1
|
Leuschen-Kohl R, Roberts R, Stevens DM, Zhang N, Buchanan S, Pilkey B, Coaker G, Iyer-Pascuzzi AS. Tomato roots exhibit distinct, development-specific responses to bacterial-derived peptides. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.04.621969. [PMID: 39574743 PMCID: PMC11580956 DOI: 10.1101/2024.11.04.621969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2024]
Abstract
Plants possess cell-surface recognition receptors that detect molecular patterns from microbial invaders and initiate an immune response. Understanding the conservation of pattern-triggered immunity within different plant organs and across species is crucial to its sustainable and effective use in plant disease management but is currently unclear. We examined the activation and immune response patterns of three pattern recognition receptors (PRRs: Sl FLS2, Sl FLS3, and Sl CORE) in different developmental regions of roots and in leaves of multiple accessions of domesticated and wild tomato ( Solanum lycopersicum and S. pimpinellifolium ) using biochemical and genetic assays. Roots from different tomato accessions differed in the amplitude and dynamics of their immune response, but all exhibited developmental-specific PTI responses in which the root early differentiation zone was the most sensitive to molecular patterns. PRR signaling pathways also showed distinct but occasionally overlapping responses downstream of each immune receptor in tomato roots.These results reveal that each PRR initiates a unique PTI pathway and suggest that the specificity and complexity of tomato root immunity are tightly linked to the developmental stage, emphasizing the importance of spatial and temporal regulation in PTI.
Collapse
Affiliation(s)
- Rebecca Leuschen-Kohl
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, 915 W. State Street, West Lafayette, IN 47907, U. S. A
| | - Robyn Roberts
- Department of Agricultural Biology, Colorado State University, 200 W Lake St, Fort Collins, CO 80523, U. S. A
| | - Danielle M. Stevens
- Department of Plant Pathology, University of California, Davis, Davis CA 95616 USA
- Current Address: Plant and Microbial Biology, University of California, Berkeley, Berkeley CA 94720 USA
| | - Ning Zhang
- Boyce Thompson Institute for Plant Research and Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
- Current Address: Department of Biology, James Madison University, Harrisonburg, Virginia 22807, USA
| | - Silas Buchanan
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, 915 W. State Street, West Lafayette, IN 47907, U. S. A
| | - Brooke Pilkey
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, 915 W. State Street, West Lafayette, IN 47907, U. S. A
| | - Gitta Coaker
- Department of Plant Pathology, University of California, Davis, Davis CA 95616 USA
| | - Anjali S. Iyer-Pascuzzi
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, 915 W. State Street, West Lafayette, IN 47907, U. S. A
| |
Collapse
|
2
|
Zhang M, Li L, Li C, Ma A, Li J, Yang C, Chen X, Cao P, Li S, Zhang Y, Yuchi Z, Du X, Liu C, Wang X, Wang X, Xiang W. Natural product guvermectin inhibits guanosine 5'-monophosphate synthetase and confers broad-spectrum antibacterial activity. Int J Biol Macromol 2024; 267:131510. [PMID: 38608989 DOI: 10.1016/j.ijbiomac.2024.131510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/27/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Bacterial diseases caused substantial yield losses worldwide, with the rise of antibiotic resistance, there is a critical need for alternative antibacterial compounds. Natural products (NPs) from microorganisms have emerged as promising candidates due to their potential as cost-effective and environmentally friendly bactericides. However, the precise mechanisms underlying the antibacterial activity of many NPs, including Guvermectin (GV), remain poorly understood. Here, we sought to explore how GV interacts with Guanosine 5'-monophosphate synthetase (GMPs), an enzyme crucial in bacterial guanine synthesis. We employed a combination of biochemical and genetic approaches, enzyme activity assays, site-directed mutagenesis, bio-layer interferometry, and molecular docking assays to assess GV's antibacterial activity and its mechanism targeting GMPs. The results showed that GV effectively inhibits GMPs, disrupting bacterial guanine synthesis. This was confirmed through drug-resistant assays and direct enzyme inhibition studies. Bio-layer interferometry assays demonstrated specific binding of GV to GMPs, with dependency on Xanthosine 5'-monophosphate. Site-directed mutagenesis identified key residues crucial for the GV-GMP interaction. This study elucidates the antibacterial mechanism of GV, highlighting its potential as a biocontrol agent in agriculture. These findings contribute to the development of novel antibacterial agents and underscore the importance of exploring natural products for agricultural disease management.
