1
|
Zhao YW, Zhao TT, Sun Q, Liu XL, Huang XY, Li LG, Wang HB, Li WK, Wang CK, Wang WY, Xiang Y, Ma CN, Chen XS, Cheng L, Hu DG. Enrichment of two important metabolites D-galacturonic acid and D-glucuronic acid inhibits MdHb1-mediated fruit softening in apple. NATURE PLANTS 2025; 11:891-908. [PMID: 40247144 DOI: 10.1038/s41477-025-01964-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 02/27/2025] [Indexed: 04/19/2025]
Abstract
In apples, fruit firmness is a crucial quality trait influencing fruit storability, transportability, shelf life and consumer preference. However, the genetic network underlying this trait remains unclear. Therefore, the present study investigated the changes in apple fruit at different stages of postharvest storage using a combination of transcriptomic and metabolomic analyses. With prolonged storage, we detected a significant increase in two metabolites, D-galacturonic acid (D-GalUA) and D-glucuronic acid (D-GlcA), which are associated with a key class 1 non-symbiotic haemoglobin (MdHb1). We innovatively found that MdHb1 regulates fruit softening by catalysing the conversion from protopectin to water-soluble pectin. Biochemical analysis demonstrated that MdMYB2/MdNAC14/MdNTL9 transcription factors directly bind to the MdHb1 promoter to activate its transcriptional expression and promote fruit softening. Further injection experiments in apple fruit and histological as well as transmission electron microscopy analyses of the fruit samples revealed that D-GalUA and D-GlcA reduce the transcription of MdHb1, or through the MdMYB2/MdNAC14/MdNTL9-MdHb1 regulatory module, thereby delaying fruit softening. Our study provides novel insights into the role of two important metabolites, D-GalUA and D-GlcA, in the regulation of MdHb1-mediated fruit softening in apples.
Collapse
Affiliation(s)
- Yu-Wen Zhao
- National Research Center for Apple Engineering and Technology; Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Ting-Ting Zhao
- National Research Center for Apple Engineering and Technology; Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Quan Sun
- National Research Center for Apple Engineering and Technology; Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Xiao-Long Liu
- National Research Center for Apple Engineering and Technology; Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Xiao-Yu Huang
- National Research Center for Apple Engineering and Technology; Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Lin-Guang Li
- Shandong Institute of Pomology, Key Laboratory for Fruit Biotechnology Breeding of Shandong, Tai'an, Shandong, China
| | - Hai-Bo Wang
- Shandong Institute of Pomology, Key Laboratory for Fruit Biotechnology Breeding of Shandong, Tai'an, Shandong, China
| | - Wan-Kun Li
- National Research Center for Apple Engineering and Technology; Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Chu-Kun Wang
- National Research Center for Apple Engineering and Technology; Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Wen-Yan Wang
- National Research Center for Apple Engineering and Technology; Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Ying Xiang
- Department of Horticulture, Agriculture College, Shihezi University, Shihezi, China
| | - Chang-Ning Ma
- National Research Center for Apple Engineering and Technology; Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Xue-Sen Chen
- National Research Center for Apple Engineering and Technology; Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Lailiang Cheng
- Section of Horticulture, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Da-Gang Hu
- National Research Center for Apple Engineering and Technology; Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China.
