National Academy of Sciences of Ukraine, 01004 Kyiv, Ukraine; or
| | | |
Collapse
|
39
|
Abstract
In this review, Batista and Köhler revisit the current models explaining imprinting regulation in plants, and discuss novel regulatory mechanisms that could function independently of parental DNA methylation asymmetries in the establishment of imprinting. Genomic imprinting is an epigenetic phenomenon leading to parentally biased gene expression. Throughout the years, extensive efforts have been made to characterize the epigenetic marks underlying imprinting in animals and plants. As a result, DNA methylation asymmetries between parental genomes emerged as the primary factor controlling the imprinting status of many genes. Nevertheless, the data accumulated so far suggest that this process cannot solely explain the imprinting of all genes. In this review, we revisit the current models explaining imprinting regulation in plants, and discuss novel regulatory mechanisms that could function independently of parental DNA methylation asymmetries in the establishment of imprinting.
Collapse
Affiliation(s)
- Rita A Batista
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Centre for Plant Biology, Uppsala SE-750 07, Sweden
| | - Claudia Köhler
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Centre for Plant Biology, Uppsala SE-750 07, Sweden
| |
Collapse
|
40
|
Ingram GC. Family plot: the impact of the endosperm and other extra-embryonic seed tissues on angiosperm zygotic embryogenesis. F1000Res 2020; 9. [PMID: 32055398 PMCID: PMC6961419 DOI: 10.12688/f1000research.21527.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/10/2020] [Indexed: 12/22/2022] Open
Abstract
The zygotic embryos of angiosperms develop buried deep within seeds and surrounded by two main extra-embryonic tissues: the maternally derived seed coat tissues and the zygotic endosperm. Generally, these tissues are considered to play an important role in nurturing the developing embryo by acting as conduits for maternally derived nutrients. They are also critical for key seed traits (dormancy establishment and control, longevity, and physical resistance) and thus for seed and seedling survival. However, recent studies have highlighted the fact that extra-embryonic tissues in the seed also physically and metabolically limit embryonic development and that unique mechanisms may have evolved to overcome specific developmental and genetic constraints associated with the seed habit in angiosperms. The aim of this review is to illustrate how these studies have begun to reveal the highly complex physical and physiological relationship between extra-embryonic tissues and the developing embryo. Where possible I focus on Arabidopsis because of space constraints, but other systems will be cited where relevant.
Collapse
Affiliation(s)
- Gwyneth C Ingram
- Laboratoire Reproduction et Développement des Plantes, University of Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| |
Collapse
|
41
|
Abstract
Epigenetic reprogramming is required for proper regulation of gene expression in eukaryotic organisms. In Arabidopsis, active DNA demethylation is crucial for seed viability, pollen function, and successful reproduction. The DEMETER (DME) DNA glycosylase initiates localized DNA demethylation in vegetative and central cells, so-called companion cells that are adjacent to sperm and egg gametes, respectively. In rice, the central cell genome displays local DNA hypomethylation, suggesting that active DNA demethylation also occurs in rice; however, the enzyme responsible for this process is unknown. One candidate is the rice REPRESSOR OF SILENCING 1a (ROS1a) gene, which is related to DME and is essential for rice seed viability and pollen function. Here, we report genome-wide analyses of DNA methylation in wild-type and ros1a mutant sperm and vegetative cells. We find that the rice vegetative cell genome is locally hypomethylated compared with sperm by a process that requires ROS1a activity. We show that many ROS1a target sequences in the vegetative cell are hypomethylated in the rice central cell, suggesting that ROS1a also demethylates the central cell genome. Similar to Arabidopsis, we show that sperm non-CG methylation is indirectly promoted by DNA demethylation in the vegetative cell. These results reveal that DNA glycosylase-mediated DNA demethylation processes are conserved in Arabidopsis and rice, plant species that diverged 150 million years ago. Finally, although global non-CG methylation levels of sperm and egg differ, the maternal and paternal embryo genomes show similar non-CG methylation levels, suggesting that rice gamete genomes undergo dynamic DNA methylation reprogramming after cell fusion.