Collapse
Affiliation(s)
- Manman Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, Plant Pathology Department, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Lei Li
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Cheng Li
- College of Agriculture, Key Laboratory of Agricultural Microbiology of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Aifang Ma
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Junzhou Li
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chenyu Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xujun Chen
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, Plant Pathology Department, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Peng Cao
- Key Laboratory of Drug Targets and Drug Leads for Degenerative Diseases, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shanshan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanyan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhiguang Yuchi
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Xiangge Du
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, Plant Pathology Department, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Chongxi Liu
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Xiangjing Wang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Xiaodan Wang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, Plant Pathology Department, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Wensheng Xiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
3
|
Hudson A, Mullens A, Hind S, Jamann T, Balint‐Kurti P. Natural variation in the pattern-triggered immunity response in plants: Investigations, implications and applications. MOLECULAR PLANT PATHOLOGY 2024; 25:e13445. [PMID: 38528659 PMCID: PMC10963888 DOI: 10.1111/mpp.13445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 03/27/2024]
Abstract
The pattern-triggered immunity (PTI) response is triggered at the plant cell surface by the recognition of microbe-derived molecules known as microbe- or pathogen-associated molecular patterns or molecules derived from compromised host cells called damage-associated molecular patterns. Membrane-localized receptor proteins, known as pattern recognition receptors, are responsible for this recognition. Although much of the machinery of PTI is conserved, natural variation for the PTI response exists within and across species with respect to the components responsible for pattern recognition, activation of the response, and the strength of the response induced. This review describes what is known about this variation. We discuss how variation in the PTI response can be measured and how this knowledge might be utilized in the control of plant disease and in developing plant varieties with enhanced disease resistance.
Collapse
Affiliation(s)
- Asher Hudson
- Department of Entomology and Plant PathologyNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Alexander Mullens
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Sarah Hind
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Tiffany Jamann
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Peter Balint‐Kurti
- Department of Entomology and Plant PathologyNorth Carolina State UniversityRaleighNorth CarolinaUSA
- Plant Science Research UnitUSDA‐ARSRaleighNorth CarolinaUSA
| |
Collapse
|
4
|
Meline V, Hendrich CG, Truchon AN, Caldwell D, Hiles R, Leuschen-Kohl R, Tran T, Mitra RM, Allen C, Iyer-Pascuzzi AS. Tomato deploys defence and growth simultaneously to resist bacterial wilt disease. PLANT, CELL & ENVIRONMENT 2023; 46:3040-3058. [PMID: 36213953 DOI: 10.1111/pce.14456] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Plant disease limits crop production, and host genetic resistance is a major means of control. Plant pathogenic Ralstonia causes bacterial wilt disease and is best controlled with resistant varieties. Tomato wilt resistance is multigenic, yet the mechanisms of resistance remain largely unknown. We combined metaRNAseq analysis and functional experiments to identify core Ralstonia-responsive genes and the corresponding biological mechanisms in wilt-resistant and wilt-susceptible tomatoes. While trade-offs between growth and defence are common in plants, wilt-resistant plants activated both defence responses and growth processes. Measurements of innate immunity and growth, including reactive oxygen species production and root system growth, respectively, validated that resistant plants executed defence-related processes at the same time they increased root growth. In contrast, in wilt-susceptible plants roots senesced and root surface area declined following Ralstonia inoculation. Wilt-resistant plants repressed genes predicted to negatively regulate water stress tolerance, while susceptible plants repressed genes predicted to promote water stress tolerance. Our results suggest that wilt-resistant plants can simultaneously promote growth and defence by investing in resources that act in both processes. Infected susceptible plants activate defences, but fail to grow and so succumb to Ralstonia, likely because they cannot tolerate the water stress induced by vascular wilt.
Collapse
Affiliation(s)
- Valerian Meline
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, West Lafayette, Indiana, USA
| | - Connor G Hendrich
- Department of Plant Pathology, University of Wisconsin, Madison, Wisconsin, USA
| | - Alicia N Truchon
- Department of Plant Pathology, University of Wisconsin, Madison, Wisconsin, USA
| | - Denise Caldwell
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, West Lafayette, Indiana, USA
| | - Rachel Hiles
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, West Lafayette, Indiana, USA
| | - Rebecca Leuschen-Kohl
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, West Lafayette, Indiana, USA
| | - Tri Tran
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, West Lafayette, Indiana, USA
| | - Raka M Mitra
- Department of Biology, Carleton College, Northfield, Minnesota, USA
| | - Caitilyn Allen
- Department of Plant Pathology, University of Wisconsin, Madison, Wisconsin, USA
| | - Anjali S Iyer-Pascuzzi
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
5
|
Mesny F, Hacquard S, Thomma BPHJ. Co-evolution within the plant holobiont drives host performance. EMBO Rep 2023; 24:e57455. [PMID: 37471099 PMCID: PMC10481671 DOI: 10.15252/embr.202357455] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023] Open
Abstract
Plants interact with a diversity of microorganisms that influence their growth and resilience, and they can therefore be considered as ecological entities, namely "plant holobionts," rather than as singular organisms. In a plant holobiont, the assembly of above- and belowground microbiota is ruled by host, microbial, and environmental factors. Upon microorganism perception, plants activate immune signaling resulting in the secretion of factors that modulate microbiota composition. Additionally, metabolic interdependencies and antagonism between microbes are driving forces for community assemblies. We argue that complex plant-microbe and intermicrobial interactions have been selected for during evolution and may promote the survival and fitness of plants and their associated microorganisms as holobionts. As part of this process, plants evolved metabolite-mediated strategies to selectively recruit beneficial microorganisms in their microbiota. Some of these microbiota members show host-adaptation, from which mutualism may rapidly arise. In the holobiont, microbiota members also co-evolved antagonistic activities that restrict proliferation of microbes with high pathogenic potential and can therefore prevent disease development. Co-evolution within holobionts thus ultimately drives plant performance.
