1
|
Wang YZ, Zhao HM, Huang XP, Zhang Y, Ye JC, Feng NX, Li YW, Liu BL, Cai QY, Xiang L, Mo CH, Li QX. Variety-dependent seed endophytic bacteria enhance stress tolerance to and bioaccumulation of ciprofloxacin in choy sum (Brassica parachinensis). MICROBIOME 2025; 13:80. [PMID: 40121500 PMCID: PMC11929246 DOI: 10.1186/s40168-025-02073-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 02/26/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND Accumulation of antibiotics in crops threatens human health. However, the mechanisms and effects of microorganisms on the uptake and accumulation of antibiotics in crops remain poorly understood. This study aimed to investigate the impact and underlying mechanisms of seed-borne microbiota in root on ciprofloxacin (CIP) accumulation in two choy sum varieties through amplicon sequencing, multiple statistical analyses, and subsequent validation of key bacteria via isolation and co-culturing with plants. RESULTS Bacillaceae (mainly Bacillus) was enriched specifically in the roots of CIP high-antibiotic-accumulating variety (HAV) via seed-based vertical transmission activated by the root exudate-derived maleic acid. The relative abundance of Bacillaceae was 9.2 to 27.7 times higher in roots of HAV relative to the low-antibiotic-accumulating variety (LAV). The enrichment of Bacillaceae facilitated a cooperative and beneficial bacterial community formed by the deterministic process. The community in HAV could not only stimulate antioxidase activities and decrease membrane lipid peroxidation via secreting indoleacetic acid and siderophore but also promote its biomass, especially the root length and biomass of HAV, thus greatly improving its tolerance to and absorption of CIP. The variety-specific plant-microbial interactions caused 1.6- to 3.2-fold higher CIP accumulation in shoots of HAV relative to LAV shoots. CONCLUSIONS The findings highlight the crucial roles of the seed-borne microbiota in regulating the uptake and accumulation of antibiotics in crops, giving new understanding on the accumulation of organic pollutants in plants, with an emphasis on plant-microbial interactions Video Abstract.
Collapse
Affiliation(s)
- Yi-Ze Wang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | | | - Xian-Pei Huang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Yu Zhang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Jin-Cheng Ye
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Nai-Xian Feng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Bai-Lin Liu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| |
Collapse
|
2
|
Manzoor M, Guan DX, Ma LQ. Plant-microbiome interactions for enhanced crop production under cadmium stress: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 965:178538. [PMID: 39879949 DOI: 10.1016/j.scitotenv.2025.178538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/20/2024] [Accepted: 01/13/2025] [Indexed: 01/31/2025]
Abstract
Cadmium (Cd) is a toxic heavy metal that has detrimental effects on agriculture crops and human health. Both natural and anthropogenic processes release Cd into the environment, elevating its contents in soils. Under Cd stress, strong plant-microbiome interactions are important in improving crop production, but a systematic review is still missing. This review demonstrates the importance of microbiomes and their interactions with plants in mitigating Cd toxicity and promoting crop growth. Endogenous and exogenous microbiomes play a role to enhance plant's ability to respond to Cd stress. Specifically, the rhizosphere microbiome, which includes plant growth-promoting rhizobacteria and arbuscular mycorrhizal fungi, endosphere microbiome, and phyllosphere microbiome, are involved in Cd accumulation, immobilization, and translocation, and Cd-induced stress management. The mechanisms underlying these plant-microbiome interactions vary depending on the species and varieties of crops, composition and diversity of the microbiome, and level of Cd stress. Among the microbiome-mediated approaches, biosorption, bioprecipitation, and bioaccumulation are promising for Cd remediation in soil. Additionally, the endosphere microbiome, particularly Cd resistant endophytes, reduces Cd toxicity, increases the expression of Cd efflux genes, and enhances crop growth through regulating crops' antioxidant machinery and endogenous hormones. Furthermore, improved agricultural practices modulate the soil and plant microbiomes, thereby reducing Cd stress and increasing crop productivity.