| |
Collapse
|
2
|
Zeng Z, Li Y, Zhu M, Wang X, Wang Y, Li A, Chen X, Han Q, Nieuwenhuizen NJ, Ampomah-Dwamena C, Deng X, Cheng Y, Xu Q, Xiao C, Zhang F, Atkinson RG, Zeng Y. Kiwifruit spatiotemporal multiomics networks uncover key tissue-specific regulatory processes throughout the life cycle. PLANT PHYSIOLOGY 2024; 197:kiae567. [PMID: 39673719 DOI: 10.1093/plphys/kiae567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/24/2024] [Indexed: 12/16/2024]
Abstract
Kiwifruit (Actinidia chinensis), a recently commercialized horticultural crop, is rich in various nutrient compounds. However, the regulatory networks controlling the dynamic changes in key metabolites among different tissues remain largely unknown. Here, high-resolution spatiotemporal datasets obtained by ultraperformance liquid chromatography-tandem mass spectrometry methodology and RNA-seq were employed to investigate the dynamic changes in the metabolic and transcriptional landscape of major kiwifruit tissues across different developmental stages, including from fruit skin, outer pericarp, inner pericarp, and fruit core. Kiwifruit spatiotemporal regulatory networks (KSRN) were constructed by integrating the 1,243 identified metabolites and co-expressed genes into 10 different clusters and 11 modules based on their biological functions. These networks allowed the generation of a global map for the major metabolic and transcriptional changes occurring throughout the life cycle of different kiwifruit tissues and discovery of the underlying regulatory networks. KSRN predictions confirmed previously established regulatory networks, including the spatiotemporal accumulation of anthocyanin and ascorbic acid (AsA). More importantly, the networks led to the functional characterization of three transcription factors: an A. chinensis ethylene response factor 1, which negatively controls sugar accumulation and ethylene production by perceiving the ripening signal, a basic-leucine zipper 60 (AcbZIP60) transcription factor, which is involved in the biosynthesis of AsA as part of the L-galactose pathway, and a transcription factor related to apetala 2.4 (RAP2.4), which directly activates the expression of the kiwi fruit aroma terpene synthase gene AcTPS1b. Our findings provide insights into spatiotemporal changes in kiwifruit metabolism and generate a valuable resource for the study of metabolic regulatory processes in kiwifruit as well as other fruits.
Collapse
Affiliation(s)
- Zhebin Zeng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Joint International Research Laboratory of Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Yawei Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Joint International Research Laboratory of Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Man Zhu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Joint International Research Laboratory of Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, P.R. China
- College of Horticulture, Xinyang Agriculture and Forestry University, Xinyang 464000, P.R. China
| | - Xiaoyao Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Joint International Research Laboratory of Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Yan Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Joint International Research Laboratory of Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Ang Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Joint International Research Laboratory of Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Xiaoya Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Joint International Research Laboratory of Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Qianrong Han
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Joint International Research Laboratory of Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Niels J Nieuwenhuizen
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Private Bag, Auckland 92169, New Zealand
| | - Charles Ampomah-Dwamena
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Private Bag, Auckland 92169, New Zealand
| | - Xiuxin Deng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Joint International Research Laboratory of Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Yunjiang Cheng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Joint International Research Laboratory of Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Qiang Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Joint International Research Laboratory of Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Cui Xiao
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, P.R. China
| | - Fan Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Joint International Research Laboratory of Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Ross G Atkinson
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Private Bag, Auckland 92169, New Zealand
| | - Yunliu Zeng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Joint International Research Laboratory of Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, P.R. China
| |
Collapse
|
3
|
Wei P, Guo G, Shen T, Luo A, Wu Q, Zhou S, Tang X, Liu L, Ye Z, Zhu L, Jia B. GH3 Gene Family Identification in Chinese White Pear ( Pyrus bretschneideri) and the Functional Analysis of PbrGH3.5 in Fe Deficiency Responses in Tomato. Int J Mol Sci 2024; 25:12980. [PMID: 39684691 DOI: 10.3390/ijms252312980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/29/2024] [Accepted: 12/01/2024] [Indexed: 12/18/2024] Open
Abstract
Iron (Fe) deficiency poses a major threat to pear (Pyrus spp.) fruit yield and quality. The Gretchen Hagen 3 (GH3) plays a vital part in plant stress responses. However, the GH3 gene family is yet to be characterized, and little focus has been given to the function of the GH3 gene in Fe deficiency responses. Here, we identified 15 GH3 proteins from the proteome of Chinese white pear (Pyrus bretschneideri) and analyzed their features using bioinformatics approaches. Structure domain and motif analyses showed that these PbrGH3s were relatively conserved, and phylogenetic investigation displayed that they were clustered into two groups (GH3 I and GH3 II). Meanwhile, cis-acting regulatory element searches of the corresponding promoters revealed that these PbrGH3s might be involved in ABA- and drought-mediated responses. Moreover, the analysis of gene expression patterns exhibited that most of the PbrGH3s were highly expressed in the calyxes, ovaries, and stems of pear plants, and some genes were significantly differentially expressed in normal and Fe-deficient pear leaves, especially for PbrGH3.5. Subsequently, the sequence of PbrGH3.5 was isolated from the pear, and the transgenic tomato plants with PbrGH3.5 overexpression (OE) were generated to investigate its role in Fe deficiency responses. It was found that the OE plants were more sensitive to Fe deficiency stress. Compared with wild-type (WT) plants, the rhizosphere acidification and ferric reductase activities were markedly weakened, and the capacity to scavenge reactive oxygen species was prominently impaired in OE plants under Fe starvation conditions. Moreover, the expressions of Fe-acquisition-associated genes, such as SlAHA4, SlFRO1, SlIRT1, and SlFER, were all greatly repressed in OE leaves under Fe depravation stress, and the free IAA level was dramatically reduced, while the conjugated IAA contents were notably escalated. Combined, our findings suggest that pear PbrGH3.5 negatively regulates Fe deficiency responses in tomato plants, and might help enrich the molecular basis of Fe deficiency responses in woody plants.