Collapse
Affiliation(s)
- Fantin Mesny
- Institute for Plant SciencesUniversity of CologneCologneGermany
| | - Stéphane Hacquard
- Department of Plant Microbe InteractionsMax Planck Institute for Plant Breeding ResearchCologneGermany
- Cluster of Excellence on Plant Sciences (CEPLAS)CologneGermany
| | - Bart PHJ Thomma
- Institute for Plant SciencesUniversity of CologneCologneGermany
- Cluster of Excellence on Plant Sciences (CEPLAS)CologneGermany
| |
Collapse
|
6
|
Trinh J, Li T, Franco JY, Toruño TY, Stevens DM, Thapa SP, Wong J, Pineda R, de Dios EÁ, Kahn TL, Seymour DK, Ramadugu C, Coaker GL. Variation in microbial feature perception in the Rutaceae family with immune receptor conservation in citrus. PLANT PHYSIOLOGY 2023; 193:689-707. [PMID: 37144828 PMCID: PMC10686701 DOI: 10.1093/plphys/kiad263] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 03/27/2023] [Accepted: 04/09/2023] [Indexed: 05/06/2023]
Abstract
Although much is known about the responses of model plants to microbial features, we still lack an understanding of the extent of variation in immune perception across members of a plant family. In this work, we analyzed immune responses in Citrus and wild relatives, surveying 86 Rutaceae genotypes with differing leaf morphologies and disease resistances. We found that responses to microbial features vary both within and between members. Species in 2 subtribes, the Balsamocitrinae and Clauseninae, can recognize flagellin (flg22), cold shock protein (csp22), and chitin, including 1 feature from Candidatus Liberibacter species (csp22CLas), the bacterium associated with Huanglongbing. We investigated differences at the receptor level for the flagellin receptor FLAGELLIN SENSING 2 (FLS2) and the chitin receptor LYSIN MOTIF RECEPTOR KINASE 5 (LYK5) in citrus genotypes. We characterized 2 genetically linked FLS2 homologs from "Frost Lisbon" lemon (Citrus ×limon, responsive) and "Washington navel" orange (Citrus ×aurantium, nonresponsive). Surprisingly, FLS2 homologs from responsive and nonresponsive genotypes were expressed in Citrus and functional when transferred to a heterologous system. "Washington navel" orange weakly responded to chitin, whereas "Tango" mandarin (C. ×aurantium) exhibited a robust response. LYK5 alleles were identical or nearly identical between the 2 genotypes and complemented the Arabidopsis (Arabidopsis thaliana) lyk4/lyk5-2 mutant with respect to chitin perception. Collectively, our data indicate that differences in chitin and flg22 perception in these citrus genotypes are not the results of sequence polymorphisms at the receptor level. These findings shed light on the diversity of perception of microbial features and highlight genotypes capable of recognizing polymorphic pathogen features.
Collapse
Affiliation(s)
- Jessica Trinh
- Department of Plant Pathology, University of California, Davis, CA 95616, USA
| | - Tianrun Li
- Department of Plant Pathology, University of California, Davis, CA 95616, USA
| | - Jessica Y Franco
- Department of Plant Pathology, University of California, Davis, CA 95616, USA
| | - Tania Y Toruño
- Department of Plant Pathology, University of California, Davis, CA 95616, USA
| | - Danielle M Stevens
- Department of Plant Pathology, University of California, Davis, CA 95616, USA
| | - Shree P Thapa
- Department of Plant Pathology, University of California, Davis, CA 95616, USA
| | - Justin Wong
- Department of Plant Pathology, University of California, Davis, CA 95616, USA
| | - Rebeca Pineda
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Emmanuel Ávila de Dios
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Tracy L Kahn
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Danelle K Seymour
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Chandrika Ramadugu
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Gitta L Coaker
- Department of Plant Pathology, University of California, Davis, CA 95616, USA
| |
Collapse
|
7
|
Kahlon PS, Förner A, Muser M, Oubounyt M, Gigl M, Hammerl R, Baumbach J, Hückelhoven R, Dawid C, Stam R. Laminarin-triggered defence responses are geographically dependent in natural populations of Solanum chilense. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:3240-3254. [PMID: 36880316 DOI: 10.1093/jxb/erad087] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 03/06/2023] [Indexed: 05/21/2023]
Abstract
Natural plant populations are polymorphic and show intraspecific variation in resistance properties against pathogens. The activation of the underlying defence responses can depend on variation in perception of pathogen-associated molecular patterns or elicitors. To dissect such variation, we evaluated the responses induced by laminarin (a glucan, representing an elicitor from oomycetes) in the wild tomato species Solanum chilense and correlated this to observed infection frequencies of Phytophthora infestans. We measured reactive oxygen species burst and levels of diverse phytohormones upon elicitation in 83 plants originating from nine populations. We found high diversity in basal and elicitor-induced levels of each component. Further we generated linear models to explain the observed infection frequency of P. infestans. The effect of individual components differed dependent on the geographical origin of the plants. We found that the resistance in the southern coastal region, but not in the other regions, was directly correlated to ethylene responses and confirmed this positive correlation using ethylene inhibition assays. Our findings reveal high diversity in the strength of defence responses within a species and the involvement of different components with a quantitatively different contribution of individual components to resistance in geographically separated populations of a wild plant species.