Collapse
Affiliation(s)
- Maria Manzoor
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Dong-Xing Guan
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.
| | - Lena Q Ma
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
3
|
Khan D, Shaw R, Kabiraj A, Paul A, Bandopadhyay R. Microbial inheritance through seed: a clouded area needs to be enlightened. Arch Microbiol 2025; 207:23. [PMID: 39754662 DOI: 10.1007/s00203-024-04225-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/13/2024] [Accepted: 12/21/2024] [Indexed: 01/06/2025]
Abstract
Seed endophytes are actively used by the mother plant as both reservoir and vector of beneficial microbes. During seed dormancy endophytes experience significant physiochemical changes and only competent endophytes could colonise successfully in seeds and some of them act as obligate endophyte that are transmitted vertically across generations. The adaptive nature of endophytes allows them to switch lifestyles depending on environment and host conditions. In this review, instead of providing broad discussion on applicability of endophytes in plant growth improvement, the fundamental nature of endophytes, their survival strategies under stress conditions, transmittance, etc. have been broadly highlighted by collaborating recent discoveries and theories. We have also tried to differentiate endophyte with their pathogenic counterpart and their survival mechanism during seed dormancy stages. Critical analyses of physio-biochemical changes in seeds during maturation and parallel modifications of life styles of seed endophytes along with pathogens will enlighten the shaded part of seed-microbiome interactions. The mutualistic interrelations as well as their shipment towards pathogenic behaviour under stress are being discussed acutely. Finally, importances of conservation of seed microbiome to maintain seed quality and vigour have been pointed out. Throughout the manuscript, the knowledge gap on seed-microbiota have been mentioned, thus, in future, studies on these areas could help us to understand properly the actual role of endophytes for the betterment of maintaining seed quality and vigour.
Collapse
Affiliation(s)
- Dibyendu Khan
- Microbiology Section, Department of Botany, UGC-Center of Advanced Study, The University of Burdwan, Golapbag, Bardhaman, West Bengal, 713104, India
| | - Rajdeep Shaw
- Microbiology Section, Department of Botany, UGC-Center of Advanced Study, The University of Burdwan, Golapbag, Bardhaman, West Bengal, 713104, India
| | - Ashutosh Kabiraj
- Microbiology Section, Department of Botany, UGC-Center of Advanced Study, The University of Burdwan, Golapbag, Bardhaman, West Bengal, 713104, India
| | - Arpita Paul
- Microbiology Section, Department of Botany, UGC-Center of Advanced Study, The University of Burdwan, Golapbag, Bardhaman, West Bengal, 713104, India
| | - Rajib Bandopadhyay
- Microbiology Section, Department of Botany, UGC-Center of Advanced Study, The University of Burdwan, Golapbag, Bardhaman, West Bengal, 713104, India.
| |
Collapse
|
4
|
Laurent‐Webb L, Maurice K, Perez‐Lamarque B, Bourceret A, Ducousso M, Selosse M. Seed or soil: Tracing back the plant mycobiota primary sources. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13301. [PMID: 38924368 PMCID: PMC11194045 DOI: 10.1111/1758-2229.13301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/13/2024] [Indexed: 06/28/2024]
Abstract
Plants host diverse communities of fungi (the mycobiota), playing crucial roles in their development. The assembly processes of the mycobiota, however, remain poorly understood, in particular, whether it is transmitted by parents through the seeds (vertical transmission) or recruited in the environment (horizontal transmission). Here we attempt to quantify the relative contributions of horizontal and vertical transmission in the mycobiota assembly of a desert shrub, Haloxylon salicornicum, by comparing the mycobiota of in situ bulk soil and seeds to that of (i) in situ adult individuals and (ii) in vitro-germinated seedlings in soil collected in situ. We show that the mycobiota are partially vertically transmitted through the seeds to seedlings, whereas bulk soil has a limited contribution to the seedling's mycobiota. In adults, root and bulk soil mycobiota tend to resemble each other, suggesting a compositional turnover in plant mycobiota during plant development due to horizontal transmission. Thus, the mycobiota are transmitted both horizontally and vertically depending on the plant tissue and developmental stage. Understanding the respective contribution of these transmission pathways to the plant mycobiota is fundamental to deciphering potential coevolutionary processes between plants and fungi. Our findings particularly emphasize the importance of vertical transmission in desert ecosystems.