Collapse
Affiliation(s)
- Pengfei Wei
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Guoling Guo
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Taijing Shen
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Anran Luo
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Qin Wu
- Jinzhai Modern Agricultural Cooperation Center, Integrated Experimental Station in Dabie Mountains, Anhui Agricultural University, Lu'an 237000, China
| | - Shanshan Zhou
- Jinzhai Modern Agricultural Cooperation Center, Integrated Experimental Station in Dabie Mountains, Anhui Agricultural University, Lu'an 237000, China
| | - Xiaomei Tang
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
- Jinzhai Modern Agricultural Cooperation Center, Integrated Experimental Station in Dabie Mountains, Anhui Agricultural University, Lu'an 237000, China
| | - Lun Liu
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
- Jinzhai Modern Agricultural Cooperation Center, Integrated Experimental Station in Dabie Mountains, Anhui Agricultural University, Lu'an 237000, China
| | - Zhenfeng Ye
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
- Jinzhai Modern Agricultural Cooperation Center, Integrated Experimental Station in Dabie Mountains, Anhui Agricultural University, Lu'an 237000, China
| | - Liwu Zhu
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Bing Jia
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
4
|
Zhang QY, Ma CN, Gu KD, Wang JH, Yu JQ, Liu B, Wang Y, He JX, Hu DG, Sun Q. The BTB-BACK-TAZ domain protein MdBT2 reduces drought resistance by weakening the positive regulatory effect of MdHDZ27 on apple drought tolerance via ubiquitination. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:283-299. [PMID: 38606500 DOI: 10.1111/tpj.16761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024]
Abstract
Drought stress is one of the dominating challenges to the growth and productivity in crop plants. Elucidating the molecular mechanisms of plants responses to drought stress is fundamental to improve fruit quality. However, such molecular mechanisms are poorly understood in apple (Malus domestica Borkh.). In this study, we explored that the BTB-BACK-TAZ protein, MdBT2, negatively modulates the drought tolerance of apple plantlets. Moreover, we identified a novel Homeodomain-leucine zipper (HD-Zip) transcription factor, MdHDZ27, using a yeast two-hybrid (Y2H) screen with MdBT2 as the bait. Overexpression of MdHDZ27 in apple plantlets, calli, and tomato plantlets enhanced their drought tolerance by promoting the expression of drought tolerance-related genes [responsive to dehydration 29A (MdRD29A) and MdRD29B]. Biochemical analyses demonstrated that MdHDZ27 directly binds to and activates the promoters of MdRD29A and MdRD29B. Furthermore, in vitro and in vivo assays indicate that MdBT2 interacts with and ubiquitinates MdHDZ27, via the ubiquitin/26S proteasome pathway. This ubiquitination results in the degradation of MdHDZ27 and weakens the transcriptional activation of MdHDZ27 on MdRD29A and MdRD29B. Finally, a series of transgenic analyses in apple plantlets further clarified the role of the relationship between MdBT2 and MdHDZ27, as well as the effect of their interaction on drought resistance in apple plantlets. Collectively, our findings reveal a novel mechanism by which the MdBT2-MdHDZ27 regulatory module controls drought tolerance, which is of great significance for enhancing the drought resistance of apple and other plants.
