1
|
Liu S, Zhang Y, Yu X, Cui M, Jiang L, Zhang T, Gao Y. Labile Carbon Input Mitigates the Negative Legacy Effects of Nitrogen Addition on Arbuscular Mycorrhizal Symbiosis in a Temperate Grassland. PLANTS (BASEL, SWITZERLAND) 2025; 14:456. [PMID: 39943019 PMCID: PMC11820778 DOI: 10.3390/plants14030456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/23/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025]
Abstract
Nitrogen (N) deposition and carbon (C) addition significantly influence the dynamics of plant-microbe interactions, particularly altering the symbiotic relationship between plants and arbuscular mycorrhizal fungi (AMF). However, the effects and underlying mechanisms of labile C input on the relationship between AMF and various plant species in a nitrogen-enriched environment remain a knowledge gap. A seven-year field experiment was conducted to examine how six levels of N and three levels of labile C addition impact AMF colonization in four key plant species: Leymus chinensis (Trin. ex Bunge) Tzvelev, Stipa baicalensis Roshev., Thermopsis lanceolata R. Br. and Potentilla bifurca Linn. Our results showed that N and C additions exert significantly different effects on the relationship between AMF and various plant species. Labile C addition mitigated historical N negative effects, particularly for S. baicalensis, enhancing AMF infection and promoting nutrient exchange under high-N and low-C conditions. The relationship between AMF and both L. chinensis and T. lanceolata changed to weak mutualism under low-N and high-C conditions, with significant decreases in vesicular and arbuscular abundance. Plant root stoichiometry plays a critical role in modulating AMF symbiosis, particularly under high-N and -C conditions, as reflected in the increased AMF infection observed in T. lanceolata and P. bifurca. Our findings emphasize the species-specific and nutrient-dependent AMF symbiosis, revealing that targeted C input can mitigate the legacy effects of N enrichment. Effective nutrient management is of crucial importance for ecological restoration efforts in temperate grasslands affected by long-term N enrichment.
Collapse
Affiliation(s)
- Sitong Liu
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun 130024, China
| | - Yuxiao Zhang
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun 130024, China
| | - Xiaoqian Yu
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun 130024, China
| | - Meng Cui
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Liangchao Jiang
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Tao Zhang
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun 130024, China
| | - Yingzhi Gao
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun 130024, China
- Key Laboratory of Grassland Resources and Ecology of Western Arid Desert Area of the Ministry of Education, College of Grassland Science, Xinjiang Agricultural University, Urumqi 830052, China
| |
Collapse
|
2
|
Alam A, Gabriel-Neumann E. Arbuscular mycorrhizal fungi travel the world with harvested underground crops. MYCORRHIZA 2024; 35:4. [PMID: 39680257 DOI: 10.1007/s00572-024-01176-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/28/2024] [Indexed: 12/17/2024]
Abstract
In recent years, the dispersal of potentially invasive plants, animals, and pathogens via international trading routes for fresh agricultural goods has been the subject of intensive research and risk assessment. Comparatively little is known about the potential impact of global food trade on the spreading of symbiotic soil microorganisms, such as arbuscular mycorrhizal (AM) fungi. The present study thus assessed whether internationally traded underground crop harvest products carry AM fungal propagules. Twenty batches of tubers, corms or bulbs originating from eight different countries were sampled and used to inoculate Sorghum bicolor (L.) Moench plants grown in a heat-sterilized, sandy dune soil from the United Arab Emirates (UAE). Results revealed that most of the underground crop harvest products contained AM fungal propagules able to establish AM symbioses in a pot experiment under greenhouse conditions. Though it is likely that most AM fungal propagules attached to harvest products will ultimately be eliminated in the waste or sewage stream, it is well possible that a certain portion would find its way into agricultural or natural ecosystems, e.g., via organic waste disposal or use of kitchen greywater for irrigation. Given the large volumes of underground crops traded worldwide, their impact on AM fungal dispersal and distribution deserves further investigation and assessment of associated risks of adulteration of soil microbial communities.
Collapse
Affiliation(s)
- Ayesha Alam
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
- Aspire Research Institute for Food Security in the Drylands, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Elke Gabriel-Neumann
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates.
- Aspire Research Institute for Food Security in the Drylands, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates.
| |
Collapse
|
3
|
Zhang H, Xiao Y. Contribution of mycorrhizal symbiosis and root strategy to red clover aboveground biomass under nitrogen addition and phosphorus distribution. MYCORRHIZA 2024; 34:489-502. [PMID: 39387919 DOI: 10.1007/s00572-024-01164-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/24/2024] [Indexed: 10/12/2024]
Abstract
Soil nutrients exhibit heterogeneity in their spatial distribution, presenting challenges to plant acquisition. Notably, phosphorus (P) heterogeneity is a characteristic feature of soil, necessitating the development of adaptive strategies by plants to cope with this phenomenon. To address this, fully crossed three-factor experiments were conducted using red clover within rhizoboxes. Positions of P in three conditions, included P even distribution (even P), P close distribution (close P), and P far distribution (far P). Concurrently, N addition was two amounts(0 and 20 mg kg- 1), both with and without AMF inoculation. The findings indicated a decrease in aboveground biomass attributable to uneven P distribution, whereas N and AMF demonstrated the potential to affect aboveground biomass. In a structural equation model, AMF primarily increased aboveground biomass by enhancing nodule number and specific leaf area (SLA). In contrast, N addition improved aboveground biomass through increased nodule number or direct effects. Subsequently, a random forest model indicated that under the far P treatment, fine root length emerged as the primary factor affecting aboveground biomass, followed by thickest root length. Conversely, in the even P treatment, the thickest root length was of paramount importance. In summary, when confronted with uneven P distribution, clover plants adopted various root foraging strategies. AMF played a pivotal role in elevating nodule number, and SLA.