Collapse
Affiliation(s)
- Liam Laurent‐Webb
- Institut de Systématique Evolution Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRSSorbonne Université, EPHEParisFrance
| | | | - Benoît Perez‐Lamarque
- Institut de Biologie de l'École Normale Supérieure (IBENS), École normale supérieure, CNRS, INSERMUniversité PSLParisFrance
| | - Amélia Bourceret
- Institut de Systématique Evolution Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRSSorbonne Université, EPHEParisFrance
| | | | - Marc‐André Selosse
- Institut de Systématique Evolution Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRSSorbonne Université, EPHEParisFrance
- Faculty of BiologyUniversity of GdanskGdanskPoland
- Institut Universitaire de FranceParisFrance
| |
Collapse
|
5
|
Anzalone A, Mosca A, Dimaria G, Nicotra D, Tessitori M, Privitera GF, Pulvirenti A, Leonardi C, Catara V. Soil and Soilless Tomato Cultivation Promote Different Microbial Communities That Provide New Models for Future Crop Interventions. Int J Mol Sci 2022; 23:8820. [PMID: 35955951 PMCID: PMC9369415 DOI: 10.3390/ijms23158820] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 12/13/2022] Open
Abstract
The cultivation of soilless tomato in greenhouses has increased considerably, but little is known about the assembly of the root microbiome compared to plants grown in soil. To obtain such information, we constructed an assay in which we traced the bacterial and fungal communities by amplicon-based metagenomics during the cultivation chain from nursery to greenhouse. In the greenhouse, the plants were transplanted either into agricultural soil or into coconut fiber bags (soilless). At the phylum level, bacterial and fungal communities were primarily constituted in all microhabitats by Proteobacteria and Ascomycota, respectively. The results showed that the tomato rhizosphere microbiome was shaped by the substrate or soil in which the plants were grown. The microbiome was different particularly in terms of the bacterial communities. In agriculture, enrichment has been observed in putative biological control bacteria of the genera Pseudomonas and Bacillus and in potential phytopathogenic fungi. Overall, the study describes the different shaping of microbial communities in the two cultivation methods.
Collapse
Affiliation(s)
- Alice Anzalone
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy
| | - Alexandros Mosca
- Department of Physics and Astronomy, University of Catania, 95123 Catania, Italy
| | - Giulio Dimaria
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy
| | - Daniele Nicotra
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy
| | - Matilde Tessitori
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy
| | | | - Alfredo Pulvirenti
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Cherubino Leonardi
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy
| | - Vittoria Catara
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy
| |
Collapse
|
6
|
Anzalone A, Di Guardo M, Bella P, Ghadamgahi F, Dimaria G, Zago R, Cirvilleri G, Catara V. Bioprospecting of Beneficial Bacteria Traits Associated With Tomato Root in Greenhouse Environment Reveals That Sampling Sites Impact More Than the Root Compartment. FRONTIERS IN PLANT SCIENCE 2021; 12:637582. [PMID: 33927735 PMCID: PMC8078776 DOI: 10.3389/fpls.2021.637582] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/10/2021] [Indexed: 05/06/2023]
Abstract
Tomato is subject to several diseases that affect both field- and greenhouse-grown crops. To select cost-effective potential biocontrol agents, we used laboratory throughput screening to identify bacterial strains with versatile characteristics suitable for multipurpose uses. The natural diversity of tomato root-associated bacterial communities was bioprospected under a real-world environment represented by an intensive tomato cultivation area characterized by extraseasonal productions in the greenhouse. Approximately 400 tomato root-associated bacterial isolates, in majority Gram-negative bacteria, were isolated from three compartments: the soil close to the root surface (rhizosphere, R), the root surface (rhizoplane, RP), and the root interior (endorhizosphere, E). A total of 33% of the isolates produced siderophores and were able to solubilize phosphates and grow on NA with 8% NaCl. A total