Collapse
Affiliation(s)
- Parvinderdeep S Kahlon
- Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, Emil-Ramann-Str. 2, 85354, Freising, Germany
| | - Andrea Förner
- Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, Emil-Ramann-Str. 2, 85354, Freising, Germany
| | - Michael Muser
- Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, Emil-Ramann-Str. 2, 85354, Freising, Germany
| | - Mhaned Oubounyt
- Research Group of Computational Systems Biology, University of Hamburg, Notkestrasse 9, 22607, Hamburg, Germany
| | - Michael Gigl
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Richard Hammerl
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Jan Baumbach
- Research Group of Computational Systems Biology, University of Hamburg, Notkestrasse 9, 22607, Hamburg, Germany
- Computational BioMedicine lab, Institute of Mathematics and Computer Science, University of Southern Denmark, Campusvej 55, Odense, Denmark
| | - Ralph Hückelhoven
- Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, Emil-Ramann-Str. 2, 85354, Freising, Germany
| | - Corinna Dawid
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Remco Stam
- Department of Phytopathology and Crop Protection, Institute for Phytopathology, Kiel University, Hermann Rodewald Str 9, 24118 Kiel, Germany
| |
Collapse
|
8
|
Sobol G, Majhi BB, Pasmanik-Chor M, Zhang N, Roberts HM, Martin GB, Sessa G. Tomato receptor-like cytoplasmic kinase Fir1 is involved in flagellin signaling and preinvasion immunity. PLANT PHYSIOLOGY 2023; 192:565-581. [PMID: 36511947 PMCID: PMC10152693 DOI: 10.1093/plphys/kiac577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 11/15/2022] [Accepted: 11/25/2022] [Indexed: 05/03/2023]
Abstract
Detection of bacterial flagellin by the tomato (Solanum lycopersicum) receptors Flagellin sensing 2 (Fls2) and Fls3 triggers activation of pattern-triggered immunity (PTI). We identified the tomato Fls2/Fls3-interacting receptor-like cytoplasmic kinase 1 (Fir1) protein that is involved in PTI triggered by flagellin perception. Fir1 localized to the plasma membrane and interacted with Fls2 and Fls3 in yeast (Saccharomyces cerevisiae) and in planta. CRISPR/Cas9-generated tomato fir1 mutants were impaired in several immune responses induced by the flagellin-derived peptides flg22 and flgII-28, including resistance to Pseudomonas syringae pv. tomato (Pst) DC3000, production of reactive oxygen species, and enhanced PATHOGENESIS-RELATED 1b (PR1b) gene expression, but not MAP kinase phosphorylation. Remarkably, fir1 mutants developed larger Pst DC3000 populations than wild-type plants, whereas no differences were observed in wild-type and fir1 mutant plants infected with the flagellin deficient Pst DC3000ΔfliC. fir1 mutants failed to close stomata when infected with Pst DC3000 and Pseudomonas fluorescens and were more susceptible to Pst DC3000 than wild-type plants when inoculated by dipping, but not by vacuum-infiltration, indicating involvement of Fir1 in preinvasion immunity. RNA-seq analysis detected fewer differentially expressed genes in fir1 mutants and altered expression of jasmonic acid (JA)-related genes. In support of JA response deregulation in fir1 mutants, these plants were similarly susceptible to Pst DC3000 and to the coronatine-deficient Pst DC3118 strain, and more resistant to the necrotrophic fungus Botrytis cinerea following PTI activation. These results indicate that tomato Fir1 is required for a subset of flagellin-triggered PTI responses and support a model in which Fir1 negatively regulates JA signaling during PTI activation.
