1
|
Zhao W, Lu H, Zhu J, Luo L, Cui F. A double-agent microRNA regulates viral cross-kingdom infection in animals and plants. EMBO J 2025; 44:2446-2472. [PMID: 40045022 PMCID: PMC12048567 DOI: 10.1038/s44318-025-00405-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 02/14/2025] [Accepted: 02/24/2025] [Indexed: 05/04/2025] Open
Abstract
Plant arbovirus infection is regulated by a delicate interplay between virus, vector, and host. While microRNAs are known to be transmitted across species, their role as cross-kingdom effectors in influencing arbovirus infectious cycles remains poorly understood. Our study reveals the dual role of miR-263a, a conserved insect microRNA, in governing rice stripe virus (RSV) infection within both insect vector, small brown planthopper, and rice host. In the planthopper, miR-263a facilitates rice stripe virus accumulation through targeting a cathepsin B-like gene to inhibit apoptosis in midgut epithelial cells. Upon insect saliva secretion, miR-263a is delivered into rice, where it proceeds to upregulate the transcription factor GATA19, triggering an antiviral response. The increase of GATA19 levels hinders JAZ1 from binding with MYC2, thus activating jasmonate signaling pathway. This study reveals the function of a microRNA as a dual agent in modulating viral cross-kingdom infection.
Collapse
Affiliation(s)
- Wan Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Hong Lu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiaming Zhu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lan Luo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Feng Cui
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Zhao W, Li Q, Sun M, Luo L, Zhang X, Cui F. Small interfering RNAs generated from the terminal panhandle structure of negative-strand RNA virus promote viral infection. PLoS Pathog 2025; 21:e1012789. [PMID: 39752360 PMCID: PMC11698402 DOI: 10.1371/journal.ppat.1012789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/29/2024] [Indexed: 01/06/2025] Open
Abstract
Virus-derived small interfering RNAs (vsiRNAs) have been widely recognized to play an antiviral immunity role. However, it is unclear whether vsiRNAs can also play a positive role in viral infection. Here, we characterized three highly abundant vsiRNAs mapped to the genomic termini of rice stripe virus (RSV), a negative-strand RNA virus transmitted by insect vectors. The three vsiRNAs shared 11 nucleotides due to the conservative genomic termini and were likely generated from viral terminal panhandle structure, depending on both Dicer1 and Dicer2 in insects. In addition to targeting viral RNAs in a miRNA-like manner, the three vsiRNAs coordinately downregulated the expression of DOPA decarboxylase, thereby suppressing the prophenoloxidase immune reaction in insect vectors. In vsiRNA-silenced transgenic rice, the viral titer significantly decreased, indicating that these vsiRNAs promote RSV replication in rice. This study elucidates a unique function of vsiRNAs derived from the conserved panhandle structure of negative-strand RNA viruses in enhancing viral infection.
Collapse
Affiliation(s)
- Wan Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Qiong Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Mengqi Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Lan Luo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiaoming Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Feng Cui
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Lagzian A, Ghorbani A, Tabein S, Riseh RS. Genetic variations and gene expression profiles of Rice Black-streaked dwarf virus (RBSDV) in different host plants and insect vectors: insights from RNA-Seq analysis. BMC Genomics 2024; 25:736. [PMID: 39080552 PMCID: PMC11289972 DOI: 10.1186/s12864-024-10649-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
Rice black-streaked dwarf virus (RBSDV) is an etiological agent of a destructive disease infecting some economically important crops from the Gramineae family in Asia. While RBSDV causes high yield losses, genetic characteristics of replicative viral populations have not been investigated within different host plants and insect vectors. Herein, eleven publicly available RNA-Seq datasets from Chinese RBSDV-infected rice, maize, and viruliferous planthopper (Laodelphax striatellus) were obtained from the NCBI database. The patterns of SNP and RNA expression profiles of expected RBSDV populations were analyzed by CLC Workbench 20 and Geneious Prime software. These analyses discovered 2,646 mutations with codon changes in RBSDV whole transcriptome and forty-seven co-mutated hotspots with high variant frequency within the crucial regions of S5-1, S5-2, S6, S7-1, S7-2, S9, and S10 open reading frames (ORFs) which are responsible for some virulence and host range functions. Moreover, three joint mutations are located on the three-dimensional protein of P9-1. The infected RBSDV-susceptible rice cultivar KTWYJ3 and indigenous planthopper datasets showed more co-mutated hotspot numbers than others. Our analyses showed the expression patterns of viral genomic fragments varied depending on the host type. Unlike planthopper, S5-1, S2, S6, and S9-1 ORFs, respectively had the greatest read numbers in host plants; and S5-2, S9-2, and S7-2 were expressed in the lowest level. These findings underscore virus/host complexes are effective in the genetic variations and gene expression profiles of plant viruses. Our analysis revealed no evidence of recombination events. Interestingly, the negative selection was observed at 12 RBSDV ORFs, except for position 1015 in the P1 protein, where a positive selection was detected. The research highlights the potential of SRA datasets for analysis of the virus cycle and enhances our understanding of RBSDV's genetic diversity and host specificity.