Collapse
|
42
|
Maternal small RNAs mediate spatial-temporal regulation of gene expression, imprinting, and seed development in Arabidopsis. Proc Natl Acad Sci U S A 2019; 116:2761-2766. [PMID: 30692258 DOI: 10.1073/pnas.1807621116] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Arabidopsis seed development involves maternal small interfering RNAs (siRNAs) that induce RNA-directed DNA methylation (RdDM) through the NRPD1-mediated pathway. To investigate their biological functions, we characterized siRNAs in the endosperm and seed coat that were separated by laser-capture microdissection (LCM) in reciprocal genetic crosses with an nrpd1 mutant. We also monitored the spatial-temporal activity of the NRPD1-mediated pathway on seed development using the AGO4:GFP::AGO4 (promoter:GFP::protein) reporter and promoter:GUS sensors of siRNA-mediated silencing. From these approaches, we identified four distinct groups of siRNA loci dependent on or independent of the maternal NRPD1 allele in the endosperm or seed coat. A group of maternally expressed NRPD1-siRNA loci targets endosperm-preferred genes, including those encoding AGAMOUS-LIKE (AGL) transcription factors. Using translational promoter:AGL::GUS constructs as sensors, we demonstrate that spatial and temporal expression patterns of these genes in the endosperm are regulated by the NRPD1-mediated pathway irrespective of complete silencing (AGL91) or incomplete silencing (AGL40) of these target genes. Moreover, altered expression of these siRNA-targeted genes affects seed size. We propose that the corresponding maternal siRNAs could account for parent-of-origin effects on the endosperm in interploidy and hybrid crosses. These analyses reconcile previous studies on siRNAs and imprinted gene expression during seed development.
Collapse
|
43
|
Yoshida T, Kawanabe T, Bo Y, Fujimoto R, Kawabe A. Genome-Wide Analysis of Parent-of-Origin Allelic Expression in Endosperms of Brassicaceae Species, Brassica rapa. PLANT & CELL PHYSIOLOGY 2018; 59:2590-2601. [PMID: 30165552 DOI: 10.1093/pcp/pcy178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 08/24/2018] [Indexed: 05/06/2023]
Abstract
Uniparental gene expression, observed in both animals and plants, is termed genomic imprinting. Genomic imprinting is a well-known epigenetic phenomenon regulated through epigenetic modifications such as DNA methylation and histone modifications. Recent genome-wide studies of endosperm transcription have revealed the rapid change of imprinted genes between species, suggesting the flexibility of this phenomenon. Although the functional significance and evolutionary trends of imprinted genes are still obscure, it can be clarified by inter-species comparisons. In this study, we analyzed the pattern of genomic imprinting in Brassica rapa, a species related to Arabidopsis thaliana. Compared with the ancient karyotype of A. thaliana and B. rapa, B. rapa has a triplicated genome. Many imprinted genes, beyond the estimated number previously reported in other species, were observed. Several imprinted genes have been conserved among species in Brassicaceae. We also observed rapid molecular evolution of imprinted genes compared to non-imprinted genes in B. rapa. Especially, imprinted gene overlapping between species showed more rapid molecular evolution and preferential expression in endosperms. It may imply that a small number of imprinted genes have retained functional roles among diverged species and have been the target of natural selection.