Collapse
Affiliation(s)
- Guy Sobol
- School of Plant Sciences and Food Security, Tel-Aviv University, 69978 Tel-Aviv, Israel
| | - Bharat Bhusan Majhi
- School of Plant Sciences and Food Security, Tel-Aviv University, 69978 Tel-Aviv, Israel
| | - Metsada Pasmanik-Chor
- Bioinformatics Unit, G.S. Wise Faculty of Life Science, Tel-Aviv University, 69978 Tel- Aviv, Israel
| | - Ning Zhang
- Boyce Thompson Institute for Plant Research and Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
| | - Holly M Roberts
- Boyce Thompson Institute for Plant Research and Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
| | - Gregory B Martin
- Boyce Thompson Institute for Plant Research and Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
| | - Guido Sessa
- School of Plant Sciences and Food Security, Tel-Aviv University, 69978 Tel-Aviv, Israel
| |
Collapse
|
9
|
Jantean L, Okada K, Kawakatsu Y, Kurotani KI, Notaguchi M. Measurement of reactive oxygen species production by luminol-based assay in Nicotiana benthamiana, Arabidopsis thaliana and Brassica rapa ssp. rapa. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2022; 39:415-420. [PMID: 37283611 PMCID: PMC10240919 DOI: 10.5511/plantbiotechnology.22.0823a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/23/2022] [Indexed: 06/08/2023]
Abstract
Reactive oxygen species (ROS) are critical for plant biological processes. As signaling molecules, ROS regulate plant growth and development through cell expansion, elongation, and programmed cell death. Furthermore, ROS production is induced by microbe-associated molecular patterns (MAMPs) treatment and biotic stresses, and contributes to plant resistance to pathogens. Thus, MAMP-induced ROS production has been an indicator for plant early immune responses or stress responses. One of widely used methods for the measurement is a luminol-based assay to measure extracellular ROS production with a bacterial flagellin epitope (flg22) as a MAMP elicitor. Nicotiana benthamiana is susceptible to a wide variety of plant pathogenic agents and therefore commonly used for ROS measurements. On the other hand, Arabidopsis thaliana, many of genetical lines of which are available, is also conducted to ROS measurements. Tests in an asterid N. benthamiana and a rosid A. thaliana can reveal conserved molecular mechanisms in ROS production. However, the small size of A. thaliana leaves requires many seedlings for experiments. This study examined flg22-induced ROS production in another member of the Brassicaceae family, Brassica rapa ssp. rapa (turnip), which has large and flat leaves. Our experiments indicated that 10 nM and 100 nM flg22 treatments induced high ROS levels in turnip. Turnip tended to have a lower standard deviation in multiple concentrations of flg22 treatment. Therefore, these results suggested that turnip can be a good material from the rosid clade for ROS measurement.
Collapse
Affiliation(s)
- Lalita Jantean
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Kentaro Okada
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Yaichi Kawakatsu
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Ken-ichi Kurotani
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Michitaka Notaguchi
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
10
|
Bai B, Zhang G, Li Y, Wang Y, Sujata S, Zhang X, Wang L, Zhao L, Wu Y. The 'Candidatus Phytoplasma tritici' effector SWP12 degrades the transcription factor TaWRKY74 to suppress wheat resistance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:1473-1488. [PMID: 36380696 DOI: 10.1111/tpj.16029] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
'Candidatus Phytoplasma tritici' ('Ca. P. tritici') is an insect-borne obligate pathogen that infects wheat (Triticum aestivum) causing wheat blue dwarf disease, and leads to yield losses. SWP12 is a potential effector secreted by 'Ca. P. tritici' that manipulates host processes to create an environment conducive to phytoplasma colonization, but the detailed mechanism of action remains to be investigated. In this study, the expression of SWP12 weakened the basal immunity of Nicotiana benthamiana and promoted leaf colonization by Phytophthora parasitica, Sclerotinia sclerotiorum, and tobacco mild green mosaic virus. Moreover, the expression of SWP12 in wheat plants promoted phytoplasma colonization. Triticum aestivum WRKY74 and N. benthamiana WRKY17 were identified as host targets of SWP12. The expression of TaWRKY74 triggered reactive oxygen species bursts, upregulated defense-related genes, and decreased TaCRR6 transcription, leading to reductions in NADH dehydrogenase complex (NDH) activity. Expression of TaWRKY74 in wheat increased plant resistance to 'Ca. P. tritici', and silencing of TaWRKY74 enhanced plant susceptibility, which indicates that TaWRKY74 is a positive regulator of wheat resistance to 'Ca. P. tritici'. We showed that SWP12 weakens plant resistance and promotes 'Ca. P. tritici' colonization by destabilizing TaWRKY74.