of 30% of the root-associated bacteria showed antagonistic activity against all the tomato pathogens tested, i.e., Clavibacter michiganesis pv. michiganensis, Pseudomonas syringae pv. tomato, Pseudomonas corrugata and Xanthomonas euvesicatoria pv. perforans, and Fusarium oxysporum f. sp. lycopersici. We found that the sampling site rather than the root compartment of isolation influenced bacterial composition in terms of analyzed phenotype. This was demonstrated through a diversity analysis including general characteristics and PGPR traits, as well as biocontrol activity in vitro. Analysis of 16S rRNA gene (rDNA) sequencing of 77 culturable endophytic bacteria that shared multiple beneficial activity revealed a predominance of bacteria in Bacillales, Enterobacteriales, and Pseudomonadales. Their in vitro antagonistic activity showed that Bacillus species were significantly more active than the isolates in the other taxonomic group. In planta activity against phytopathogenic bacteria of a subset of Bacillus and Pseudomonas isolates was also assessed.
Collapse
Affiliation(s)
- Alice Anzalone
- Department of Agriculture, Food and Environment, University of Catania, Catania, Italy
| | - Mario Di Guardo
- Department of Agriculture, Food and Environment, University of Catania, Catania, Italy
| | - Patrizia Bella
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Palermo, Italy
| | - Farideh Ghadamgahi
- Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Giulio Dimaria
- Department of Agriculture, Food and Environment, University of Catania, Catania, Italy
| | | | - Gabriella Cirvilleri
- Department of Agriculture, Food and Environment, University of Catania, Catania, Italy
| | - Vittoria Catara
- Department of Agriculture, Food and Environment, University of Catania, Catania, Italy
| |
Collapse
|
7
|
Decunta FA, Pérez LI, Malinowski DP, Molina-Montenegro MA, Gundel PE. A Systematic Review on the Effects of Epichloë Fungal Endophytes on Drought Tolerance in Cool-Season Grasses. FRONTIERS IN PLANT SCIENCE 2021; 12:644731. [PMID: 33841472 PMCID: PMC8025668 DOI: 10.3389/fpls.2021.644731] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/18/2021] [Indexed: 05/17/2023]
Abstract
Symptomless fungal endophytes in the genus Epichloë are repeatedly mentioned to increase tolerance of cool-season grasses to a wide range of environmental stress factors, mainly drought. However, the generality of this idea is challenged because (i) most studies have been conducted on two economically important forage grasses {tall fescue [Festuca arundinacea (Schreb.) Dumort] and perennial ryegrass (Lolium perenne L.)}, (ii) endophyte-mediated mechanisms and effects on plant responses to drought have shown to be highly variable across species, and that (iii) symbiosis incidence in plant populations occurring in extremely arid environments is usually low. We question this idea by reviewing the existing information about Epichloë fungal endophyte effects on drought tolerance in cool-season grasses. We combined standard review, vote counting, and calculation of effect sizes to synthesize the literature, identify information gaps, and guide future research. The total number of studies was higher for domesticated than for wild species, a ratio that was balanced when papers with data quality for effect size calculus were considered. After the drought, endophyte-infected plants accumulated more aboveground and belowground biomass than non-infected counterparts, while no effect on tillering was observed. However, these effects remained significant for wild (even on tillering) but not for domesticated species. Interestingly, despite the continuous effort in determining physiological mechanisms behind the endophyte effects, no studies evaluated plant fecundity as a measure of ecological fitness nor vital rates (such as survival) as to escalate individual-level variables to population. Together with the high variability in results, our work shows that generalizing a positive effect of fungal endophytes in plant tolerance to drought may be misleading. Future studies combining field surveys with manipulative experiments would allow us to unravel the role of fungal endophytes in plant adaptation by considering the evolutionary history of species and populations to the different ecological contexts.