Collapse
Affiliation(s)
- Quan-Yan Zhang
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi, Shandong, 276000, China
| | - Chang-Ning Ma
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Kai-Di Gu
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Jia-Hui Wang
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Jian-Qiang Yu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Bo Liu
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi, Shandong, 276000, China
| | - Yun Wang
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi, Shandong, 276000, China
| | - Jun-Xia He
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi, Shandong, 276000, China
| | - Da-Gang Hu
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Quan Sun
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| |
Collapse
|
5
|
Li P, He Y, Xiao L, Quan M, Gu M, Jin Z, Zhou J, Li L, Bo W, Qi W, Huang R, Lv C, Wang D, Liu Q, El-Kassaby YA, Du Q, Zhang D. Temporal dynamics of genetic architecture governing leaf development in Populus. THE NEW PHYTOLOGIST 2024; 242:1113-1130. [PMID: 38418427 DOI: 10.1111/nph.19649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 02/13/2024] [Indexed: 03/01/2024]
Abstract
Leaf development is a multifaceted and dynamic process orchestrated by a myriad of genes to shape the proper size and morphology. The dynamic genetic network underlying leaf development remains largely unknown. Utilizing a synergistic genetic approach encompassing dynamic genome-wide association study (GWAS), time-ordered gene co-expression network (TO-GCN) analyses and gene manipulation, we explored the temporal genetic architecture and regulatory network governing leaf development in Populus. We identified 42 time-specific and 18 consecutive genes that displayed different patterns of expression at various time points. We then constructed eight TO-GCNs that covered the cell proliferation, transition, and cell expansion stages of leaf development. Integrating GWAS and TO-GCN, we postulated the functions of 27 causative genes for GWAS and identified PtoGRF9 as a key player in leaf development. Genetic manipulation via overexpression and suppression of PtoGRF9 revealed its primary influence on leaf development by modulating cell proliferation. Furthermore, we elucidated that PtoGRF9 governs leaf development by activating PtoHB21 during the cell proliferation stage and attenuating PtoLD during the transition stage. Our study provides insights into the dynamic genetic underpinnings of leaf development and understanding the regulatory mechanism of PtoGRF9 in this dynamic process.
Collapse
Affiliation(s)
- Peng Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yuling He
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Liang Xiao
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Mingyang Quan
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Mingyue Gu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Zhuoying Jin
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Jiaxuan Zhou
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Lianzheng Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Wenhao Bo
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Weina Qi
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Rui Huang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Chenfei Lv
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Dan Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Qing Liu
- CSIRO Agriculture and Food, Black Mountain, Canberra, ACT, 2601, Australia
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, Forest Sciences Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Qingzhang Du
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Deqiang Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
6
|
Liu X, Wang Y, Ma X, Zhang H, Zhou Y, Ma F, Li C. MdbHLH93 confers drought tolerance by activating MdTyDC expression and promoting dopamine biosynthesis. Int J Biol Macromol 2024; 258:129003. [PMID: 38159695 DOI: 10.1016/j.ijbiomac.2023.129003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Dopamine and its biosynthesis-limiting enzyme tyrosine decarboxylase (TyDC) play a vital part in mediating plant growth and the response to drought stress. However, the underlying molecular mechanism remains poorly understood. Here, drought stress markedly induced the expression of Malus domestica bHLH93 (MdbHLH93), the apple basic helix-loop-helix transcription factor. Moreover, MdbHLH93 directly bound to the Malus domestica TyDC (MdTyDC) promoter and positively regulated its expression, which resulted in dopamine synthesis and enhanced drought tolerance. Furthermore, the additive effect of overexpressing MdbHLH93 and MdTyDC simultaneously promoted dopamine synthesis and drought tolerance in apples, while the interference of MdbHLH93 inhibited this effect, indicating that MdTyDC-regulated dopamine synthesis and drought tolerance were positively regulated by MdbHLH93. Taken together, these findings suggest the positive regulation of dopamine accumulation by MdbHLH93 through its transcriptional regulation of MdTyDC and show that increased dopamine content confers drought tolerance in apples.