Collapse
Affiliation(s)
- Bixin Bai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Guoding Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yue Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yanbin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shrestha Sujata
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xudong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Licheng Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Lei Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yunfeng Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| |
Collapse
|
11
|
Zhang N, Hecht C, Sun X, Fei Z, Martin GB. Loss of function of the bHLH transcription factor Nrd1 in tomato enhances resistance to Pseudomonas syringae. PLANT PHYSIOLOGY 2022; 190:1334-1348. [PMID: 35751605 PMCID: PMC9516780 DOI: 10.1093/plphys/kiac312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 06/10/2022] [Indexed: 05/02/2023]
Abstract
Basic helix-loop-helix (bHLH) transcription factors constitute a superfamily in eukaryotes, but their roles in plant immunity remain largely uncharacterized. We found that the transcript abundance in tomato (Solanum lycopersicum) leaves of one bHLH transcription factor-encoding gene, negative regulator of resistance to DC3000 1 (Nrd1), increased significantly after treatment with the immunity-inducing flgII-28 peptide. Plants carrying a loss-of-function mutation in Nrd1 (Δnrd1) showed enhanced resistance to Pseudomonas syringae pv. tomato (Pst) DC3000 although early pattern-triggered immunity responses, such as generation of reactive oxygen species and activation of mitogen-activated protein kinases after treatment with flagellin-derived flg22 and flgII-28 peptides, were unaltered compared to wild-type plants. RNA-sequencing (RNA-seq) analysis identified a gene, Arabinogalactan protein 1 (Agp1), whose expression is strongly suppressed in an Nrd1-dependent manner. Agp1 encodes an arabinogalactan protein, and overexpression of the Agp1 gene in Nicotiana benthamiana led to ∼10-fold less Pst growth compared to the control. These results suggest that the Nrd1 protein promotes tomato susceptibility to Pst by suppressing the defense gene Agp1. RNA-seq also revealed that the loss of Nrd1 function has no effect on the transcript abundance of immunity-associated genes, including AvrPtoB tomato-interacting 9 (Bti9), Cold-shock protein receptor (Core), Flagellin sensing 2 (Fls2), Flagellin sensing (Fls3), and Wall-associated kinase 1 (Wak1) upon Pst inoculation, suggesting that the enhanced immunity observed in the Δnrd1 mutants is due to the activation of key PRR signaling components as well as the loss of Nrd1-regulated suppression of Agp1.
Collapse
Affiliation(s)
- Ning Zhang
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, USA
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
| | - Chloe Hecht
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, USA
| | - Xuepeng Sun
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, USA
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, USA
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
- USDA-ARS Robert W. Holley Center for Agriculture and Health, Ithaca, New York 14853, USA
| | | |
Collapse
|
12
|
Jobson E, Roberts R. Genomic structural variation in tomato and its role in plant immunity. MOLECULAR HORTICULTURE 2022; 2:7. [PMID: 37789472 PMCID: PMC10515242 DOI: 10.1186/s43897-022-00029-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/22/2022] [Indexed: 10/05/2023]
Abstract
It is well known that large genomic variations can greatly impact the phenotype of an organism. Structural Variants (SVs) encompass any genomic variation larger than 30 base pairs, and include changes caused by deletions, inversions, duplications, transversions, and other genome modifications. Due to their size and complex nature, until recently, it has been difficult to truly capture these variations. Recent advances in sequencing technology and computational analyses now permit more extensive studies of SVs in plant genomes. In tomato, advances in sequencing technology have allowed researchers to sequence hundreds of genomes from tomatoes, and tomato relatives. These studies have identified SVs related to fruit size and flavor, as well as plant disease response, resistance/susceptibility, and the ability of plants to detect pathogens (immunity). In this review, we discuss the implications for genomic structural variation in plants with a focus on its role in tomato immunity. We also discuss how advances in sequencing technology have led to new discoveries of SVs in more complex genomes, the current evidence for the role of SVs in biotic and abiotic stress responses, and the outlook for genetic modification of SVs to advance plant breeding objectives.
Collapse
Affiliation(s)
- Emma Jobson
- Montana State University Extension, Montana State University, Bozeman, MT, 59717, United States
| | - Robyn Roberts
- Agricultural Biology Department, College of Agricultural Sciences, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
13
|
Potnis N. Harnessing Eco-Evolutionary Dynamics of Xanthomonads on Tomato and Pepper to Tackle New Problems of an Old Disease. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:289-310. [PMID: 34030449 DOI: 10.1146/annurev-phyto-020620-101612] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Bacterial spot is an endemic seedborne disease responsible for recurring outbreaks on tomato and pepper around the world. The disease is caused by four diverse species, Xanthomonas gardneri, Xanthomonas euvesicatoria, Xanthomonas perforans, and Xanthomonas vesicatoria. There are no commercially available disease-resistant tomato varieties, and the disease is managed by chemical/biological control options, although these have not reduced the incidence of outbreaks. The disease on peppers is managed by disease-resistant cultivars that are effective against X. euvesicatoria but not X. gardneri. A significant shift in composition and prevalence of different species and races of the pathogen has occurred over the past century. Here, I attempt to review ecological and evolutionary processes associated with the population dynamics leading to disease emergence and spread. The goal of this review is to integrate the knowledge on population genomics and molecular plant-microbe interactions for this pathosystem to tailor disease management strategies.