Collapse
Affiliation(s)
- Huina Zhang
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Yan Xiao
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095, P. R. China.
| |
Collapse
|
4
|
Delgado-Fernández E, Nicola L, Covarrubias SA, Girometta CE, Valdez-Tenezaca A. Fungal Diversity in an Undisturbed Andean Páramo Soil in Quimsacocha (Ecuador). J Fungi (Basel) 2024; 10:623. [PMID: 39330383 PMCID: PMC11432993 DOI: 10.3390/jof10090623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/31/2024] [Accepted: 08/20/2024] [Indexed: 09/28/2024] Open
Abstract
The Andean Páramo is an environment known for its high biodiversity; however, due to its remote location and difficult access, it is still relatively poorly studied. The aim of this work was to explore the fungal biodiversity of Ecuadorian Páramo soils in the undisturbed natural reserve of Quimsacocha through ITS metabarconding with an MiSeq platform. This analysis revealed the presence of 370 fungal Amplicon Sequence Variants (ASVs), mainly composed by Ascomycota, Mortierellomycota and Basidiomycota. The biodiversity had a great variability among the 19 samples, but the soil humidity proved to be a significant driver of diversity in the relatively dry environment of Páramo. Some of most abundant fungal genera have important relationships with plant roots. This work represents the first glimpse into the complex biodiversity of soil fungi in this understudied area, and further studies will be needed to better understand the fungal biodiversity in this region, together with the development of necessary measures of environmental protection.
Collapse
Affiliation(s)
- Ernesto Delgado-Fernández
- Laboratorios Ciencias de la Vida, Grupo de Investigación INBIAM, Departamento de Ingeniería Ambiental, Universidad Politécnica Salesiana, Calle Vieja 12-30 y Elia Liut, Cuenca 010102, Ecuador;
| | - Lidia Nicola
- Mycology Laboratory, Department of Earth and Environmental Sciences, University of Pavia, Via S. Epifanio 14, 27100 Pavia, Italy;
| | - Sergio A. Covarrubias
- Academic Unit of Chemical Sciences, Campus Siglo XXI, University of Zacatecas, Carretera Zacatecas-Guadalajara km 6, La Escondida, Zacatecas 98160, Mexico;
| | - Carolina Elena Girometta
- Mycology Laboratory, Department of Earth and Environmental Sciences, University of Pavia, Via S. Epifanio 14, 27100 Pavia, Italy;
| | - Adrián Valdez-Tenezaca
- Laboratorios Ciencias de la Vida, Grupo de Investigación INBIAM, Departamento de Ingeniería Ambiental, Universidad Politécnica Salesiana, Calle Vieja 12-30 y Elia Liut, Cuenca 010102, Ecuador;
- Laboratorio de Patología Frutal, Departamento de Producción Agrícola, Facultad de Ciencias Agrarias, Universidad de Talca, Campus Talca, Av. Lircay s/n, Talca 360000, Chile
| |
Collapse
|
5
|
Smiderle OJ, Milhomem CA, Dias TJ, Alves EU, Souza AG. Quality of Mezilaurus itauba seedlings inoculated with Trichoderma harzianum under doses of organomineral fertilizer from cupuaçu residues. BRAZ J BIOL 2024; 84:e284144. [PMID: 39046053 DOI: 10.1590/1519-6984.284144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/14/2024] [Indexed: 07/25/2024] Open
Abstract
Fungi of the genus Trichoderma spp have been related to the production of hormones or correlated with growth factors, promoting greater efficiency in the use of some nutrients, thus allowing greater availability and absorption by plants. In this context, the objective of this study was to determine the dose of organomineral fertilizer from cupuaçu (Theobroma grandiflorum) residues and the efficiency of Trichoderma harzianum on the initial growth and morphophysiological quality of Mezilaurus itauba seedlings in the northern Amazon. Dose of 50% of the organomineral fertilizer from cupuaçu residues (ORFCup) with Trichoderma harzianum promotes better quality and robustness in Mezilaurus itauba seedlings. The presence of Trichoderma harzianum + 50% ORFCup promotes positive gains in the root biomass of Mezilaurus itauba seedlings. The presence of Trichoderma harzianum promotes an increase in chlorophylls a and b contents in Mezilaurus itauba seedlings. For the production of Mezilaurus itauba seedlings, it is recommended to use Trichoderma harzianum + 50% ORFCup, as it promoted increments in all physiological and morphological indices under the conditions of the present study.