Collapse
Affiliation(s)
- Arezoo Lagzian
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Abozar Ghorbani
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute, Karaj, Iran.
| | - Saeid Tabein
- Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| |
Collapse
|
4
|
Wu J, Zhang Y, Li F, Zhang X, Ye J, Wei T, Li Z, Tao X, Cui F, Wang X, Zhang L, Yan F, Li S, Liu Y, Li D, Zhou X, Li Y. Plant virology in the 21st century in China: Recent advances and future directions. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:579-622. [PMID: 37924266 DOI: 10.1111/jipb.13580] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/02/2023] [Indexed: 11/06/2023]
Abstract
Plant viruses are a group of intracellular pathogens that persistently threaten global food security. Significant advances in plant virology have been achieved by Chinese scientists over the last 20 years, including basic research and technologies for preventing and controlling plant viral diseases. Here, we review these milestones and advances, including the identification of new crop-infecting viruses, dissection of pathogenic mechanisms of multiple viruses, examination of multilayered interactions among viruses, their host plants, and virus-transmitting arthropod vectors, and in-depth interrogation of plant-encoded resistance and susceptibility determinants. Notably, various plant virus-based vectors have also been successfully developed for gene function studies and target gene expression in plants. We also recommend future plant virology studies in China.
Collapse
Affiliation(s)
- Jianguo Wu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yongliang Zhang
- State Key Laboratory of Plant Environmental Resilience and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiaoming Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Ye
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Taiyun Wei
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhenghe Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xiaorong Tao
- Department of Plant Pathology, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Cui
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xianbing Wang
- State Key Laboratory of Plant Environmental Resilience and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Lili Zhang
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Shifang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Dawei Li
- State Key Laboratory of Plant Environmental Resilience and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yi Li
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
5
|
Tan Q, Zhu J, Ju Y, Chi X, Cao T, Zheng L, Chen Q. Antiviral Activity of Ailanthone from Ailanthus altissima on the Rice Stripe Virus. Viruses 2023; 16:73. [PMID: 38257773 PMCID: PMC10820994 DOI: 10.3390/v16010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/24/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
Rice stripe disease caused by the rice stripe virus (RSV), which infects many Poaceae species in nature, is one of the most devastating plant viruses in rice that causes enormous losses in production. Ailanthone is one of the typical C20 quassinoids synthesized by the secondary metabolism of Ailanthus altissima, which has been proven to be a biologically active natural product with promising prospects and great potential for use as a lead structure for pesticide development. Based on the achievement of the systemic infection and replication of RSV in Nicotiana benthamiana plants and rice protoplasts, the antiviral properties of Ailanthone were investigated by determining its effects on viral-coding RNA gene expression using reverse transcription polymerase chain reaction, and Western blot analysis. Ailanthone exhibited a dose-dependent inhibitory effect on RSV NSvc3 expression in the assay in both virus-infected tobacco plants and rice protoplasts. Further efforts revealed a potent inhibitory effect of Ailanthone on the expression of seven RSV protein-encoding genes, among which NS3, NSvc3, NS4, and NSvc4 are the most affected genes. These facts promoted an extended and greater depth of understanding of the antiviral nature of Ailanthone against plant viruses, in addition to the limited knowledge of its anti-tobacco mosaic virus properties. Moreover, the leaf disc method introduced and developed in the study for the detection of the antiviral activity of Ailanthone facilitates an available and convenient screening method for anti-RSV natural products or synthetic chemicals.
Collapse
Affiliation(s)
- Qingwei Tan
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.Z.); (Y.J.); (X.C.); (T.C.); (L.Z.)
- Institute of Plant Virus Research, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jianxuan Zhu
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.Z.); (Y.J.); (X.C.); (T.C.); (L.Z.)
| | - Yuanyuan Ju
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.Z.); (Y.J.); (X.C.); (T.C.); (L.Z.)
| | - Xinlin Chi
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.Z.); (Y.J.); (X.C.); (T.C.); (L.Z.)
| | - Tangdan Cao
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.Z.); (Y.J.); (X.C.); (T.C.); (L.Z.)
| | - Luping Zheng
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.Z.); (Y.J.); (X.C.); (T.C.); (L.Z.)