Collapse
Affiliation(s)
- Xiaomin Liu
- State Key Laboratory for Crop Stress Resistance and High Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yanpeng Wang
- State Key Laboratory for Crop Stress Resistance and High Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, Zhejiang Province, China
| | - Xiaoying Ma
- State Key Laboratory for Crop Stress Resistance and High Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hongyi Zhang
- State Key Laboratory for Crop Stress Resistance and High Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yi Zhou
- State Key Laboratory for Crop Stress Resistance and High Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory for Crop Stress Resistance and High Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Chao Li
- State Key Laboratory for Crop Stress Resistance and High Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
7
|
Luo P, Li TT, Shi WM, Ma Q, Di DW. The Roles of GRETCHEN HAGEN3 (GH3)-Dependent Auxin Conjugation in the Regulation of Plant Development and Stress Adaptation. PLANTS (BASEL, SWITZERLAND) 2023; 12:4111. [PMID: 38140438 PMCID: PMC10747189 DOI: 10.3390/plants12244111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023]
Abstract
The precise control of free auxin (indole-3-acetic acid, IAA) gradient, which is orchestrated by biosynthesis, conjugation, degradation, hydrolyzation, and transport, is critical for all aspects of plant growth and development. Of these, the GRETCHEN HAGEN 3 (GH3) acyl acid amido synthetase family, pivotal in conjugating IAA with amino acids, has garnered significant interest. Recent advances in understanding GH3-dependent IAA conjugation have positioned GH3 functional elucidation as a hot topic of research. This review aims to consolidate and discuss recent findings on (i) the enzymatic mechanisms driving GH3 activity, (ii) the influence of chemical inhibitor on GH3 function, and (iii) the transcriptional regulation of GH3 and its impact on plant development and stress response. Additionally, we explore the distinct biological functions attributed to IAA-amino acid conjugates.
Collapse
Affiliation(s)
- Pan Luo
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Ting-Ting Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (T.-T.L.); (W.-M.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Ming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (T.-T.L.); (W.-M.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Ma
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Dong-Wei Di
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (T.-T.L.); (W.-M.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Wang J, Xue L, Zhang X, Hou Y, Zheng K, Fu D, Dong W. A New Function of MbIAA19 Identified to Modulate Malus Plants Dwarfing Growth. PLANTS (BASEL, SWITZERLAND) 2023; 12:3097. [PMID: 37687343 PMCID: PMC10490418 DOI: 10.3390/plants12173097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/05/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023]
Abstract
The primary determinants of apple (Malus) tree architecture include plant height and internode length, which are the significant criteria for evaluating apple dwarf rootstocks. Plant height and internode length are predominantly governed by phytohormones. In this study, we aimed to assess the mechanisms underlying dwarfism in a mutant of Malus baccata. M. baccata dwarf mutant (Dwf) was previously obtained through natural mutation. It has considerably reduced plant height and internode length. A comparative transcriptome analysis of wild-type (WT) and Dwf mutant was performed to identify and annotate the differentially expressed genes responsible for the Dwf phenotype using RNA-seq and GO and KEGG pathway enrichment analyses. Multiple DEGs involved in hormone signaling pathways, particularly auxin signaling pathways, were identified. Moreover, the levels of endogenous indole-3-acetic acid (IAA) were lower in Dwf mutant than in WT. The Aux/IAA transcription factor gene MbIAA19 was downregulated in Dwf mutant due to a single nucleotide sequence change in its promoter. Genetic transformation assay demonstrated strong association between MbIAA19 and the dwarf phenotype. RNAi-IAA19 lines clearly exhibited reduced plant height, internode length, and endogenous IAA levels. Our study revealed that MbIAA19 plays a role in the regulation of dwarfism and endogenous IAA levels in M. baccata.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wenxuan Dong
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China; (J.W.); (L.X.); (X.Z.); (Y.H.); (K.Z.); (D.F.)
| |
Collapse
|
9
|
Qiao ZW, Wang DR, Wang X, You CX, Wang XF. Genome-wide identification and stress response analysis of cyclophilin gene family in apple (Malus × domestica). BMC Genomics 2022; 23:806. [PMID: 36474166 PMCID: PMC9727951 DOI: 10.1186/s12864-022-08976-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 10/29/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Cyclophilin (CYP) belongs to the immunophilin family and has peptidyl-prolyl cis-trans isomerase (PPIase) activity, which catalyzes the cis-trans isomerization process of proline residues. CYPs widely exist in eukaryotes and prokaryotes, and contain a conserved cyclophilin-like domain (CLD). Plant cyclophilins are widely involved in a range of biological processes including stress response, metabolic regulation, and growth and development. RESULT In this study, 30 cyclophilin genes on 15 chromosomes were identified from the 'Golden Delicious' apple (M. domestica) genome. Phylogenetic analysis showed that the cyclophilin family genes can be divided into three clades in Malus. Collinear analysis showed that ten gene pairs were the result of segmental duplication. Analysis of gene and protein structure further supported the phylogenetic tree and collinearity analysis. The expression of MdCYPs in different organs was higher in leaves, flowers, and fruits. Ten and eight CYPs responded to drought and salt stress, respectively. MdCYP16, a nuclear-localized MD CYP, was screened from the intersection of the two expression profiling datasets and was highly sensitive to drought and salt stress. GUS staining of transgenic Arabidopsis indicated that MdCYP16 may be involved in the regulation of abiotic stress. CONCLUSION This study systematically analyzed members of the apple cyclophilin family and confirmed the involvement of MdCYP16 as a nuclear-localized MD cyclophilin that acts in response to salt and drought stress in apple. Our work identifies members of the apple cyclophilin gene family, and provides an important theoretical basis for in-depth study of cyclophilin function. Additionally, the analysis provides candidate genes that may be involved in stress response in apple.