Collapse
Affiliation(s)
- O J Smiderle
- Empresa Brasileira de Pesquisa Agropecuária - Embrapa, Departamento de Sementes, Boa Vista, RR, Brasil
| | - C A Milhomem
- Universidade Federal de Roraima - UFRR, Departamento de Centro de Ciências Agrárias, Boa Vista, RR, Brasil
| | - T J Dias
- Universidade Federal da Paraíba - UFPB, Departamento de Ciências Agrárias, Areia, PB, Brasil
| | - E U Alves
- Universidade Federal da Paraíba - UFPB, Departamento de Ciências Agrárias, Areia, PB, Brasil
| | - A G Souza
- Centro Universitário Ingá, Departamento de Ciências Agrárias, Maringá, PR, Brasil
| |
Collapse
|
6
|
Zhang M, Shi Z, Wang F. Co-occurring tree species drive arbuscular mycorrhizal fungi diversity in tropical forest. Int Microbiol 2024; 27:917-928. [PMID: 37923942 DOI: 10.1007/s10123-023-00443-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/24/2023] [Accepted: 10/27/2023] [Indexed: 11/06/2023]
Abstract
It is still uncertain whether environment or host plant species is more important in determining AMF diversity; although, plant roots are usually associated with abundant AMF species in different environments. This study explored the effect of plant species and environmental factors on AMF diversity based on three co-occurring tree species (Glochidion coccineum, Schefflera octophylla, and Schima superba) on six elevations of Mt. Jianfengling. A total of 185 OTUs (operational taxonomic units) of AMF were found in the three co-occurring dominant tree species. Of which 109 unique OTUs were identified in the three co-occurring plant species, which accounted for the total number of 58.92%. Forty-five OTUs were shared by the three co-occurring tree species, accounting for a total number of 24.32%. The plant species of Schefflera octophylla was identified as having the highest AMF diversity with the largest number of OTUs of 143. The fungi in the genus of Glomus were the dominant AMF species in the three co-occurring tree species. AMF communities and diversity are quite different, either within different plant species at the same elevation or within the same plant species at different elevations. However, the altitude had no significant effect on the ACE index. Therefore, the results suggest that plant species have a more important effect on AMF diversity and community composition.
Collapse
Affiliation(s)
- Mengge Zhang
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
- Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang, China
| | - Zhaoyong Shi
- College of Agriculture, Henan University of Science and Technology, Luoyang, China.
- Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang, China.
| | - Fayuan Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, China
| |
Collapse
|
7
|
Liu L, Gao Z, Li H, Yang W, Yang Y, Lin J, Wang Z, Liu J. Thresholds of Nitrogen and Phosphorus Input Substantially Alter Arbuscular Mycorrhizal Fungal Communities and Wheat Yield in Dryland Farmland. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10236-10246. [PMID: 38647353 DOI: 10.1021/acs.jafc.4c00073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Arbuscular mycorrhizal (AM) fungi are essential for preserving the multifunctionality of ecosystems. The nitrogen (N)/phosphorus (P) threshold that causes notable variations in the AM fungus community of the soil and plant productivity is still unclear. Herein, a long-term (18 years) field experiment with five N and five P fertilizer levels was conducted to investigate the change patterns of soil AM fungus, multifunctionality, and wheat yield. High-N and -P fertilizer inputs did not considerably increase the wheat yield. In the AM fungal network, a statistically significant positive correlation was observed between ecosystem multifunctionality and the biodiversity of two primary ecological clusters (N: Module #0 and P: Module #3). Furthermore, fertilizer input thresholds for N (92-160 kg ha-1) and P (78-100 kg ha-1) significantly altered the AM fungal community, soil characteristics, and plant productivity. Our study provided a basis for reduced N and P fertilizer application and sustainable agricultural development from the aspect of soil AM fungi.
Collapse
Affiliation(s)
- Lei Liu
- Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture and Rural Affairs/College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhiyuan Gao
- Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture and Rural Affairs/College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Haifeng Li
- Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture and Rural Affairs/College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenjie Yang
- Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture and Rural Affairs/College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yu Yang
- Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture and Rural Affairs/College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiangyun Lin
- Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture and Rural Affairs/College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhaohui Wang
- Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture and Rural Affairs/College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jinshan Liu
- Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture and Rural Affairs/College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
8
|
Guillen T, Kessler M, Homeier J. Fern mycorrhizae do not respond to fertilization in a tropical montane forest. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2024; 5:e10139. [PMID: 38560414 PMCID: PMC10979390 DOI: 10.1002/pei3.10139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024]
Abstract
Ferns are known to have a lower incidence of mycorrhization than angiosperms. It has been suggested that this results from carbon being more limiting to fern growth than nutrient availability, but this assertion has not been tested yet. In the present study, we took advantage of a fertilization experiment with nitrogen and phosphorus on cloud forest plots of the Ecuadorean Andes for 15 years. A previous analysis revealed changes in the abundances of fern species in the fertilized plots compared to the control plots and hypothesized that this might be related to the responses of the mycorrhizal relationships to nutrient availability. We revisited the plots to assess the root-associated fungal communities of two epiphytic and two terrestrial fern species that showed shifts in abundance. We sampled and analyzed the roots of 125 individuals following a metabarcoding approach. We recovered 1382 fungal ASVs, with a dominance of members of Tremellales (Basidiomycota) and Heliotales (Ascomycota). The fungal diversity was highly partitioned with little overlap between individuals. We found marked differences between terrestrial and epiphytic species, with the latter fundamentally missing arbuscular mycorrhizal fungi (AMF). We found no effect of fertilization on the diversity or relative abundance of the fungal assemblages. Still, we observed a direct impact of phosphorus fertilization on its concentration in the fern leaves. We conclude that fern-fungi relationships in the study site are not restricted by nutrient availability and suggest the existence of little specificity on the fungal partners relative to the host fern species.