- Institute of Plant Virus Research, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qijian Chen
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.Z.); (Y.J.); (X.C.); (T.C.); (L.Z.)
- Institute of Plant Virus Research, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
6
|
Plant Virus Adaptation to New Hosts: A Multi-scale Approach. Curr Top Microbiol Immunol 2023; 439:167-196. [PMID: 36592246 DOI: 10.1007/978-3-031-15640-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Viruses are studied at each level of biological complexity: from within-cells to ecosystems. The same basic evolutionary forces and principles operate at each level: mutation and recombination, selection, genetic drift, migration, and adaptive trade-offs. Great efforts have been put into understanding each level in great detail, hoping to predict the dynamics of viral population, prevent virus emergence, and manage their spread and virulence. Unfortunately, we are still far from this. To achieve these ambitious goals, we advocate for an integrative perspective of virus evolution. Focusing in plant viruses, we illustrate the pervasiveness of the above-mentioned principles. Beginning at the within-cell level, we describe replication modes, infection bottlenecks, and cellular contagion rates. Next, we move up to the colonization of distal tissues, discussing the fundamental role of random events. Then, we jump beyond the individual host and discuss the link between transmission mode and virulence. Finally, at the community level, we discuss properties of virus-plant infection networks. To close this review we propose the multilayer network theory, in which elements at different layers are connected and submit to their own dynamics that feed across layers, resulting in new emerging properties, as a way to integrate information from the different levels.
Collapse
|
7
|
Zhao W, Li Q, Sun M, Xiao Y, Cui F. Interaction between endogenous microRNAs and virus-derived small RNAs controls viral replication in insect vectors. PLoS Pathog 2022; 18:e1010709. [PMID: 35797383 PMCID: PMC9295959 DOI: 10.1371/journal.ppat.1010709] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 07/19/2022] [Accepted: 06/28/2022] [Indexed: 11/19/2022] Open
Abstract
MicroRNAs (miRNAs) play an important role in resisting virus infection in insects. Viruses are recognized by insect RNA interference systems, which generate virus-derived small RNAs (vsRNAs). To date, it is unclear whether viruses employ vsRNAs to regulate the expression of endogenous miRNAs. We previously found that miR-263a facilitated the proliferation of rice stripe virus (RSV) in the insect vector small brown planthopper. However, miR-263a was significantly downregulated by RSV. Here, we deciphered the regulatory mechanisms of RSV on miR-263a expression. The promoter region of miR-263a was characterized, and the transcription factor YY1 was found to negatively regulate the transcription of miR-263a. The nucleocapsid protein of RSV promoted the inhibitory effect of YY1 on miR-263a transcription by reducing the binding ability of RNA polymerase II to the promoter of miR-263a. Moreover, an RSV-derived small RNA, vsR-3397, downregulated miR-263a transcription by directly targeting the promoter region with partial sequence complementarity. The reduction in miR-263a suppressed RSV replication and was beneficial for maintaining a tolerable accumulation level of RSV in insect vectors. This dual regulation mechanism reflects an ingenious adaptation strategy of viruses to their insect vectors.
Collapse
Affiliation(s)
- Wan Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Centre for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Qiong Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Centre for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Mengqi Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Centre for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Yan Xiao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Centre for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Feng Cui
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Centre for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Yang Z, Zhang H, Tan X, Wei Z, Wen C, Sun Z, Sun B, Chen J. Insights Into the Effect of Rice Stripe Virus P2 on Rice Defense by Comparative Proteomic Analysis. Front Microbiol 2022; 13:897589. [PMID: 35747367 PMCID: PMC9209781 DOI: 10.3389/fmicb.2022.897589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/09/2022] [Indexed: 11/29/2022] Open
Abstract
Rice stripe virus (RSV) has a serious effect on rice production. Our previous research had shown that RSV P2 plays important roles in RSV infection, so in order to further understand the effect of P2 on rice, we used Tandem Mass Tag (TMT) quantitative proteomics experimental system to analyze the changes of protein in transgenic rice expressing P2 for the first time. The results of proteomics showed that a total of 4,767 proteins were identified, including 198 up-regulated proteins and 120 down-regulated proteins. Functional classification results showed that differentially expressed proteins (DEPs) were mainly localized in chloroplasts and mainly involved in the metabolic pathways. Functional enrichment results showed that DEPs are mainly involved in RNA processing and splicing. We also verified the expression of several DEPs at the mRNA level and the interaction of a transcription factor (B7EPB8) with RSV P2. This research is the first time to use proteomics technology to explore the mechanism of RSV infection in rice with the RSV P2 as breakthrough point. Our findings provide valuable information for the study of RSV P2 and RSV infection mechanism.