Collapse
Affiliation(s)
- Neha Potnis
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama 36849, USA;
| |
Collapse
|
14
|
Kahlon PS, Stam R. Polymorphisms in plants to restrict losses to pathogens: From gene family expansions to complex network evolution. CURRENT OPINION IN PLANT BIOLOGY 2021; 62:102040. [PMID: 33882435 DOI: 10.1016/j.pbi.2021.102040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Genetic polymorphisms are the basis of the natural diversity seen in all life on earth, also in plant-pathogen interactions. Initially, studies on plant-pathogen interaction focused on reporting phenotypic variation in resistance properties and on the identification of underlying major genes. Nowadays, the field of plant-pathogen interactions is moving from focusing on families of single dominant genes involved in gene-for-gene interactions to an understanding of the plant immune system in the context of a much more complex signaling network and quantitative resistance. Simultaneously, studies on pathosystems from the wild and genome analyses advanced, revealing tremendous variation in natural plant populations. It is now imperative to place studies on genetic diversity and evolution of plant-pathogen interactions in the appropriate molecular biological, as well as evolutionary, context.
Collapse
Affiliation(s)
- Parvinderdeep S Kahlon
- TUM School of Life Sciences, Technical University of Munich, Emil-Ramann-Str. 2, 85354, Freising, Germany
| | - Remco Stam
- TUM School of Life Sciences, Technical University of Munich, Emil-Ramann-Str. 2, 85354, Freising, Germany.
| |
Collapse
|
15
|
Kahlon PS, Verin M, Hückelhoven R, Stam R. Quantitative resistance differences between and within natural populations of Solanum chilense against the oomycete pathogen Phytophthora infestans. Ecol Evol 2021; 11:7768-7778. [PMID: 34188850 PMCID: PMC8216925 DOI: 10.1002/ece3.7610] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 01/01/2023] Open
Abstract
The wild tomato species Solanum chilense is divided into geographically and genetically distinct populations that show signs of defense gene selection and differential phenotypes when challenged with several phytopathogens, including the oomycete causal agent of late blight Phytophthora infestans. To better understand the phenotypic diversity of this disease resistance in S. chilense and to assess the effect of plant genotype versus pathogen isolate, respectively, we evaluated infection frequency in a systematic approach and with large sample sizes. We studied 85 genetically distinct individuals representing nine geographically separated populations of S. chilense. This showed that differences in quantitative resistance can be observed between but also within populations at the level of individual plants. Our data also did not reveal complete immunity in any of the genotypes. We further evaluated the resistance of a subset of the plants against P. infestans isolates with diverse virulence properties. This confirmed that the relative differences in resistance phenotypes between individuals were mainly determined by the plant genotype under consideration with modest effects of pathogen isolate used in the study. Thus, our report suggests that the observed quantitative resistance against P. infestans in natural populations of a wild tomato species S. chilense is the result of basal defense responses that depend on the host genotype and are pathogen isolate-unspecific.
Collapse
Affiliation(s)
| | - Melissa Verin
- TUM School of Life SciencesTechnical University of MunichFreisingGermany
| | - Ralph Hückelhoven
- TUM School of Life SciencesTechnical University of MunichFreisingGermany
| | - Remco Stam
- TUM School of Life SciencesTechnical University of MunichFreisingGermany
| |
Collapse
|
16
|
Yu J, Gonzalez JM, Dong Z, Shan Q, Tan B, Koh J, Zhang T, Zhu N, Dufresne C, Martin GB, Chen S. Integrative Proteomic and Phosphoproteomic Analyses of Pattern- and Effector-Triggered Immunity in Tomato. FRONTIERS IN PLANT SCIENCE 2021; 12:768693. [PMID: 34925416 PMCID: PMC8677958 DOI: 10.3389/fpls.2021.768693] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/12/2021] [Indexed: 05/04/2023]
Abstract
Plants have evolved a two-layered immune system consisting of pattern-triggered immunity (PTI) and effector-triggered immunity (ETI). PTI and ETI are functionally linked, but also have distinct characteristics. Unraveling how these immune systems coordinate plant responses against pathogens is crucial for understanding the regulatory mechanisms underlying plant defense. Here we report integrative proteomic and phosphoproteomic analyses of the tomato-Pseudomonas syringae (Pst) pathosystem with different Pst mutants that allow the dissection of PTI and ETI. A total of 225 proteins and 79 phosphopeptides differentially accumulated in tomato leaves during Pst infection. The abundances of many proteins and phosphoproteins changed during PTI or ETI, and some responses were triggered by both PTI and ETI. For most proteins, the ETI response was more robust than the PTI response. The patterns of protein abundance and phosphorylation changes revealed key regulators involved in Ca2+ signaling, mitogen-activated protein kinase cascades, reversible protein phosphorylation, reactive oxygen species (ROS) and redox homeostasis, transcription and protein turnover, transport and trafficking, cell wall remodeling, hormone biosynthesis and signaling, suggesting their common or specific roles in PTI and/or ETI. A NAC (NAM, ATAF, and CUC family) domain protein and lipid particle serine esterase, two PTI-specific genes identified from previous transcriptomic work, were not detected as differentially regulated at the protein level and were not induced by PTI. Based on integrative transcriptomics and proteomics data, as well as qRT-PCR analysis, several potential PTI and ETI-specific markers are proposed. These results provide insights into the regulatory mechanisms underlying PTI and ETI in the tomato-Pst pathosystem, and will promote future validation and application of the disease biomarkers in plant defense.