Collapse
Affiliation(s)
- Thais Guillen
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZurichSwitzerland
| | - Michael Kessler
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZurichSwitzerland
| | - Jürgen Homeier
- Faculty of Resource ManagementUniversity of Applied Sciences and Arts (HAWK)GöttingenGermany
| |
Collapse
|
9
|
Liu J, Zhou M, Li X, Li T, Jiang H, Zhao L, Chen S, Tian J, Han W. Phosphorus Addition Reduces Seedling Growth and Survival for the Arbuscular Mycorrhizal Tree Cinnamomum camphora (Lauraceae) and Ectomycorrhizal Tree Castanopsis sclerophylla (Fagaceae) in Fragmented Forests in Eastern China. PLANTS (BASEL, SWITZERLAND) 2023; 12:2946. [PMID: 37631158 PMCID: PMC10458558 DOI: 10.3390/plants12162946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/06/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
Global changes in nutrient deposition rates and habitat fragmentation are likely to have profound effects on plant communities, particularly in the nutrient-limited systems of the tropics and subtropics. However, it remains unclear how increased phosphorus (P) supply affects seedling growth in P-deficient subtropical fragmented forests. To explore this, we applied P to 11 islands in a subtropical Chinese archipelago and examined the results in combination with a contemporary greenhouse experiment to test the influence of P addition on seedling growth and survival. We measured the growth (i.e., base area) and mortality rate of seedlings for one arbuscular mycorrhizal (AM) and one ectomycorrhizal (EcM) tree species separately and calculated their relative growth rate and mortality when compared with P addition and control treatment on each island. We also measured three functional traits and the biomass of seedlings in the greenhouse experiment. Results showed that P addition significantly increased the mortality of AM and EcM seedlings and reduced the growth rate of EcM seedlings. The relative growth rate of AM seedlings, but not EcM seedlings, significantly decreased as the island area decreased, suggesting that P addition could promote the relative growth rate of AM seedlings on larger islands. The greenhouse experiment showed that P addition could reduce the specific root length of AM and EcM seedlings and reduce the aboveground and total biomass of seedlings, indicating that P addition may affect the resource acquisition of seedlings, thereby affecting their survival and growth. Our study reveals the synergistic influence of habitat fragmentation and P deposition, which may affect the regeneration of forest communities and biodiversity maintenance in fragmented habitats.
Collapse
Affiliation(s)
- Jinliang Liu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (J.L.); (M.Z.); (X.L.); (T.L.); (H.J.); (L.Z.); (S.C.); (J.T.)
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Mengsi Zhou
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (J.L.); (M.Z.); (X.L.); (T.L.); (H.J.); (L.Z.); (S.C.); (J.T.)
| | - Xue Li
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (J.L.); (M.Z.); (X.L.); (T.L.); (H.J.); (L.Z.); (S.C.); (J.T.)
| | - Tianxiang Li
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (J.L.); (M.Z.); (X.L.); (T.L.); (H.J.); (L.Z.); (S.C.); (J.T.)
| | - Haoyue Jiang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (J.L.); (M.Z.); (X.L.); (T.L.); (H.J.); (L.Z.); (S.C.); (J.T.)
| | - Luping Zhao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (J.L.); (M.Z.); (X.L.); (T.L.); (H.J.); (L.Z.); (S.C.); (J.T.)
| | - Shuman Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (J.L.); (M.Z.); (X.L.); (T.L.); (H.J.); (L.Z.); (S.C.); (J.T.)
| | - Jingying Tian
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (J.L.); (M.Z.); (X.L.); (T.L.); (H.J.); (L.Z.); (S.C.); (J.T.)
| | - Wenjuan Han
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (J.L.); (M.Z.); (X.L.); (T.L.); (H.J.); (L.Z.); (S.C.); (J.T.)
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
10
|
Bento RA, de Novais CB, Saggin-Júnior OJ, de Oliveira LA, Sampaio PDTB. Pioneer Tree Bellucia imperialis (Melastomataceae) from Central Amazon with Seedlings Highly Dependent on Arbuscular Mycorrhizal Fungi. J Fungi (Basel) 2023; 9:jof9050540. [PMID: 37233251 DOI: 10.3390/jof9050540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/17/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
Bellucia imperialis is one of the most abundant pioneer tree species in anthropized areas of the Central Amazon, and has ecological importance for the environmental resilience of phosphorus (P)-depleted areas. Thus, we investigated whether B. imperialis depends on symbiosis with arbuscular mycorrhizal fungi (AMF) to grow and establish under the edaphic stresses of low nutrient content and low surface moisture retention capacity of the substrate. We tried three AMF inoculation treatments: (1) CON-no mycorrhizae; (2) MIX-with AMF from pure collection cultures, and (3) NAT-with native AMF, combined with five doses of P via a nutrient solution. All CON treatment seedlings died without AMF, showing the high mycorrhizal dependence of B. imperialis. Increasing P doses significantly decreased the leaf area and shoot and root biomass growth for both the NAT and MIX treatments. Increasing P doses did not affect spore number or mycorrhizal colonization, but decreased the diversity of AMF communities. Some species of the AMF community showed plasticity, enabling them to withstand shortages of and excess P. B. imperialis was shown to be sensitive to excess P, promiscuous, dependent on AMF, and tolerant of scarce nutritional resources, highlighting the need to inoculate seedlings to reforest impacted areas.