Collapse
Affiliation(s)
- Zihang Yang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Hehong Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Xiaoxiang Tan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Zhongyan Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Caiyi Wen
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Zongtao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Bingjian Sun
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- *Correspondence: Bingjian Sun,
| | - Jianping Chen
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
- Jianping Chen,
| |
Collapse
|
9
|
Wang W, Qiao L, Lu H, Chen X, Wang X, Yu J, Zhu J, Xiao Y, Ma Y, Wu Y, Zhao W, Cui F. Flotillin 2 Facilitates the Infection of a Plant Virus in the Gut of Insect Vector. J Virol 2022; 96:e0214021. [PMID: 35254088 PMCID: PMC9006895 DOI: 10.1128/jvi.02140-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/04/2022] [Indexed: 12/04/2022] Open
Abstract
Most plant viruses require insect vectors for transmission. One of the key steps for the transmission of persistent-circulative plant viruses is overcoming the gut barrier to enter epithelial cells. To date, little has been known about viral cofactors in gut epithelial cells of insect vectors. Here, we identified flotillin 2 as a plasma membrane protein that facilitates the infection of rice stripe virus (RSV) in its vector, the small brown planthopper. Flotillin 2 displayed a prominent plasma membrane location in midgut epithelial cells. The nucleocapsid protein of RSV and flotillin 2 colocalized on gut microvilli, and a nanomolar affinity existed between the two proteins. Knockout of flotillin 2 impeded the entry of virions into epithelial cells, resulting in a 57% reduction of RSV levels in planthoppers. The knockout of flotillin 2 decreased disease incidence in rice plants fed by viruliferous planthoppers from 40% to 11.7%. Furthermore, flotillin 2 mediated the infection of southern rice black-streaked dwarf virus in its vector, the white-backed planthopper. This work implies the potential of flotillin 2 as a target for controlling the transmission of rice stripe disease. IMPORTANCE Plant viral diseases are a major threat to world agriculture. The transmission of 80% of plant viruses requires vector insects, and 54% of vector-borne plant viruses are persistent-circulative viruses, which must overcome the barriers of gut cells with the help of proteins on the cell surface. Here, we identified flotillin 2 as a membrane protein that mediates the cell entry of rice stripe virus in its vector insect, small brown planthopper. Flotillin 2 displays a prominent cellular membrane location in midgut cells and can specifically bind to virions. The loss of flotillin 2 impedes the entry of virions into the midgut cells of vector insects and substantially suppresses viral transmission to rice. Therefore, flotillin 2 may be a promising target gene for manipulation in vector insects to control the transmission of rice stripe disease and perhaps that of other rice virus diseases in the future.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Luqin Qiao
- College of Plant Protection, Shandong Agricultural University, Tai’an, Shandong, China
| | - Hong Lu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiaofang Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Xue Wang
- College of Plant Protection, Shandong Agricultural University, Tai’an, Shandong, China
| | - Jinting Yu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Jiaming Zhu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Yan Xiao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yonghuan Ma
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Yao Wu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Wan Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Feng Cui
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Highly adaptive
Phenuiviridae
with biomedical importance in multiple fields. J Med Virol 2022; 94:2388-2401. [DOI: 10.1002/jmv.27618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/24/2021] [Accepted: 01/21/2022] [Indexed: 11/07/2022]
|
11
|
Xu Y, Fu S, Tao X, Zhou X. Rice stripe virus: Exploring Molecular Weapons in the Arsenal of a Negative-Sense RNA Virus. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:351-371. [PMID: 34077238 DOI: 10.1146/annurev-phyto-020620-113020] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Rice stripe disease caused by Rice stripe virus (RSV) is one of the most devastating plant viruses of rice and causes enormous losses in production. RSV is transmitted from plant to plant by the small brown planthopper (Laodelphax striatellus) in a circulative-propagative manner. The recent reemergence of this pathogen in East Asia since 2000 has made RSV one of the most studied plant viruses over the past two decades. Extensive studies of RSV have resulted in substantial advances regarding fundamental aspects of the virus infection. Here, we compile and analyze recent information on RSV with a special emphasis on the strategies that RSV has adopted to establish infections. These advances include RSV replication and movement in host plants and the small brown planthopper vector, innate immunity defenses against RSV infection, epidemiology, and recent advances in the management of rice stripe disease. Understanding these issues will facilitate the design of novel antiviral therapies for management and contribute to a more detailed understanding of negative-sense virus-host interactions at the molecular level.