Collapse
Affiliation(s)
- Facundo A. Decunta
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Buenos Aires, Argentina
- *Correspondence: Facundo A. Decunta
| | - Luis I. Pérez
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Buenos Aires, Argentina
| | | | - Marco A. Molina-Montenegro
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Universidad Católica del Norte, Coquimbo, Chile
- Centro de Investigaciones y Estudios Avanzados del Maule (CIEAM), Universidad Católica del Maule, Talca, Chile
| | - Pedro E. Gundel
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Buenos Aires, Argentina
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| |
Collapse
|
8
|
Ueno AC, Gundel PE, Ghersa CM, Demkura PV, Card SD, Mace WJ, Martínez-Ghersa MA. Ontogenetic and trans-generational dynamics of a vertically transmitted fungal symbiont in an annual host plant in ozone-polluted settings. PLANT, CELL & ENVIRONMENT 2020; 43:2540-2550. [PMID: 32705695 DOI: 10.1111/pce.13859] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 06/22/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
Tropospheric ozone is an abiotic stress of increasing importance in the context of global climate change. This greenhouse gas is a potent phytotoxic molecule with demonstrated negative effects on crop yield and natural ecosystems. Recently, oxidative stress has been proposed as a mechanism that could regulate the interaction between cool-season grasses and Epichloë endophytes. We hypothesized that exposure of Lolium multiflorum plants, hosting endophytes to an ozone-polluted environment at different ontogenetic phases, would impact the trans-generational dynamics of the vertically transmitted fungal symbiont. Here, we found that the ozone-induced stress on the mother plants did not affect the endophyte vertical transmission but it impaired the persistence of the fungus in the seed exposed to artificial ageing. Endophyte longevity in seed was reduced by exposure of the mother plant to ozone. Although ozone exposure did not influence either the endophyte mycelial concentration or their compound defences (loline alkaloids), a positive correlation was observed between host fitness and the concentration of endophyte-derived defence compounds. This suggests that fungal defences in grass seeds were not all produced in situ but remobilized from the vegetative tissues. Our study reveals ozone trans-generational effects on the persistence of a beneficial symbiont in a host grass.
Collapse
Affiliation(s)
- Andrea C Ueno
- IFEVA, Facultad de Agronomía, Departamento de Recursos Naturales y Ambiente, CONICET, Universidad de Buenos Aires, Av. San Martín 4453, Buenos Aires, C1417DSE, Argentina
| | - Pedro E Gundel
- IFEVA, Facultad de Agronomía, Departamento de Recursos Naturales y Ambiente, CONICET, Universidad de Buenos Aires, Av. San Martín 4453, Buenos Aires, C1417DSE, Argentina
| | - Claudio M Ghersa
- IFEVA, Facultad de Agronomía, Departamento de Recursos Naturales y Ambiente, CONICET, Universidad de Buenos Aires, Av. San Martín 4453, Buenos Aires, C1417DSE, Argentina
| | - Patricia V Demkura
- IFEVA, Facultad de Agronomía, Departamento de Recursos Naturales y Ambiente, CONICET, Universidad de Buenos Aires, Av. San Martín 4453, Buenos Aires, C1417DSE, Argentina
| | - Stuart D Card
- Forage Science, AgResearch Limited, Grasslands Research Centre, Palmerston North, Private Bag 11008, New Zealand
| | - Wade J Mace
- Forage Science, AgResearch Limited, Grasslands Research Centre, Palmerston North, Private Bag 11008, New Zealand
| | - María Alejandra Martínez-Ghersa
- IFEVA, Facultad de Agronomía, Departamento de Recursos Naturales y Ambiente, CONICET, Universidad de Buenos Aires, Av. San Martín 4453, Buenos Aires, C1417DSE, Argentina
| |
Collapse
|
9
|
Gundel PE, Sun P, Charlton ND, Young CA, Miller TEX, Rudgers JA. Simulated folivory increases vertical transmission of fungal endophytes that deter herbivores and alter tolerance to herbivory in Poa autumnalis. ANNALS OF BOTANY 2020; 125:981-991. [PMID: 32010946 PMCID: PMC7218812 DOI: 10.1093/aob/mcaa021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/31/2020] [Indexed: 05/02/2023]
Abstract