Collapse
Affiliation(s)
- Ricardo Aparecido Bento
- Postgraduate Program in Tropical Forest Sciences (PPG-CFT) at the National Research Institute of Amazonas (INPA), Federal Institute of Education, Science and Technology of Amazonas (IFAM), Manaus 69086-475, Brazil
| | - Cândido Barreto de Novais
- Department of Soil at the Federal Rural University of Rio de Janeiro (UFRRJ), Seropédica 23897-000, Brazil
| | - Orivaldo José Saggin-Júnior
- Laboratory of Mycorrhiza of the Brazilian Agricultural Research Corporation-Embrapa Agrobiology, Seropédica 23891-000, Brazil
| | - Luiz Antonio de Oliveira
- Laboratory of Ecology and Biotechnology of Microorganisms from the Amazon, Tropical Forestry of the National Research Institute of Amazonas (INPA), Manaus 69060-001, Brazil
| | - Paulo de Tarso Barbosa Sampaio
- Laboratory of Ecology and Biotechnology of Microorganisms from the Amazon, Tropical Forestry of the National Research Institute of Amazonas (INPA), Manaus 69060-001, Brazil
| |
Collapse
|
11
|
Impacts of Biogas Slurry Fertilization on Arbuscular Mycorrhizal Fungal Communities in the Rhizospheric Soil of Poplar Plantations. J Fungi (Basel) 2022; 8:jof8121253. [PMID: 36547585 PMCID: PMC9782214 DOI: 10.3390/jof8121253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/27/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The majority of terrestrial plants are symbiotic with arbuscular mycorrhizal fungi (AMF). Plants supply carbohydrates to microbes, whereas AMF provide plants with water and other necessary nutrients-most typically, phosphorus. Understanding the response of the AMF community structure to biogas slurry (BS) fertilization is of great significance for sustainable forest management. This study aimed to look into the effects of BS fertilization at different concentrations on AMF community structures in rhizospheric soil in poplar plantations. We found that different fertilization concentrations dramatically affected the diversity of AMF in the rhizospheric soil of the poplar plantations, and the treatment with a high BS concentration showed the highest Shannon diversity of AMF and OTU richness (Chao1). Further analyses revealed that Glomerales, as the predominant order, accounted for 36.2-42.7% of the AMF communities, and the relative abundance of Glomerales exhibited negligible changes with different BS fertilization concentrations, whereas the order Paraglomerales increased significantly in both the low- and high-concentration treatments in comparison with the control. Furthermore, the addition of BS drastically enhanced the relative abundance of the dominant genera, Glomus and Paraglomus. The application of BS could also distinguish the AMF community composition in the rhizospheric soil well. An RDA analysis indicated that the dominant genus Glomus was significantly positively correlated with nitrate reductase activity, while Paraglomus showed a significant positive correlation with available P. Overall, the findings suggest that adding BS fertilizer to poplar plantations can elevate the diversity of AMF communities in rhizospheric soil and the relative abundance of some critical genera that affect plant nutrient uptake.
Collapse
|
12
|
Dueñas JF, Hempel S, Homeier J, Suárez JP, Rillig MC, Camenzind T. Root associated fungal lineages of a tropical montane forest show contrasting sensitivities to the long-term addition of nitrogen and phosphorus. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:775-784. [PMID: 36085412 DOI: 10.1111/1758-2229.13121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Root associated fungal (RAF) communities can exert strong effects on plant communities and are potentially sensitive to shifts in soil fertility. As increased atmospheric nitrogen (N) and phosphorus (P) deposition can alter the nutrient balance in natural ecosystems, we assessed the response of RAF communities to a fertilization experiment deployed on a highly diverse Andean forest. The stand level fine root fraction was sampled after 7 years of systematic N and P additions and RAF communities were characterized by a deep sequencing approach. We expected that fertilization will enhance competition of fungal taxa for limiting nutrients, thus eliciting diversity reductions and alterations in the structure of RAF communities. Fertilization treatments did not reduce RAF richness but affected community composition. At the phylum level fertilization reduced richness exclusively among Glomeromycota. In contrast, N and P additions (alone or in combination) altered the composition of several fungal phyla. The lack of a generalized response to long-term fertilization among RAF lineages suggests that most of these lineages will not be directly and immediately affected by the increasing rates of atmospheric N and P deposition expected for this region by 2050.
Collapse
Affiliation(s)
- Juan F Dueñas
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Stefan Hempel
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Jürgen Homeier
- Plant Ecology and Ecosystems Research, University of Göttingen, Göttingen, Germany
| | - Juan Pablo Suárez
- Departamento de Ciencias Biológicas y Agropecuarias, Universidad Técnica Particular de Loja, Loja, Ecuador
| | - Matthias C Rillig
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Tessa Camenzind
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| |
Collapse
|
13
|
Qin S, Yang G, Zhang Y, Song M, Sun L, Cui Y, Dong J, Wang N, Liu X, Zheng P, Wang R. Mowing Did Not Alleviate the Negative Effect of Nitrogen Addition on the Arbuscular Mycorrhizal Fungal Community in a Temperate Meadow Grassland. FRONTIERS IN PLANT SCIENCE 2022; 13:917645. [PMID: 35755642 PMCID: PMC9228033 DOI: 10.3389/fpls.2022.917645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
As nitrogen deposition intensifies under global climate change, understanding the responses of arbuscular mycorrhizal (AM) fungi to nitrogen deposition and the associated mechanisms are critical for terrestrial ecosystems. In this study, the effects of nitrogen addition and mowing on AM fungal communities in soil and mixed roots were investigated in an Inner Mongolia grassland. The results showed that nitrogen addition reduced the α-diversity of AM fungi in soil rather than that of root. Besides, nitrogen addition altered the composition of AM fungal community in soil. Soil pH and inorganic nitrogen content were the main causes of changes in AM fungal communities affected by nitrogen addition. Mowing and the interaction of nitrogen addition and mowing had no significant effect on AM fungal community diversity. In contrast, while mowing may reduce the negative effects of nitrogen addition on the richness and diversity of plants by alleviating light limitation, it could not do so with the negative effects on AM fungal communities. Furthermore, AM fungal communities clustered phylogenetically in all treatments in both soil and roots, indicating that environmental filtering was the main driving force for AM fungal community assembly. Our results highlight the different responses of AM fungi in the soil and roots of a grassland ecosystem to nitrogen addition and mowing. The study will improve our understanding of the effects of nitrogen deposition on the function of ecosystem.