Collapse
Affiliation(s)
- Yi Xu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China;
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuai Fu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Xiaorong Tao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China;
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China;
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
12
|
Moya Fernández MB, Liu W, Zhang L, Hajano JUD, Wang X. Interplay of Rice Stripe Virus and Rice Black Streaked Dwarf Virus during Their Acquisition and Accumulation in Insect Vector. Viruses 2021; 13:v13061121. [PMID: 34200968 PMCID: PMC8230606 DOI: 10.3390/v13061121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 01/01/2023] Open
Abstract
Plant viruses transmitted by hemipteran vectors commonly cause losses to crop production. Rice stripe virus (RSV) and rice black streaked dwarf virus (RBSDV) are transmitted to rice plants by the same vector, the small brown planthopper (SBPH), Laodelphax striatellus Fallén, in a persistent propagative manner. However, rarely do the respective diseases they cause occur simultaneously in a field. Here, we determined the acquisition efficiency of RSV and RBSDV when acquired in succession or simultaneously by SBPH. When RBSDV was acquired first, RSV acquisition efficiency was significantly lower than when only acquiring RSV. However, RBSDV acquisition efficiency from insects that acquired RSV first was not significantly different between the insects only acquiring RBSDV. Immunofluorescence assays showed that the acquisition of RBSDV first might inhibit RSV entry into midgut epithelial cells, but RSV did not affect RBSDV entry. SBPHs were more likely to acquire RBSDV when they were feeding on plants coinfected with the two viruses. When RBSDV was acquired before RSV, RBSDV titer was significantly higher and RSV titer first declined, then increased compared to when only acquiring RBSDV or RSV. Only 5% of the SBPHs acquired both viruses when feeding on plants coinfected with RSV and RBSDV. These results provide a better understanding of the interaction between two persistent viruses when present in the same vector insect and explain why RSV and RBSDV occur in intermittent epidemics.
Collapse
Affiliation(s)
- Marcia Beatriz Moya Fernández
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.B.M.F.); (L.Z.); (X.W.)
| | - Wenwen Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.B.M.F.); (L.Z.); (X.W.)
- Correspondence: author:
| | - Lu Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.B.M.F.); (L.Z.); (X.W.)
| | - Jamal-U-Ddin Hajano
- Department of Plant Pathology, Faculty of Crop Protection, Sindh Agriculture University, Tandojam 70060, Pakistan;
| | - Xifeng Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.B.M.F.); (L.Z.); (X.W.)
| |
Collapse
|
13
|
Kormelink R, Verchot J, Tao X, Desbiez C. The Bunyavirales: The Plant-Infecting Counterparts. Viruses 2021; 13:842. [PMID: 34066457 PMCID: PMC8148189 DOI: 10.3390/v13050842] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 12/18/2022] Open
Abstract
Negative-strand (-) RNA viruses (NSVs) comprise a large and diverse group of viruses that are generally divided in those with non-segmented and those with segmented genomes. Whereas most NSVs infect animals and humans, the smaller group of the plant-infecting counterparts is expanding, with many causing devastating diseases worldwide, affecting a large number of major bulk and high-value food crops. In 2018, the taxonomy of segmented NSVs faced a major reorganization with the establishment of the order Bunyavirales. This article overviews the major plant viruses that are part of the order, i.e., orthospoviruses (Tospoviridae), tenuiviruses (Phenuiviridae), and emaraviruses (Fimoviridae), and provides updates on the more recent ongoing research. Features shared with the animal-infecting counterparts are mentioned, however, special attention is given to their adaptation to plant hosts and vector transmission, including intra/intercellular trafficking and viral counter defense to antiviral RNAi.