Collapse
Affiliation(s)
| | - Takahiro Kawanabe
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Yina Bo
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Ryo Fujimoto
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Akira Kawabe
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| |
Collapse
|
44
|
Intersexual conflict over seed size is stronger in more outcrossed populations of a mixed-mating plant. Proc Natl Acad Sci U S A 2018; 115:11561-11566. [PMID: 30282740 DOI: 10.1073/pnas.1810979115] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In polyandrous species, fathers benefit from attracting greater maternal investment toward their offspring at the expense of the offspring of other males, while mothers should usually allocate resources equally among offspring. This conflict can lead to an evolutionary arms race between the sexes, manifested through antagonistic genes whose expression in offspring depends upon the parent of origin. The arms race may involve an increase in the strength of maternally versus paternally derived alleles engaged in a "tug of war" over maternal provisioning or repeated "recognition-avoidance" coevolution where growth-enhancing paternally derived alleles evolve to escape recognition by maternal genes targeted to suppress their effect. Here, we develop predictions to distinguish between these two mechanisms when considering crosses among populations that have reached different equilibria in this intersexual arms race. We test these predictions using crosses within and among populations of Dalechampia scandens (Euphorbiaceae) that presumably have experienced different intensities of intersexual conflict, as inferred from their historical differences in mating system. In crosses where the paternal population was more outcrossed than the maternal population, hybrid seeds were larger than those normally produced in the maternal population, whereas when the maternal population was more outcrossed, hybrid seeds were smaller than normal. These results confirm the importance of mating systems in determining the intensity of intersexual conflict over maternal investment and provide strong support for a tug-of-war mechanism operating in this conflict. They also yield clear predictions for the fitness consequences of gene flow among populations with different mating histories.
Collapse
|
45
|
Roth M, Florez-Rueda AM, Paris M, Städler T. Wild tomato endosperm transcriptomes reveal common roles of genomic imprinting in both nuclear and cellular endosperm. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:1084-1101. [PMID: 29953688 DOI: 10.1111/tpj.14012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 06/01/2018] [Accepted: 06/20/2018] [Indexed: 05/06/2023]
Abstract
Genomic imprinting is a conspicuous feature of the endosperm, a triploid tissue nurturing the embryo and synchronizing angiosperm seed development. An unknown subset of imprinted genes (IGs) is critical for successful seed development and should have highly conserved functions. Recent genome-wide studies have found limited conservation of IGs among distantly related species, but there is a paucity of data from closely related lineages. Moreover, most studies focused on model plants with nuclear endosperm development, and comparisons with properties of IGs in cellular-type endosperm development are lacking. Using laser-assisted microdissection, we characterized parent-specific expression in the cellular endosperm of three wild tomato lineages (Solanum section Lycopersicon). We identified 1025 candidate IGs and 167 with putative homologs previously identified as imprinted in distantly related taxa with nuclear-type endosperm. Forty-two maternally expressed genes (MEGs) and 17 paternally expressed genes (PEGs) exhibited conserved imprinting status across all three lineages, but differences in power to assess imprinted expression imply that the actual degree of conservation might be higher than that directly estimated (20.7% for PEGs and 10.4% for MEGs). Regardless, the level of shared imprinting status was higher for PEGs than for MEGs, indicating dissimilar evolutionary trajectories. Expression-level data suggest distinct epigenetic modulation of MEGs and PEGs, and gene ontology analyses revealed MEGs and PEGs to be enriched for different functions. Importantly, our data provide evidence that MEGs and PEGs interact in modulating both gene expression and the endosperm cell cycle, and uncovered conserved cellular functions of IGs uniting taxa with cellular- and nuclear-type endosperm.