Collapse
Affiliation(s)
- Juanjuan Yu
- Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, College of Life Sciences, Henan Normal University, Xinxiang, China
- *Correspondence: Juanjuan Yu,
| | - Juan M. Gonzalez
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, United States
- Boyce Thompson Institute for Plant Research, Ithaca, NY, United States
| | - Zhiping Dong
- Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Qianru Shan
- Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Bowen Tan
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, United States
| | - Jin Koh
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, United States
| | - Tong Zhang
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, United States
| | - Ning Zhu
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, United States
| | - Craig Dufresne
- Thermo Fisher Scientific Inc., West Palm Beach, FL, United States
| | - Gregory B. Martin
- Boyce Thompson Institute for Plant Research, Ithaca, NY, United States
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Sixue Chen
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, United States
- Sixue Chen,
| |
Collapse
|
17
|
Steinbrenner AD. The evolving landscape of cell surface pattern recognition across plant immune networks. CURRENT OPINION IN PLANT BIOLOGY 2020; 56:135-146. [PMID: 32615401 DOI: 10.1016/j.pbi.2020.05.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
To recognize diverse threats, plants monitor extracellular molecular patterns and transduce intracellular immune signaling through receptor complexes at the plasma membrane. Pattern recognition occurs through a prototypical network of interacting proteins, comprising A) receptors that recognize inputs associated with a growing number of pest and pathogen classes (bacteria, fungi, oomycetes, caterpillars), B) co-receptor kinases that participate in binding and signaling, and C) cytoplasmic kinases that mediate first stages of immune output. While this framework has been elucidated in reference accessions of model organisms, network components are part of gene families with widespread variation, potentially tuning immunocompetence for specific contexts. Most dramatically, variation in receptor repertoires determines the range of ligands acting as immunogenic inputs for a given plant. Diversification of receptor kinase (RK) and related receptor-like protein (RLP) repertoires may tune responses even within a species. Comparative genomics at pangenome scale will reveal patterns and features of immune network variation.
Collapse
Affiliation(s)
- Adam D Steinbrenner
- Department of Biology, University of Washington, Seattle WA 98195, USA; Washington Research Foundation, Seattle, WA 98102, USA.
| |
Collapse
|
18
|
Kim JH, Castroverde CDM. Diversity, Function and Regulation of Cell Surface and Intracellular Immune Receptors in Solanaceae. PLANTS 2020; 9:plants9040434. [PMID: 32244634 PMCID: PMC7238418 DOI: 10.3390/plants9040434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/14/2020] [Accepted: 03/23/2020] [Indexed: 12/29/2022]
Abstract
The first layer of the plant immune system comprises plasma membrane-localized receptor proteins and intracellular receptors of the nucleotide-binding leucine-rich repeat protein superfamily. Together, these immune receptors act as a network of surveillance machines in recognizing extracellular and intracellular pathogen invasion-derived molecules, ranging from conserved structural epitopes to virulence-promoting effectors. Successful pathogen recognition leads to physiological and molecular changes in the host plants, which are critical for counteracting and defending against biotic attack. A breadth of significant insights and conceptual advances have been derived from decades of research in various model plant species regarding the structural complexity, functional diversity, and regulatory mechanisms of these plant immune receptors. In this article, we review the current state-of-the-art of how these host surveillance proteins function and how they are regulated. We will focus on the latest progress made in plant species belonging to the Solanaceae family, because of their tremendous importance as model organisms and agriculturally valuable crops.
Collapse
Affiliation(s)
- Jong Hum Kim
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Howard Hughes Medical Institute, Michigan State University, East Lansing, MI 48824, USA
- Correspondence: (J.H.K.); (C.D.M.C.)
| | | |
Collapse
|
19
|
Teixeira PJP, Colaianni NR, Fitzpatrick CR, Dangl JL. Beyond pathogens: microbiota interactions with the plant immune system. Curr Opin Microbiol 2019; 49:7-17. [PMID: 31563068 DOI: 10.1016/j.mib.2019.08.003] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/15/2019] [Accepted: 08/26/2019] [Indexed: 12/20/2022]
Abstract
Plant immune receptors perceive microbial molecules and initiate an array of biochemical responses that are effective against most invaders. The role of the plant immune system in detecting and controlling pathogenic microorganism has been well described. In contrast, much less is known about plant immunity in the context of the wealth of commensals that inhabit plants. Recent research indicates that, just like pathogens, commensals in the plant microbiome can suppress or evade host immune responses. Moreover, the plant immune system has an active role in microbiome assembly and controls microbial homeostasis in response to environmental variation. We propose that the plant immune system shapes the microbiome, and that the microbiome expands plant immunity and acts as an additional layer of defense against pathogenic organisms.
Collapse
Affiliation(s)
- Paulo José Pl Teixeira
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Nicholas R Colaianni
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Connor R Fitzpatrick
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jeffery L Dangl
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| |
Collapse
|