Collapse
Affiliation(s)
- Richard Kormelink
- Laboratory of Virology, Department of Plant Sciences, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Jeanmarie Verchot
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA;
| | - Xiaorong Tao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China;
| | | |
Collapse
|
14
|
Zhao W, Yu J, Jiang F, Wang W, Kang L, Cui F. Coordination between terminal variation of the viral genome and insect microRNAs regulates rice stripe virus replication in insect vectors. PLoS Pathog 2021; 17:e1009424. [PMID: 33690727 PMCID: PMC7984632 DOI: 10.1371/journal.ppat.1009424] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/22/2021] [Accepted: 02/25/2021] [Indexed: 12/31/2022] Open
Abstract
Maintenance of a balance between the levels of viral replication and selective pressure from the immune systems of insect vectors is one of the prerequisites for efficient transmission of insect-borne propagative phytoviruses. The mechanism regulating the adaptation of RNA viruses to insect vectors by genomic variation remains unknown. Our previous study demonstrated an extension of the 3’-untranslated terminal region (UTR) of two genomic segments of rice stripe virus (RSV). In the present study, a reverse genetic system for RSV in human cells and an insect vector, the small brown planthopper Laodelphax striatellus, was used to demonstrate that the 3’-terminal extensions suppressed viral replication in vector insects by inhibiting promoter activity due to structural interference with the panhandle structure formed by viral 3’- and 5’-UTRs. The extension sequence in the viral RNA1 segment was targeted by an endogenous insect microRNA, miR-263a, which decreased the inhibitory effect of the extension sequence on viral promoter activity. Surprisingly, the expression of miR-263a was negatively regulated by RSV infection. This elaborate coordination between terminal variation of the viral genome and endogenous insect microRNAs controls RSV replication in planthopper, thus reflecting a distinct strategy of adaptation of phytoviruses to insect vectors. Mutations frequently happen when insect-transmitted RNA viruses circulate between insect vectors and plant or mammalian hosts. However, the significance of these mutations for viral fitness in the two distinct organisms is poorly understood. We discovered that a high proportion of rice stripe virus (RSV) had terminally extended genomes when the virus infected insect vectors. In the present study, we found that the extension sequence suppressed viral replication in insect vectors by impairing a special structure formed by the two ends of the viral genomes. An endogenous insect small RNA was able to bind the extension sequence to relieve the inhibitory effect. However, the expression of this small RNA was reduced in the presence of RSV to ultimately maintain the inhibitory effect of the extension sequence. This elaborate coordination between virus and vector enables a limited level of RSV replication that does not produce serious damage to vectors, thus reflecting a distinct strategy of adaptation of insect-transmitted plant viruses.
Collapse
Affiliation(s)
- Wan Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Jinting Yu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Feng Jiang
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Wei Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Feng Cui
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
15
|
Zhao W, Zhu J, Lu H, Zhu J, Jiang F, Wang W, Luo L, Kang L, Cui F. The nucleocapsid protein of rice stripe virus in cell nuclei of vector insect regulates viral replication. Protein Cell 2021; 13:360-378. [PMID: 33675514 PMCID: PMC7936609 DOI: 10.1007/s13238-021-00822-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 01/08/2021] [Indexed: 01/05/2023] Open
Abstract
Rice stripe virus (RSV) transmitted by the small brown planthopper causes severe rice yield losses in Asian countries. Although viral nuclear entry promotes viral replication in host cells, whether this phenomenon occurs in vector cells remains unknown. Therefore, in this study, we systematically evaluated the presence and roles of RSV in the nuclei of vector insect cells. We observed that the nucleocapsid protein (NP) and viral genomic RNAs were partially transported into vector cell nuclei by utilizing the importin α nuclear transport system. When blocking NP nuclear localization, cytoplasmic RSV accumulation significantly increased. In the vector cell nuclei, NP bound the transcription factor YY1 and affected its positive regulation to FAIM. Subsequently, decreased FAIM expression triggered an antiviral caspase-dependent apoptotic reaction. Our results reveal that viral nuclear entry induces completely different immune effects in vector and host cells, providing new insights into the balance between viral load and the immunity pressure in vector insects.