Collapse
Affiliation(s)
- Zhi-Wen Qiao
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Da-Ru Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Xun Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Chun-Xiang You
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| | - Xiao-Fei Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
10
|
Islam W, Naveed H, Idress A, Ishaq DU, Kurfi BG, Zeng F. Plant responses to metals stress: microRNAs in focus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:69197-69212. [PMID: 35951237 DOI: 10.1007/s11356-022-22451-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Metal toxicity can largely affect the growth and yield of numerous plant species. Plants have developed specific mechanisms to withstand the varying amounts of metals. One approach involves utilization of microRNAs (miRNAs) that are known for cleaving transcripts or inhibiting translation to mediate post-transcriptional control. Use of transcription factors (TFs) or gene regulation in metal detoxification largely depends on metal-responsive miRNAs. Moreover, systemic signals and physiological processes for plants response to metal toxicities are likewise controlled by miRNAs. Therefore, it is necessary to understand miRNAs and their regulatory networks in relation to metal stress. The miRNA-based approach can be important to produce metal-tolerant plant species. Here, we have reviewed the importance of plant miRNAs and their role in mitigating metal toxicities. The current review also discusses the specific advances that have occurred as a result of the identification and validation of several metal stress-responsive miRNAs.
Collapse
Affiliation(s)
- Waqar Islam
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, 848300, China
| | - Hassan Naveed
- College of Life Sciences, Leshan Normal University, Sichuan, 614004, China
| | - Atif Idress
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China
| | - Daha Umar Ishaq
- Centre of Mitochondrial Biology & Medicine, Xian Joiotong University, Xi'An, 710049, China
- Department of Biochemistry, Faculty of Basic Medical Sciences, Bayero University, Kano, 700241, Nigeria
| | - Binta G Kurfi
- Department of Biochemistry, Faculty of Basic Medical Sciences, Bayero University, Kano, 700241, Nigeria
| | - Fanjiang Zeng
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, 848300, China.
| |
Collapse
|
11
|
Liu W, Yi Y, Zhuang J, Ge C, Cao Y, Zhang L, Liu M. Genome-wide identification and transcriptional profiling of the basic helix-loop-helix gene family in tung tree ( Vernicia fordii). PeerJ 2022; 10:e13981. [PMID: 36193421 PMCID: PMC9526410 DOI: 10.7717/peerj.13981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/10/2022] [Indexed: 01/19/2023] Open
Abstract
The basic helix-loop-helix (bHLH) transcription factor gene family is one of the largest gene families and is extensively involved in plant growth, development, biotic and abiotic stress responses. Tung tree (Vernicia fordii) is an economically important woody oil plant that produces tung oil rich in eleostearic acid. However, the characteristics of the bHLH gene family in the tung tree genome are still unclear. Hence, VfbHLHs were first searched at a genome-wide level, and their expression levels in various tissues or under low temperature were investigated systematically. In this study, we identified 104 VfbHLHs in the tung tree genome, and these genes were classified into 18 subfamilies according to bHLH domains. Ninety-eight VfbHLHs were mapped to but not evenly distributed on 11 pseudochromosomes. The domain sequences among VfbHLHs were highly conserved, and their conserved residues were also identified. To explore their expression, we performed gene expression profiling using RNA-Seq and RT-qPCR. We identified five, 18 and 28 VfbHLH genes in female flowers, male flowers and seeds, respectively. Furthermore, we found that eight genes (VfbHLH29, VfbHLH31, VfbHLH47, VfbHLH51, VfbHLH57, VfbHLH59, VfbHLH70, VfbHLH72) were significant differential expressed in roots, leaves and petioles under low temperature stress. This study lays the foundation for future studies on bHLH gene cloning, transgenes, and biological mechanisms.