BACKGROUND AND AIMS The processes that maintain variation in the prevalence of symbioses within host populations are not well understood. While the fitness benefits of symbiosis have clearly been shown to drive changes in symbiont prevalence, the rate of transmission has been less well studied. Many grasses host symbiotic fungi (Epichloë spp.), which can be transmitted vertically to seeds or horizontally via spores. These symbionts may protect plants against herbivores by producing alkaloids or by increasing tolerance to damage. Therefore, herbivory may be a key ecological factor that alters symbiont prevalence within host populations by affecting either symbiont benefits to host fitness or the symbiont transmission rate. Here, we addressed the following questions: Does symbiont presence modulate plant tolerance to herbivory? Does folivory increase symbiont vertical transmission to seeds or hyphal density in seedlings? Do plants with symbiont horizontal transmission have lower rates of vertical transmission than plants lacking horizontal transmission? METHODS We studied the grass Poa autumnalis and its symbiotic fungi in the genus Epichloë. We measured plant fitness (survival, growth, reproduction) and symbiont transmission to seeds following simulated folivory in a 3-year common garden experiment and surveyed natural populations that varied in mode of symbiont transmission. KEY RESULTS Poa autumnalis hosted two Epichloë taxa, an undescribed vertically transmitted Epichloë sp. PauTG-1 and E. typhina subsp. poae with both vertical and horizontal transmission. Simulated folivory reduced plant survival, but endophyte presence increased tolerance to damage and boosted fitness. Folivory increased vertical transmission and hyphal density within seedlings, suggesting induced protection for progeny of damaged plants. Across natural populations, the prevalence of vertical transmission did not correlate with symbiont prevalence or differ with mode of transmission. CONCLUSIONS Herbivory not only mediated the reproductive fitness benefits of symbiosis, but also promoted symbiosis prevalence by increasing vertical transmission of the fungus to the next generation. Our results reveal a new mechanism by which herbivores could influence the prevalence of microbial symbionts in host populations.
Collapse
Affiliation(s)
- Pedro E Gundel
- IFEVA-CONICET, Department of Ecology, College of Agronomy, University of Buenos Aires, Buenos Aires, Argentina
- Department of Biology, University of New Mexico, Albuquerque, NM, USA
- For correspondence. E-mail
| | - Prudence Sun
- Department of Biosciences, Rice University, Houston, TX, USA
| | | | | | - Tom E X Miller
- Department of Biosciences, Rice University, Houston, TX, USA
| | | |
Collapse
|
10
|
David AS, Bell-Dereske LP, Emery SM, McCormick BM, Seabloom EW, Rudgers JA. Testing for loss of Epichloë and non-epichloid symbionts under altered rainfall regimes. AMERICAN JOURNAL OF BOTANY 2019; 106:1081-1089. [PMID: 31386172 DOI: 10.1002/ajb2.1340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 06/19/2019] [Indexed: 06/10/2023]
Abstract
PREMISE Microbial symbionts can buffer plant hosts from environmental change. Therefore, understanding how global change factors alter the associations between hosts and their microbial symbionts may improve predictions of future changes in host population dynamics and microbial diversity. Here, we investigated how one global change factor, precipitation, affected the maintenance or loss of symbiotic fungal endophytes in a C3 grass host. Specifically, we examined the distinct responses of Epichloë (vertically transmitted and systemic) and non-epichloid endophytes (typically horizontally transmitted and localized) by considering (1) how precipitation altered associations with Epichloë and non-epichloid endophytic taxa across host ontogeny, and (2) interactive effects of water availability and Epichloë on early seedling life history stages. METHODS We manipulated the presence of Epichloë amarillans in American beachgrass (Ammophila breviligulata) in a multiyear field experiment that imposed three precipitation regimes (ambient or ±30% rainfall). In laboratory assays, we investigated the interactive effects of water availability and Epichloë on seed viability and germination. RESULTS Reduced precipitation decreased the incidence of Epichloë in leaves in the final sampling period, but had no effect on associations with non-epichloid taxa. Epichloë reduced the incidence of non-epichloid endophytes, including systemic p-endophytes, in seeds. Laboratory assays suggested that association with Epichloë is likely maintained, in part, due to increased seed viability and germination regardless of water availability. CONCLUSIONS Our study empirically demonstrates several pathways for plant symbionts to be lost or maintained across host ontogeny and suggests that reductions in precipitation can drive the loss of a plant's microbial symbionts.