Collapse
Affiliation(s)
- Wan Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junjie Zhu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong Lu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiaming Zhu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fei Jiang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lan Luo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Feng Cui
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
16
|
Xu G, Jiang Y, Zhang N, Liu F, Yang G. Triazophos-induced vertical transmission of rice stripe virus is associated with host vitellogenin in the small brown planthopper Laodelphax striatellus. PEST MANAGEMENT SCIENCE 2020; 76:1949-1957. [PMID: 31858699 DOI: 10.1002/ps.5729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 11/25/2019] [Accepted: 12/19/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Rice stripe virus (RSV) is one of the most serious rice diseases in East Asia. The small brown planthopper (SBPH), Laodelphax striatellus, is an economically important rice pest. SBPH transmits RSV horizontally and vertically, resulting in serious rice economic losses. Exposure to sublethal doses of insecticides can induce many physiological and cellular changes in insects. However, the mechanism underlying triazophos-induced RSV vertical transmission remains unclear. Here, we investigated the role of vitellogenin (Vg) in triazophos-induced RSV vertical transmission. RESULTS RSV vertical transmission rates were significantly induced by sublethal exposure to triazophos. The transcript abundance of viral RNA3 segment (RNA3) and capsid protein (CP) in the ovaries of SBPH were also significantly increased. Triazophos induced the expression level of Vg in L. striatellus (LsVg) and increased the contents of ovarian protein and fat body protein. Knockdown of Vg significantly reduced the expression levels of LsVg and Vg receptor (LsVgR), and decreased RSV accumulations in the ovaries. Double-stranded Vg (dsVg)-mediated down-regulation could be rescued by exposure to triazophos. Vertical transmission rate of the dsVg-injected group was significantly decreased compared with the dsGFP-injected group, and triazophos significantly rescued the RSV vertical transmission rate of the dsVg-injected group. CONCLUSION Our results indicate that triazophos-induced RSV vertical transmission is associated with Vg. This work will help us to further elucidate sublethal doses of insecticides-mediated effects and develop new strategies for pest control. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Gang Xu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Yu Jiang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Nannan Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Fang Liu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Guoqing Yang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
17
|
He P, Wang MM, Wang H, Ma YF, Yang S, Li SB, Li XG, Li S, Zhang F, Wang Q, Ran HN, Yang GQ, Dewer Y, He M. Genome-wide identification of chemosensory receptor genes in the small brown planthopper, Laodelphax striatellus. Genomics 2019; 112:2034-2040. [PMID: 31765823 DOI: 10.1016/j.ygeno.2019.11.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/17/2019] [Accepted: 11/21/2019] [Indexed: 12/29/2022]
Abstract
The small brown planthopper (SBPH), Laodelphax striatellus is one of the major insect pests of rice, but little is known about the molecular-level means by which it locates its hosts. SBPH host-seeking behavior heavily relies on chemosensory receptors (CRs). In this study, we utilized genome analysis of the SBPH to identify 169 CRs, including: 133 odorant receptors (ORs), 13 gustatory receptors (GRs) and 23 ionotropic receptors (IRs). The phylogenetic relationships of OR genes from three rice planthoppers and other insect species revealed that the odorant co-receptor (Orco) clade is the most conserved group. Among the candidate GRs, two sugar receptors and five fructose receptors have been identified but no carbon dioxide receptors investigated. Furthermore, we identified homologs of the three highly conserved IR co-receptors. The obtained results will provide us with precious information needed to better understand the interaction between insect pests and crop plants required for effective crop protection.
Collapse
Affiliation(s)
- Peng He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, PR China.
| | - Mei-Mei Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, PR China
| | - Hong Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, PR China
| | - Yu-Feng Ma
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, PR China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, PR China
| | - Shao-Bing Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, PR China
| | - Xuan-Gang Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, PR China
| | - Shuo Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Fan Zhang
- Key Laboratory of Animal Resistance Research, College of Life Science, Shandong Normal University, 88 East Wenhua Road, Jinan 250014, PR China
| | - Qing Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, PR China
| | - Hui-Nu Ran
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, PR China
| | - Gui-Qing Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, PR China
| | - Youssef Dewer
- Bioassay Research Department, Central Agricultural Pesticide Laboratory, Sabahia Plant Protection Research Station, Agricultural Research Center, Alexandria 21616, Egypt
| | - Ming He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, PR China.
| |
Collapse
|
18
|
Zhao W, Li Q, Cui F. Potential functional pathways of plant RNA virus-derived small RNAs in a vector insect. Methods 2019; 183:38-42. [PMID: 31654749 DOI: 10.1016/j.ymeth.2019.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 10/14/2019] [Accepted: 10/16/2019] [Indexed: 12/30/2022] Open
Abstract
During infection, RNA viruses can produce two types of virus-derived small RNAs (vsRNAs), small interfering RNA (siRNA) and microRNA (miRNA), that play a key role in RNA silencing-mediated antiviral mechanisms in various hosts by associating with different Argonaute (Ago) proteins. Ago1 has been widely identified as an essential part of the miRNA pathway, while Ago2 is required for the siRNA pathway. Thus, analysis of the interaction between vsRNAs and Ago proteins can provide a clue about which pathway the vsRNA may be involved in. In this study, using rice stripe virus (RSV)-small brown planthoppers (Laodelphax striatellus, Fallen) as an infection model, the interactions of eight vsRNAs derived from four viral genomic RNA fragments and Ago1 or Ago2 were detected via the RNA immunoprecipitation (RIP) method. vsRNA4-1 and vsRNA4-2 derived from RSV RNA4 were significantly enriched in Ago1-immunoprecipitated complexes, whereas vsRNA2-1 and vsRNA3-2 seemed enriched in Ago2-immunoprecipitated complexes. vsRNA1-2 and vsRNA2-2 were detected in both of the two Ago-immunoprecipitated complexes. In contrast, vsRNA1-1 and vsRNA3-1 did not accumulate in either Ago1- or Ago2-immunoprecipitated complexes, indicating that regulatory pathways other than miRNA or siRNA pathways might be employed. In addition, two conserved L. striatellus miRNAs were analysed via the RIP method. Both miRNAs accumulated in Ago1-immunoprecipitated complexes, which was consistent with previous studies, suggesting that our experimental system can be widely used. In conclusion, our study provides an accurate and convenient detection system to determine the potential pathway of vsRNAs, and this method may also be suitable for studying other sRNAs.