Collapse
Affiliation(s)
- Siqi Qin
- School of Life Sciences, Institute of Ecology and Biodiversity, Shandong University, Jinan, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Jinan, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Jinan, China
| | - Guojiao Yang
- School of Life Sciences, Institute of Ecology and Biodiversity, Shandong University, Jinan, China
- College of Ecology and Environment, Hainan University, Haikou, China
| | - Yang Zhang
- School of Life Sciences, Institute of Ecology and Biodiversity, Shandong University, Jinan, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Jinan, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Jinan, China
| | - Meixia Song
- School of Life Sciences, Institute of Ecology and Biodiversity, Shandong University, Jinan, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Jinan, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Jinan, China
| | - Lu Sun
- School of Life Sciences, Institute of Ecology and Biodiversity, Shandong University, Jinan, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Jinan, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Jinan, China
| | - Yangzhe Cui
- School of Life Sciences, Institute of Ecology and Biodiversity, Shandong University, Jinan, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Jinan, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Jinan, China
| | - Jibin Dong
- School of Life Sciences, Institute of Ecology and Biodiversity, Shandong University, Jinan, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Jinan, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Jinan, China
| | - Ning Wang
- School of Life Sciences, Institute of Ecology and Biodiversity, Shandong University, Jinan, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Jinan, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Jinan, China
| | - Xiao Liu
- School of Life Sciences, Institute of Ecology and Biodiversity, Shandong University, Jinan, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Jinan, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Jinan, China
| | - Peiming Zheng
- School of Life Sciences, Institute of Ecology and Biodiversity, Shandong University, Jinan, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Jinan, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Jinan, China
| | - Renqing Wang
- School of Life Sciences, Institute of Ecology and Biodiversity, Shandong University, Jinan, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Jinan, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Jinan, China
| |
Collapse
|
14
|
Wu D, Ma Y, Yang T, Gao G, Wang D, Guo X, Chu H. Phosphorus and Zinc Are Strongly Associated with Belowground Fungal Communities in Wheat Field under Long-Term Fertilization. Microbiol Spectr 2022; 10:e0011022. [PMID: 35266812 PMCID: PMC9045391 DOI: 10.1128/spectrum.00110-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/14/2022] [Indexed: 01/04/2023] Open
Abstract
Belowground fungi are closely related to crop growth, and agricultural fertilization is widely known to affect soil fungal communities. Yet it remains unclear whether fungal communities in differing belowground habitats-root endosphere, rhizosphere soil, and bulk soil-respond differently to long-term fertilization. Here we investigated the variation in fungal communities of root endosphere, rhizosphere soil, and bulk soil under 35 years of fertilization in wheat fields. Specifically, the fertilization regimes were applied as five treatments: soils receiving NPK fertilizer, NPK and cow manure (NPK+CM), NPK and pig manure (NPK+PM), NPK and wheat straw (NPK+WS), and no fertilizer (Control). Long-term fertilization significantly impacted fungal community composition in all three habitats, and these effects were stronger in the rhizosphere and bulk soils than root endosphere. Mantel test results showed that fungal community composition was significantly correlated with phosphorus and zinc contents. Further, fungal alpha diversity was lowest in the NPK+PM treatment and was negatively correlated with both phosphorus and zinc contents. Moreover, NPK+PM treatment had the lowest complexity of fungal co-occurrence network, and in general network complexity was significantly negatively correlated with the zinc and phosphorus contents. Taken together, these results suggest that long-term fertilization can impact fungal communities not only in soils but in root endosphere, and this is strongly associated with the contents of phosphorus and zinc there, a finding important for guiding fertilization management practices and supporting sustainable agriculture. IMPORTANCE Fungi, an essential component in nutrient cycling and plant growth, are highly sensitive to fertilization. However, there are limited studies on fungi in root endosphere under long-term fertilization management. Our research extended the study on the endophytic fungal community of crop roots under agricultural management and found that its responses were similar to the communities in soil habitats. In addition, the type of organic materials was reported as the main driver affecting soil fungal community under long-term fertilization. Our research further revealed that the underlying mechanism of affecting the fungal communities in the soils and roots was the differences in phosphorus and zinc contents caused by the application of different organic materials. Therefore, our results highlight that except for phosphorus, zinc content of the organic materials should be considered in long-term organic fertilization systems.