Collapse
Affiliation(s)
- Morgane Roth
- Plant Ecological Genetics, Institute of Integrative Biology & Zurich-Basel Plant Science Center, ETH Zurich, 8092, Zurich, Switzerland
| | - Ana M Florez-Rueda
- Plant Ecological Genetics, Institute of Integrative Biology & Zurich-Basel Plant Science Center, ETH Zurich, 8092, Zurich, Switzerland
| | - Margot Paris
- Plant Ecological Genetics, Institute of Integrative Biology & Zurich-Basel Plant Science Center, ETH Zurich, 8092, Zurich, Switzerland
| | - Thomas Städler
- Plant Ecological Genetics, Institute of Integrative Biology & Zurich-Basel Plant Science Center, ETH Zurich, 8092, Zurich, Switzerland
| |
Collapse
|
46
|
Zhang M, Lv R, Yang W, Fu T, Liu B. Imprinted gene expression in maize starchy endosperm and aleurone tissues of reciprocal F1 hybrids at a defined developmental stage. Genes Genomics 2018; 40:99-107. [PMID: 29892900 DOI: 10.1007/s13258-017-0613-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 09/10/2017] [Indexed: 10/18/2022]
Abstract
Imprinted gene expression in flowering plants predominantly occurs in the triploid endosperm of developing seed. However, endosperm is composed of distinct tissue types. For example, the maize (Zea mays) endosperm is constituted by two major tissues, starchy endosperm and aleurone. Previous studies in imprinted gene expression have generally assumed that the different tissues constituting endosperm would behavior the same, and hence have not examined them separately. Here, to examine parental-specific expression of imprinted genes in different parts of the seed, eight previously reported maize protein-coding imprinted genes were selected, and analyzed by cleaved amplified polymorphic sequence (CAPS) coupled with Sanger sequencing for transcripts from the various seed tissues collected at 18 days after pollination (DAP). The studied tissues included seed coat, embryo, starchy endosperm and aleurone, which were collected from a pair of reciprocal F1 hybrids produced by crossing inbred lines B73 and Mo17. Six of these eight analyzed imprinted genes showed the same imprinted expression pattern between the starchy endosperm and aleurone, but two showed imprinted expression only in the starchy endosperm. Comparison of the expression pattern of 20 selected imprinted genes in multiple seed tissues and vegetative tissues indicated that the majority (~ 75%) of these imprinted genes exhibited seed-specific or endosperm-specific expression. Our results also uncovered that imprinted genes have a high propensity to be alternatively spliced via intron retention in the developing embryo compared with the other tissues.
Collapse
Affiliation(s)
- Meishan Zhang
- Department of Agronomy, Jilin Agricultural University, Changchun, 130118, People's Republic of China.
| | - Ruili Lv
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Wei Yang
- Department of Agronomy, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Tiansi Fu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, People's Republic of China.
| |
Collapse
|
47
|
Anderson SN, Springer NM. Potential roles for transposable elements in creating imprinted expression. Curr Opin Genet Dev 2018; 49:8-14. [DOI: 10.1016/j.gde.2018.01.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/25/2018] [Accepted: 01/29/2018] [Indexed: 10/18/2022]
|
48
|
Golicz AA, Bhalla PL, Singh MB. lncRNAs in Plant and Animal Sexual Reproduction. TRENDS IN PLANT SCIENCE 2018; 23:195-205. [PMID: 29395831 DOI: 10.1016/j.tplants.2017.12.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/08/2017] [Accepted: 12/23/2017] [Indexed: 05/08/2023]
Abstract
Long noncoding RNAs (lncRNAs) are transcripts over 200 base pairs in length with no discernible protein-coding potential. Multiple lines of evidence point to lncRNAs as master regulators, controlling the expression of protein-coding genes. Studies in plants and animals consistently show high expression of lncRNAs in reproductive organs in a cell- and tissue-specific manner. Sexual reproduction is a complex process that involves cell fate specification and specialized cell division requiring precise coordination of gene expression in response to intrinsic and extrinsic signals. The roles of lncRNAs as master regulators of gene expression and chromatin organization might make them particularly suited for coordination and control of molecular processes involved in sexual reproduction.
Collapse
Affiliation(s)
- Agnieszka A Golicz
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Melbourne, VIC, Australia
| | - Prem L Bhalla
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Melbourne, VIC, Australia
| | - Mohan B Singh
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Melbourne, VIC, Australia.