Collapse
Affiliation(s)
- Aaron S David
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Lukas P Bell-Dereske
- Kellogg Biological Station, Michigan State University, Hickory Corners, MI, 49060, USA
| | - Sarah M Emery
- Department of Biology, University of Louisville, Louisville, KY, 40292, USA
| | - Brandon M McCormick
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Eric W Seabloom
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Jennifer A Rudgers
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| |
Collapse
|
11
|
Luo J, Tao Q, Jupa R, Liu Y, Wu K, Song Y, Li J, Huang Y, Zou L, Liang Y, Li T. Role of Vertical Transmission of Shoot Endophytes in Root-Associated Microbiome Assembly and Heavy Metal Hyperaccumulation in Sedum alfredii. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:6954-6963. [PMID: 31145612 DOI: 10.1021/acs.est.9b01093] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The transmission mode of shoot-associated endophytes in hyperaccumulators and their roles in root microbiome assembly and heavy metal accumulation remain unclear. Using 16S rRNA gene profiling, we investigated the vertical transmission of shoot-associated endophytes in relation to growth and Cd/Zn accumulation of Sedum alfredii ( Crassulaceae). Endophytes were transmitted from shoot cuttings to the rhizocompartment of new plants in both sterilized (γ-irradiated) and native soils. Vertical transmission was far more efficient in the sterile soil, and the transmitted endophytes have become a dominant component of the newly established root-associated microbiome. Based on 16S rRNA genes, the vertically transmitted taxa were identified as the families of Streptomycetaceae, Nocardioidaceae, Pseudonocardiaceae, and Rhizobiaceae. Abundances of Streptomycetaceae, Nocardioidaceae, and Pseudonocardiaceae were strongly correlated with increased shoot biomass and total Cd/Zn accumulation. Inoculation of S. alfredii with the synthetic bacterial community sharing the same phylogenetic relatedness with the vertically transmitted endophytes resulted in significant improvements in plant biomass, root morphology, and Cd/Zn accumulation. Our results demonstrate that successful vertical transmission of endophytes from shoots of S. alfredii to its rhizocompartments is possible, particularly in soils with attenuated microbiomes. Furthermore, the endophyte-derived microbiome plays an important role in metal hyperaccumulation.
Collapse
Affiliation(s)
- Jipeng Luo
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Qi Tao
- College of Resources , Sichuan Agricultural University , Chengdu 611130 , China
| | - Radek Jupa
- Department of Experimental Biology, Faculty of Science , Masaryk University , Kotlářská 2 , 61137 Brno , Czech Republic
| | - Yuankun Liu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Keren Wu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Yuchao Song
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Jinxing Li
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Yue Huang
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Linyun Zou
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Yongchao Liang
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Tingqiang Li
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences , Zhejiang University , Hangzhou 310058 , China
| |
Collapse
|