Collapse
Affiliation(s)
- Di Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuying Ma
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Teng Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guifeng Gao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Daozhong Wang
- Key Laboratory of Nutrient Cycling and Resources Environment of Anhui Province, Soil and Fertilizer Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Xisheng Guo
- Key Laboratory of Nutrient Cycling and Resources Environment of Anhui Province, Soil and Fertilizer Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Haiyan Chu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
15
|
Diversity of Arbuscular Mycorrhizal Fungi in the Ecuadorian Amazon Region. Fungal Biol 2022. [DOI: 10.1007/978-3-031-12994-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
16
|
Soil Fungal Diversity of the Aguarongo Andean Forest (Ecuador). BIOLOGY 2021; 10:biology10121289. [PMID: 34943204 PMCID: PMC8698837 DOI: 10.3390/biology10121289] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/28/2021] [Accepted: 12/01/2021] [Indexed: 01/04/2023]
Abstract
Simple Summary The Kingdom Fungi is one of the richest in species, most of which are still unknown. Many fungal species are hidden in the tropics, the area richest in biodiversity on earth. In this paper, a mycological analysis is presented on a vast number of soil samples collected in the Aguarongo forest, an important Andean Natural Reserve of Ecuador. The study was carried out by analyzing the total DNA extracted from the soil and unveiled a total of more than 400 species of fungi. The most abundant species belong to Ascomycota and Mortierellomycota; some are important beneficial fungi for the environments such as antagonistics of fungal pathogens or nematode predators, while others are well-known producers of nutraceutical and pharmaceutical compounds. Based on the results of this study, a picture of the mycodiversity of Aguarongo forest soil was obtained. This area hides a huge number of unknown fungal species that could be discovered; thus, the protection of the Aguarongo forest is mandatory. Abstract Fungi represent an essential component of ecosystems, functioning as decomposers and biotrophs, and they are one of the most diverse groups of Eukarya. In the tropics, many species are unknown. In this work, high-throughput DNA sequencing was used to discover the biodiversity of soil fungi in the Aguarongo forest reserve, one of the richest biodiversity hotspots in Ecuador. The rDNA metabarcoding analysis revealed the presence of seven phyla: Ascomycota, Basidiomycota, Mortierellomycota, Mucoromycota, Glomeromycota, Chytridiomycota, and Monoblepharomycota. A total of 440 identified species were recorded. They mainly belonged to Ascomycota (263) and Basidiomycota (127). In Mortierellomycota, 12 species were recorded, among which Podila verticillata is extremely frequent and represents the dominant species in the entire mycobiota of Aguarongo. The present research provides the first account of the entire soil mycobiota in the Aguarongo forest, where many fungal species exist that have strong application potential in agriculture, bioremediation, chemical, and the food industry. The Aguarongo forest hides a huge number of unknown fungal species that could be assessed, and its protection is of the utmost importance.
Collapse
|
17
|
Yu Z, Liang K, Wang X, Huang G, Lin M, Zhou Z, Chen Y. Alterations in Arbuscular Mycorrhizal Community Along a Chronosequence of Teak ( Tectona grandis) Plantations in Tropical Forests of China. Front Microbiol 2021; 12:737068. [PMID: 34899624 PMCID: PMC8660861 DOI: 10.3389/fmicb.2021.737068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/03/2021] [Indexed: 12/02/2022] Open
Abstract
Arbuscular mycorrhizal (AM) fungi play a crucial role in promoting plant growth, enhancing plant stress resistance, and sustaining a healthy ecosystem. However, little is known about the mycorrhizal status of teak plantations. Here, we evaluated how the AM fungal communities of rhizosphere soils and roots respond to different stand ages of teak: 22, 35, 45, and 55-year-old from the adjacent native grassland (CK). A high-throughput sequencing method was used to compare the differences in soil and root AM fungal community structures. In combination with soil parameters, mechanisms driving the AM fungal community were revealed by redundancy analysis and the Mantel test. Additionally, spore density and colonization rates were analyzed. With increasing stand age, the AM fungal colonization rates and spore density increased linearly. Catalase activity and ammonium nitrogen content also increased, and soil organic carbon, total phosphorous, acid phosphatase activity, available potassium, and available phosphorus first increased and then decreased. Stand age significantly changed the structure of the AM fungal community but had no significant impact on the diversity of the AM fungal community. However, the diversity of the AM fungal community in soils was statistically higher than that in the roots. In total, nine and seven AM fungal genera were detected in the soil and root samples, respectively. The majority of sequences in soils and roots belonged to Glomus. Age-induced changes in soil properties could largely explain the alterations in the structure of the AM fungal community along a chronosequence, which included total potassium, carbon-nitrogen ratio, ammonium nitrogen, catalase, and acid phosphatase levels in soils and catalase, acid phosphatase, pH, and total potassium levels in roots. Soil nutrient availability and enzyme activity were the main driving factors regulating the shift in the AM fungal community structure along a chronosequence of the teak plantations.
Collapse
Affiliation(s)
- Zhi Yu
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Kunnan Liang
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Xianbang Wang
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Guihua Huang
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Mingping Lin
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Zaizhi Zhou
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Yinglong Chen
- School of Agriculture and Environment, Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
18
|
Effects of Abiotic Stress on Soil Microbiome. Int J Mol Sci 2021; 22:ijms22169036. [PMID: 34445742 PMCID: PMC8396473 DOI: 10.3390/ijms22169036] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023] Open
Abstract
Rhizospheric organisms have a unique manner of existence since many factors can influence the shape of the microbiome. As we all know, harnessing the interaction between soil microbes and plants is critical for sustainable agriculture and ecosystems. We can achieve sustainable agricultural practice by incorporating plant-microbiome interaction as a positive technology. The contribution of this interaction has piqued the interest of experts, who plan to do more research using beneficial microorganism in order to accomplish this vision. Plants engage in a wide range of interrelationship with soil microorganism, spanning the entire spectrum of ecological potential which can be mutualistic, commensal, neutral, exploitative, or competitive. Mutualistic microorganism found in plant-associated microbial communities assist their host in a number of ways. Many studies have demonstrated that the soil microbiome may provide significant advantages to the host plant. However, various soil conditions (pH, temperature, oxygen, physics-chemistry and moisture), soil environments (drought, submergence, metal toxicity and salinity), plant types/genotype, and agricultural practices may result in distinct microbial composition and characteristics, as well as its mechanism to promote plant development and defence against all these stressors. In this paper, we provide an in-depth overview of how the above factors are able to affect the soil microbial structure and communities and change above and below ground interactions. Future prospects will also be discussed.