Collapse
Affiliation(s)
- Wan Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiong Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Cui
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
19
|
Zhao W, Wang Q, Xu Z, Liu R, Cui F. Distinct replication and gene expression strategies of the Rice Stripe virus in vector insects and host plants. J Gen Virol 2019; 100:877-888. [PMID: 30990404 DOI: 10.1099/jgv.0.001255] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Persistent propagative plant viruses are usually transmitted between a vector insect and a host plant. To adapt to the two different organisms, viruses may show distinct genomic replication or gene expression patterns. To verify this hypothesis, we applied an aboslute real-time quantitative PCR method to measure and compare the replication levels of four genomic RNA segments and the expression levels of seven genes of rice stripe virus (RSV) according to the infection time in the small brown planthopper and rice plant, respectively. In the vector insect, RNA3 began replicating later than the other segments, and RNA2 remained nearly constant during the infection process. RNA1 was the dominant segment, and a difference of over 300-fold appeared among the four segments. In rice plants, the size of the four segments increased with infection time, but decreased to a low level in the late infection period. The ratios of the four segments varied by no more than 15-fold. In planthoppers, three expression patterns were observed for the seven viral genes during viral infection, while in rice plants, the expression patterns of the seven viral genes were similar. These results reflect distinct genomic replication and gene expression patterns in a persistent propagative plant virus in adapting to vector insects and host plants.
Collapse
Affiliation(s)
- Wan Zhao
- 1State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Qianshuo Wang
- 1State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
- 2Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, PR China
| | - Zhongtian Xu
- 3Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai 201602, PR China
- 4University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Renyi Liu
- 5College of Horticulture and FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Feng Cui
- 1State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| |
Collapse
|
20
|
Zhao W, Wang Q, Xu Z, Liu R, Cui F. Immune responses induced by different genotypes of the disease-specific protein of Rice stripe virus in the vector insect. Virology 2019; 527:122-131. [PMID: 30500711 DOI: 10.1016/j.virol.2018.11.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/15/2018] [Accepted: 11/17/2018] [Indexed: 01/25/2023]
Abstract
Persistent plant viruses circulate between host plants and vector insects, possibly leading to the genetic divergence in viral populations. We analyzed the single nucleotide polymorphisms (SNPs) of Rice stripe virus (RSV) when it incubated in the small brown planthopper and rice. Two SNPs, which lead to nonsynonymous substitutions in the disease-specific protein (SP) of RSV, produced three genotypes, i.e., GG, AA and GA. The GG type mainly existed in the early infection period of RSV in the planthoppers and was gradually substituted by the other two genotypes during viral transmission. The two SNPs did not affect the interactions of SP with rice PsbP or with RSV coat protein. The GG genotype of SP induced stronger immune responses than those of the other two genotypes in the pattern recognition molecule and immune-responsive effector pathways. These findings demonstrated the population variations of RSV during the circulation between the vector insect and host plant.
Collapse
Affiliation(s)
- Wan Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qianshuo Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Zhongtian Xu
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai 201602, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Renyi Liu
- Center for Agroforestry Mega Data Science and FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Feng Cui
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
21
|
Evolution of plant-virus interactions: host range and virus emergence. Curr Opin Virol 2019; 34:50-55. [PMID: 30654270 DOI: 10.1016/j.coviro.2018.12.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/11/2018] [Indexed: 12/11/2022]
Abstract
Changes in host range are central to virus emergence. Host range, together with its evolution, is determined by virus intrinsic factors, such as genetic traits determining its fitness in different hosts. Experimental analyses have shown the relevance in host range evolution of across-host fitness trade-offs. Host range is also determined by ecological factors extrinsic to the virus such as the distribution, abundance, and interaction of species, and understanding their role in host range evolution is a current challenge. Indeed, intrinsic and extrinsic factors, and the complexity of biotic and abiotic interactions, must be considered in order to provide generalisations on patterns of transmission, host range evolution, and disease emergence. This exciting new field of research is still in its infancy.
Collapse
|