Collapse
Affiliation(s)
- Wenjuan Liu
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, Hunan, China,Key Lab of Non-wood Forest Products of State Forestry Administration, College of Forestry, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Yaqi Yi
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, Hunan, China,Key Lab of Non-wood Forest Products of State Forestry Administration, College of Forestry, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Jingyi Zhuang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, Hunan, China,Key Lab of Non-wood Forest Products of State Forestry Administration, College of Forestry, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Chang Ge
- School of Urban Design, Wuhan University, Wuhan, Hubei, China
| | - Yunpeng Cao
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, Hunan, China,Key Lab of Non-wood Forest Products of State Forestry Administration, College of Forestry, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Lin Zhang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, Hunan, China,Key Lab of Non-wood Forest Products of State Forestry Administration, College of Forestry, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Meilan Liu
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, Hunan, China,Key Lab of Non-wood Forest Products of State Forestry Administration, College of Forestry, Central South University of Forestry and Technology, Changsha, Hunan, China
| |
Collapse
|
12
|
Zhang N, Hecht C, Sun X, Fei Z, Martin GB. Loss of function of the bHLH transcription factor Nrd1 in tomato enhances resistance to Pseudomonas syringae. PLANT PHYSIOLOGY 2022; 190:1334-1348. [PMID: 35751605 PMCID: PMC9516780 DOI: 10.1093/plphys/kiac312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 06/10/2022] [Indexed: 05/02/2023]
Abstract
Basic helix-loop-helix (bHLH) transcription factors constitute a superfamily in eukaryotes, but their roles in plant immunity remain largely uncharacterized. We found that the transcript abundance in tomato (Solanum lycopersicum) leaves of one bHLH transcription factor-encoding gene, negative regulator of resistance to DC3000 1 (Nrd1), increased significantly after treatment with the immunity-inducing flgII-28 peptide. Plants carrying a loss-of-function mutation in Nrd1 (Δnrd1) showed enhanced resistance to Pseudomonas syringae pv. tomato (Pst) DC3000 although early pattern-triggered immunity responses, such as generation of reactive oxygen species and activation of mitogen-activated protein kinases after treatment with flagellin-derived flg22 and flgII-28 peptides, were unaltered compared to wild-type plants. RNA-sequencing (RNA-seq) analysis identified a gene, Arabinogalactan protein 1 (Agp1), whose expression is strongly suppressed in an Nrd1-dependent manner. Agp1 encodes an arabinogalactan protein, and overexpression of the Agp1 gene in Nicotiana benthamiana led to ∼10-fold less Pst growth compared to the control. These results suggest that the Nrd1 protein promotes tomato susceptibility to Pst by suppressing the defense gene Agp1. RNA-seq also revealed that the loss of Nrd1 function has no effect on the transcript abundance of immunity-associated genes, including AvrPtoB tomato-interacting 9 (Bti9), Cold-shock protein receptor (Core), Flagellin sensing 2 (Fls2), Flagellin sensing (Fls3), and Wall-associated kinase 1 (Wak1) upon Pst inoculation, suggesting that the enhanced immunity observed in the Δnrd1 mutants is due to the activation of key PRR signaling components as well as the loss of Nrd1-regulated suppression of Agp1.