Collapse
|
19
|
Mature Andean forests as globally important carbon sinks and future carbon refuges. Nat Commun 2021; 12:2138. [PMID: 33837222 PMCID: PMC8035207 DOI: 10.1038/s41467-021-22459-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 03/17/2021] [Indexed: 02/01/2023] Open
Abstract
It is largely unknown how South America's Andean forests affect the global carbon cycle, and thus regulate climate change. Here, we measure aboveground carbon dynamics over the past two decades in 119 monitoring plots spanning a range of >3000 m elevation across the subtropical and tropical Andes. Our results show that Andean forests act as strong sinks for aboveground carbon (0.67 ± 0.08 Mg C ha-1 y-1) and have a high potential to serve as future carbon refuges. Aboveground carbon dynamics of Andean forests are driven by abiotic and biotic factors, such as climate and size-dependent mortality of trees. The increasing aboveground carbon stocks offset the estimated C emissions due to deforestation between 2003 and 2014, resulting in a net total uptake of 0.027 Pg C y-1. Reducing deforestation will increase Andean aboveground carbon stocks, facilitate upward species migrations, and allow for recovery of biomass losses due to climate change.
Collapse
|
20
|
Ma X, Geng Q, Zhang H, Bian C, Chen HYH, Jiang D, Xu X. Global negative effects of nutrient enrichment on arbuscular mycorrhizal fungi, plant diversity and ecosystem multifunctionality. THE NEW PHYTOLOGIST 2021; 229:2957-2969. [PMID: 33188641 DOI: 10.1111/nph.17077] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/06/2020] [Indexed: 06/11/2023]
Abstract
Despite widespread anthropogenic nutrient enrichment, it remains unclear how nutrient enrichment influences plant-arbuscular mycorrhizal fungi (AMF) symbiosis and ecosystem multifunctionality at the global scale. Here, we conducted a meta-analysis to examine the worldwide effects of nutrient enrichment on AMF and plant diversity and ecosystem multifunctionality using data of field experiments from 136 papers. Our analyses showed that nutrient addition simultaneously decreased AMF diversity and abundance belowground and plant diversity aboveground at the global scale. The decreases in AMF diversity and abundance associated with nutrient addition were more pronounced with increasing experimental duration, mean annual temperature (MAT) and mean annual precipitation (MAP). Nutrient addition-induced changes in soil pH and available phosphorus (P) predominantly regulated the responses of AMF diversity and abundance. Furthermore, AMF diversity correlated with ecosystem multifunctionality under nutrient addition worldwide. Our findings identify the negative effects of nutrient enrichment on AMF and plant diversity and suggest that AMF diversity is closely linked with ecosystem function. This study offers an important advancement in our understanding of plant-AMF interactions and their likely responses to ongoing global change.
Collapse
Affiliation(s)
- Xiaocui Ma
- Department of Ecology, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Qinghong Geng
- Department of Ecology, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Huiguang Zhang
- Center for Scientific Research and Monitoring, Wuyishan National Park, Wuyishan, Fujian, 354300, China
| | - Chenyu Bian
- Tiantong National Forest Ecosystem Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Han Y H Chen
- Faculty of Natural Resources Management, Lakehead University, 955 Oliver Rd, Thunder Bay, ON, P7B 5E1, Canada
| | - Dalong Jiang
- Department of Ecology, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Xia Xu
- Department of Ecology, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| |
Collapse
|
21
|
Wang Q, Ma M, Jiang X, Guan D, Wei D, Cao F, Kang Y, Chu C, Wu S, Li J. Influence of 37 Years of Nitrogen and Phosphorus Fertilization on Composition of Rhizosphere Arbuscular Mycorrhizal Fungi Communities in Black Soil of Northeast China. Front Microbiol 2020; 11:539669. [PMID: 33013777 PMCID: PMC7506078 DOI: 10.3389/fmicb.2020.539669] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 08/19/2020] [Indexed: 11/21/2022] Open
Abstract
Increased inorganic nitrogen (N) and phosphorus (P) additions expected in the future will endanger the biodiversity and stability of agricultural ecosystems. In this context, a long-term fertilizer experiment (37 years) was set up in the black soil of northeast China. We examined interaction impacts of elevated fertilizer and host selection processes on arbuscular mycorrhizal fungi (AMF) communities in wheat rhizosphere soil using the Illumina MiSeq platform. The soil samples were subjected to five fertilization regimes: no fertilizer (CK) and low N (N1), low N plus low P (N1P1), high N (N2), and high N plus high P (N2P2) fertilizer. Long-term fertilization resulted in a significant shift in rhizosphere soil nutrient concentrations. The N fertilization (N1 and N2) did not significantly change rhizosphere AMF species diversity, but N plus P fertilization (N1P1 and N2P2) decreased it compared with CK. Non-metric multidimensional scaling showed that the rhizosphere AMF communities in CK, N1, N2, N1P1 and N2P2 treatments were distinct from each other. The AMF communities were predominantly composed of Glomeraceae, accounting for 30.0–39.1% of the sequences, and the relative abundance of family Glomeraceae was more abundance in fertilized soils, while family Paraglomeraceae were increased in N1 and N2 compared with CK. Analysis shown that AMF diversity was directly affected by soil C:P ratio but indirectly affected by plant under long-term fertilization. Overall, the results indicated that long-term N and P fertilization regimes changed rhizosphere AMF diversity and community composition, and rhizosphere AMF diversity was both affected by soil C:P ratio and plant.
Collapse
Affiliation(s)
- Qingfeng Wang
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Mingchao Ma
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xin Jiang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dawei Guan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dan Wei
- The Institute of Soil Fertility and Environmental Sources, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Fengming Cao
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yaowei Kang
- College of Life Science, Zhaoqing University, Zhaoqing, China
| | - Changbin Chu
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Shuhang Wu
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jun Li
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|