| |
Collapse
|
49
|
Jiao W, Yuan J, Jiang S, Liu Y, Wang L, Liu M, Zheng D, Ye W, Wang X, Chen ZJ. Asymmetrical changes of gene expression, small RNAs and chromatin in two resynthesized wheat allotetraploids. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:828-842. [PMID: 29265531 DOI: 10.1111/tpj.13805] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 12/04/2017] [Indexed: 05/26/2023]
Abstract
Polyploidy occurs in some animals and all flowering plants, including important crops such as wheat. The consequences of polyploidy in crops remain elusive, partly because their progenitors are unknown. Using two resynthesized wheat allotetraploids Sl Sl AA and AADD with known diploid progenitors, we analyzed mRNA and small RNA transcriptomes in the endosperm, compared transcriptomes between endosperm and root in AADD, and examined chromatin changes in the allotetraploids. In the endosperm, there were more non-additively expressed genes in Sl Sl AA than in AADD. In AADD, non-additively expressed genes were developmentally regulated, and the majority (62-70%) were repressed. The repressed genes in AADD included a group of histone methyltransferase gene homologs, which correlated with reduced histone H3K9me2 levels and activation of various transposable elements in AADD. In Sl Sl AA, there was a tendency for expression dominance of Sl over A homoeologs, but the histone methyltransferase gene homologs were additively expressed, correlating with insignificant changes in histone H3K9me2 levels. Moreover, more 24-nucleotide small inferring RNAs (siRNAs) in the A subgenome were disrupted in AADD than in Sl Sl AA, which were associated with expression changes of siRNA-associated genes. Our results indicate that asymmetrical changes in siRNAs, chromatin modifications, transposons and gene expression coincide with unstable AADD genomes and stable Sl Sl AA genomes, which could help explain the evolutionary trajectories of wheat allotetraploids formed by different progenitors.
Collapse
Affiliation(s)
- Wu Jiao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
| | - Jingya Yuan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
| | - Shan Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
| | - Yanfeng Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
| | - Lili Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
| | - Mingming Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
| | - Dewei Zheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
| | - Wenxue Ye
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
| | - Xiue Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
| | - Z Jeffrey Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, and Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
50
|
Wang L, Yuan J, Ma Y, Jiao W, Ye W, Yang DL, Yi C, Chen ZJ. Rice Interploidy Crosses Disrupt Epigenetic Regulation, Gene Expression, and Seed Development. MOLECULAR PLANT 2018; 11:300-314. [PMID: 29269023 DOI: 10.1016/j.molp.2017.12.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 12/01/2017] [Accepted: 12/11/2017] [Indexed: 06/07/2023]
Abstract
Seed development in angiosperms requires a 2:1 maternal-to-paternal genome ratio (2m:1p) in the endosperm. When the ratio is disrupted, the seed development is impaired. Rice interploidy crosses result in endosperm failures, but the underlying molecular mechanisms remain unclear. Here, we report that the defective endosperm in rice interploidy crosses was associated with nonadditive expression of small RNAs and protein-coding genes. Interestingly, 24-nt small interfering RNAs were enriched in the 5' and 3' flanking sequences of nonadditively expressed genes in the interploidy crosses and were negatively associated with the expression of imprinted genes. Furthermore, some PRC2 family genes and DNA methylation-related genes including OsMET1b and OsCMT3a were upregulated in the 2×4 cross (pollinating a diploid "mother" with a tetraploid "father") but repressed in the reciprocal cross. These different epigenetic effects could lead to precocious or delayed cellularization during endosperm development. Notably, many endosperm-preferred genes, including starch metabolic and storage protein genes during grain filling, were found to be associated with DNA methylation or H3K27me3, which are repressed in both 2×4 and 4×2 crosses. WUSCHEL homeobox2 (WOX2)-like (WOX2L), an endosperm-preferred gene, was expressed specifically in the rice endosperm, in contrast to WOX2 expression in the Arabidopsis embryo. Disruption of WOX2L in transgenic rice by CRISPR/Cas9-mediated gene editing blocked starch and protein accumulation, resulting in seed abortion. In addition to gene repression, disrupting epigenetic process in the interploidy crosses also induced expression of stress-responsive genes. Thus, maintaining the 2m:1p genome ratio in the endosperm is essential for normal grain development in rice and other cereal crops.
Collapse
Affiliation(s)
- Limei Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing 210095, China
| | - Jingya Yuan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing 210095, China
| | - Yujie Ma
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing 210095, China
| | - Wu Jiao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing 210095, China
| | - Wenxue Ye
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing 210095, China
| | - Dong-Lei Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing 210095, China
| | - Chuandeng Yi
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Z Jeffrey Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing 210095, China; Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|