Collapse
Affiliation(s)
- Ning Zhang
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, USA
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
| | - Chloe Hecht
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, USA
| | - Xuepeng Sun
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, USA
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, USA
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
- USDA-ARS Robert W. Holley Center for Agriculture and Health, Ithaca, New York 14853, USA
| | | |
Collapse
|
13
|
Huang ZH, Bao K, Jing ZH, Wang Q, Duan HF, Zhang S, Tao WW, Wu QN. Euryale Small Auxin Up RNA62 promotes cell elongation and seed size by altering the distribution of indole-3-acetic acid under the light. FRONTIERS IN PLANT SCIENCE 2022; 13:931063. [PMID: 36160968 PMCID: PMC9500450 DOI: 10.3389/fpls.2022.931063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/15/2022] [Indexed: 06/01/2023]
Abstract
Euryale (Euryale ferox Salisb.) is an aquatic crop used as both food and drug in Asia, but its utilization is seriously limited due to low yield. Previously, we hypothesized that Euryale small auxin up RNAs (EuSAURs) regulate seed size, but the underlying biological functions and molecular mechanisms remain unclear. Here, we observed that the hybrid Euryale lines (HL) generate larger seeds with higher indole-3-acetic acid (IAA) concentrations than those in the North Gordon Euryale (WT). Histological analysis suggested that a larger ovary in HL is attributed to longer cells around. Overexpression of EuSAUR62 in rice (Oryza sativa L.) resulted in larger glumes and grains and increased the length of glume cells. Immunofluorescence and protein interaction assays revealed that EuSAUR62 modulates IAA accumulation around the rice ovary by interacting with the rice PIN-FORMED 9, an auxin efflux carrier protein. Euryale basic region/leucine zipper 55 (EubZIP55), which was highly expressed in HL, directly binds to the EuSAUR62 promoter and activated the expression of EuSAUR62. Constant light increased the expression of both EubZIP55 and EuSAUR62 with auxin-mediated hook curvature in HL seedlings. Overall, we proposed that EuSAUR62 is a molecular bridge between light and IAA and plays a crucial role in regulating the size of the Euryale seed.
Collapse
Affiliation(s)
- Zhi-heng Huang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China
| | - Ke Bao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China
| | - Zong-hui Jing
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China
| | - Qian Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China
| | - Hui-fang Duan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China
| | - Sen Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China
| | - Wei-wei Tao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China
| | - Qi-nan Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China
| |
Collapse
|
14
|
Roles of Auxin in the Growth, Development, and Stress Tolerance of Horticultural Plants. Cells 2022; 11:cells11172761. [PMID: 36078168 PMCID: PMC9454831 DOI: 10.3390/cells11172761] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 12/04/2022] Open
Abstract
Auxin, a plant hormone, regulates virtually every aspect of plant growth and development. Many current studies on auxin focus on the model plant Arabidopsis thaliana, or on field crops, such as rice and wheat. There are relatively few studies on what role auxin plays in various physiological processes of a range of horticultural plants. In this paper, recent studies on the role of auxin in horticultural plant growth, development, and stress response are reviewed to provide novel insights for horticultural researchers and cultivators to improve the quality and application of horticultural crops.
Collapse
|
15
|
Yu JQ, Gu KD, Zhang LL, Sun CH, Zhang QY, Wang JH, Wang CK, Wang WY, Du MC, Hu DG. MdbHLH3 modulates apple soluble sugar content by activating phosphofructokinase gene expression. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:884-900. [PMID: 35199464 DOI: 10.1111/jipb.13236] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
Sugars are involved in plant growth, fruit quality, and signaling perception. Therefore, understanding the mechanisms involved in soluble sugar accumulation is essential to understand fruit development. Here, we report that MdPFPβ, a pyrophosphate-dependent phosphofructokinase gene, regulates soluble sugar accumulation by enhancing the photosynthetic performance and sugar-metabolizing enzyme activities in apple (Malus domestica Borkh.). Biochemical analysis revealed that a basic helix-loop-helix (bHLH) transcription factor, MdbHLH3, binds to the MdPFPβ promoter and activates its expression, thus promoting soluble sugar accumulation in apple fruit. In addition, MdPFPβ overexpression in tomato influenced photosynthesis and carbon metabolism in the plant. Furthermore, we determined that MdbHLH3 increases photosynthetic rates and soluble sugar accumulation in apple by activating MdPFPβ expression. Our results thus shed light on the mechanism of soluble sugar accumulation in apple leaves and fruit: MdbHLH3 regulates soluble sugar accumulation by activating MdPFPβ gene expression and coordinating carbohydrate allocation.
Collapse
Affiliation(s)
- Jian-Qiang Yu
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Kai-Di Gu
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Li-Li Zhang
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Cui-Hui Sun
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Quan-Yan Zhang
- College of Resources and Environment, Linyi University, Linyi, 276005, China
| | - Jia-Hui Wang
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Chu-Kun Wang
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Wen-Yan Wang
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Meng-Chi Du
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Da-Gang Hu
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
- MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Tai'an, 271018, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Tai'an, 271018, China
| |
Collapse
|